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Abstract. In the framework of L.S.Z. field theory in the case of a single massive
scalar field, the "two-particle irreducible" parts of the n-point functions
(in any single channel and for arbitrary n) are defined as the solutions of a
system of integral equations suggested by the perturbative framework. These
solutions enjoy the analytic and algebraic properties of general n-point
functions (up to possible polar singularities of generalized C.D.D. type).
Morever it is shown that the completeness of asymptotic states in the two-
particle spectral region is equivalent to the analyticity of the two-particle
irreducible n-point functions in the corresponding regions of complex mo-
mentum space.

1. Introduction

The previous papers in this series [1,2] were devoted to the first steps of the
off-shell non-linear program of general quantum field theory, following the line
of the many-particle structure analysis of Symanzik [3].

In this program an essential role is played by the (perturbative) notion of
"p-particle irreducible (p.i.) part" of a Green's function (with respect to a certain
channel), which has to be rigorously incorporated in the axiomatic framework.

The present paper is devoted to the study of this problem in the case p = 2,
namely to the extraction of two-particle singularities from the n-point functions
of a local field.

In other words1, for any partition (/, JV\7) of the set of indices N = {1,2,..., n},
n^2 arbitrary, we want to define a function G1'^1 enjoying the following prop-
erties :

a) GJ'W is a general n-point function [1], i.e. it is analytic in the n-point
primitive domain D(n) and its real boundary values satisfy Steinmann relations2.

1 The notations are those of [2]. For simplicity, we restrict to the case of a single mass m in the
spectrum
2 For original works concerning the primitive structure of rc-point functions, see [4—7]
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b) The discontinuities of G7'w in the channels (I,N\I) and (N\I,I) vanish
in the region :

This property is actually our criterion for "two-particle irreducibility".
c) The functions GIίNV are linked with the physical rc-point functions H(n}

through a system of integral relations which is suggested by perturbation theory.
Actually a graphical definition of these two-p.i. functions can be given in the

framework of perturbation theory, in the sense of formal series of Feynman
amplitudes. Consider the expansion of a given ft-point Green's function in terms
of Feynman amplitudes and make choice of some partition (/, N\I) of the set of
all external variables. The two-p.i. part of the considered function with respect to
this partition is defined as the formal subseries of Feynman amplitudes associated
with all the connected graphs which enjoy the following topological property: at
least three internal lines must be cut in order to yield two disjoint connected sub-
graphs which split up the set of external lines according to the partition (/, N\I).

Now it turns out that the various two-p.i. parts thus obtained satisfy, as
formal series, certain integral relations of the Bethe-Salpeter type usually re-
presented under the graphic form :

which has the following algebraic meaning :

f^(fe, ίe/}; {pj,jeN\I}) = f?\{pi9 ie/}; {Pj9jeN\[})

p,dpβ . (R)

Here f(

c

p\{pt, z'e/}; {ppje J}) denotes the p-p.i. part (p=l, 2) of the connected
time-ordered product fc, with respect to the partition (/, J) (once factored out
the overall δ-function). G(p) denotes the complete two-point function (with the
Feynman prescription).

We shall follow the way opened by Symanzik [3], who proposed to consider
integral relations of this type in order to define the two-particle irreducible functions
in the axiomatic framework. However, for reasons explained below, we shall
prefer to use complex analogs of these integral relations : this will be made possible
by using the technique of "G-con volution" introduced in [8] and generalized
in [1]. Indeed the advantages of using integral equations in complex domains
are the following:

i) The new functions GJ'NU which will be introduced as solutions of this
integral system automatically appear as analytic functions whose domains can
be studied by using techniques of contour deformations. Actually this approach
is best suited to the general orientation of our program: here we have in mind
further analytic continuation of the physical rc-point functions (see some results
of this type in [8]).

ii) In the course of this work, we shall take benefit of regularity properties
in the complex domain which would not hold for the corresponding study in
Minkowski space; these regularity properties allow a rigorous introduction of
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the functions G1' NU. For example, all difficulties linked with integration at infinity
will be easily overcome; moreover, equations of the type (R) in Minkowski space
can be given a sense as appropriate limits of the corresponding equations in the
complex domain (considering distributions as boundary values of analytic
functions is a useful method for various problems involving distributions...).

iii) Finally, although some technical assumption is needed to carry out our
program (the "smooth spectral condition" of [2]) and although some "pathologies"
cannot be discarded (C.D.D.-type singularities [9]), these assumptions and
pathologies are most clearly expressed in the complex framework.

In this approach, the construction of the two-particle irreducible four-point
function (for a pseudo-scalar field) had already been presented by one of us [8].

The present work can be considered as an extension of this construction to
the general case of the π-point functions of a scalar field (for arbitrary n). Moreover
the proof of irreducibility3 which is presented here is- algebraically simpler (and
more general) than the one given for n = 4 in [8].

This proof relies on a detailed study of the analytic structure of the discontinui-
ties of G-con volution integrals involving two internal lines.

Section 2 is devoted to this mathematical study and a basic discontinuity
formula is there derived (Theorem 1). In Section 3, the classical Fredholm theory
is applied to the general Bethe-Salpeter equation in the complex four-point
domain D(4) and relevant results of [8] are recalled. Section 4 is devoted to a
generalization of this result for arbitrary n: a family of functions G/'AΓ^/(k1,..., kn\λ)
is constructed, each of which is meromorphic in the domain D(n) x C.

In Section 5, it is shown that for λ= 1/2, the two-particle irreducibility of the
functions G/>]Vvr in the relevant channel (/, N\I) is equivalent (except on a possible
pathological subset corresponding to C.D.D. singularities) with the relations
[10,11,2] stating the completeness of asymptotic states in the two-particle
spectral region. Finally some technical results concerning the "permanence of
smoothness" by G-convolution and Fredholm series summation are derived in
two short appendices.

2. Mathematical Study : Absorptive Parts of Convolution Products

2.1. Introduction

In this section we shall consider the convolution products HG associated in the
following way with all the graphs G with two internal lines and two vertices,
namely

With the first (resp. second) vertex, associate a general (n1 + 2)-point [resp.
(π2+2)-point] function F1(kl9kΛ9kβ) (resp. F2( — fcα? —kβ,k2)). Here the notations
are the following.

Since we want to distinguish a given channel (/, N\I)9 a convenient notation
n

in the space C4("~υ of the external variables ( k ^ 9 . . . 9 k n ) linked by £ fc/ = 0
_ 7=1

3 In the sense of property b) described at the beginning
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will be (fcj; fcl9 fc2), where kt= — kNV = £ kί9 /q (resp. fc2) stands for (n^ — 1)
te/

[resp. (n2 — 1)] independent four- vectors chosen among {ki9 ίε 1} (resp. {kj9 je N\I}).
With the internal line α (resp. β) is associated the four-momentum fcα (resp. kβ),

such that kΛ + kβ = kN\I= —kj. [H^^fe)]""1 denotes the inverse of the "bare" two-
point function :

H$\k)=-Z/(k2-m2)

with Z the "wave-function renormalization constant" of the field (as used in [2]).
Then the convolution product HG can be written under the form [1]:

(1)

Here Ήk is an appropriate contour with real dimension four in the space (C4 of the
internal variable fcα, with continuous dependence on the external variables
* = (*!,. ..Λ)

More precisely ([1, 8]) %>k is obtained by continuous distortion of the "euclidean
region" IR3 x zΊR inside the primitive domain of analyticity of the integrand,
starting from the situation when the external variables are themselves euclidean.
Throughout this section, the convergence of (1) at infinity on Ήk will be assumed.

Now it has been proved [1] that HG is a general n-point function, namely4:
i) HG is analytic inside the primitive domain of analyticity, i.e. the union of the

family of tubes {̂ , έfeS(N)} with appropriate complex neighbourhoods of the
real, connecting these tubes together.

ii) Steinmann relations hold between the real boundary values {H%(p\

iii) coincidence relations: for any couple (έf+9 £f_) of adjacent cells separated
by a partition (J9N\J)9 the corresponding boundary values H%+(p) and H%_(p)
coincide on the real region

In each channel (J, N\J\ the absorptive parts Δ^^2H
G are then defined through

the extended Ruelle discontinuity formula [5] :

where ̂  (resp. &*2) ^
 a well-defined cell of J (resp. N\J) and Δy^2H

G(p) [resp.
a distribution with support in the set:

(resp. Γww

ΔylSr2H
G is one of the real boundary values of a certain "discontinuity function"

ΔJHG which is the common analytic continuation inside the face qj = qN^ = 0
of all the discontinuities \_H%+ -iΓ£_](pj, k\ with (&+9 9>_) separated by (J, N\J)
and k the remaining 4(n — 2) complex variables.

For a detailed review of the rc-point primitive structure, see [1,2]
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More precisely ΔJHG(pj, k) is a distribution in PJ (with support in
depending analytically on fe = (fe l 5 fc 2 ) inside the union of the family of "flat"
tubes {t̂ >l x^2:^eS(J\ ^2

ES(N\J)} with appropriate complex neighbour-
hoods of the real connecting all these tubes together (as a consequence of ap-
plying the edge of the wedge theorem). Aceί^2H

G(pJ, k) denotes the branch of the
"discontinuity function" ΔJHG which is analytic in the tube t̂ >1 x^>2; the name
"absorptive part" is reserved for the real boundary value A^^JΆG(pj,p} of the
latter.

Then the problem we shall investigate in this section can be precisely stated
as follows. Being given a convolution product HG as above, with its convolution
channel (/, N\I), is it possible to write for the corresponding discontinuity function
A1EG a representation bringing out the contribution of the integration associated
with the internal lines of G as well as those of the individual discontinuities of the
vertex functions F1, F2.

2.2. Preliminaries

We first recall the following simple geometric notion. For any cell ̂  of N9 we
define the two sets :

<*iβi£e={JcNv{<*,β}:φ*Jc{<*,β} or

β} or

Then these two sets are cells of ΛΓu{α, β} [4, 12].
In the space C4(M+1) of the (n + 2) corresponding variables (kί9...9kn9kΛ9kβ)

n

linked by the relation kΛ + kβ + Σ kt = Q9 let us then consider the tube
i = l

(resp. ^i/n<^), y arbitrary, and the real mass-shell :

Being given a general (n + 2)-point function F, we also consider its "amputated"
branch:

*T/M*«> kβ> k) = (k2-m2)(k2-m2)F^β^(k^kβ,k)

(resp. Fl™£ιp) analytic inside ^tjJί^ (resp. ̂ β^) Here (fcα, kβ, k) is a convenient

notation for the points of these tubes, with £e ̂ >.
Though the complexified mass-shell σ° is not transverse to ̂ β^ (resp. 2Γ^^^)9

it has been shown in the framework of the linear program ([2], Appendix B) that
F^p

τ^ (resp. F*™^) can be restricted to σc, and yields a boundary value in the
sense of distributions on cr, at all points of the open subset σ of non-parallel
configurations (i.e. with pΛ ή= pβ). This restriction to σ is then denoted
F*ϊβτAP*> Pβ> k) [resp. Fα4/UJΛpα, pβ, fc)]: it is a distribution on (H+)2 depending
analytically on k inside the tube ^>.

Actually in the present case (when only two momenta stay on the mass-shell),
Fa]β^ (resp. FΛ]rβ^) is a distribution in P=ka + kβ, locally analytic in ka inside
a complex neighbourhood of σ (and analytic in k inside )̂. This is provided by
the two-point analytic structure of F inside the face
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Finally let us come back to the convolution product HG and state a technical
hypothesis (concerning the vertex functions Fj,j=l,2) which we shall assume
throughout the rest of this section. This "smoothness assumption" can be formulat-
ed as follows. Let (I,N\I) the convolution channel of HG ana (/; {α, β}) [resp.
({α,β};Λ/V)] the corresponding channel of F1 (resp. F2). For any couple of ad-
jacent cells y± (resp. ί?'±) separated by (/; {α, /?}) [resp. ({α,£}; JV\/)], we shall
assume that the boundary values F^±(/?/? k) [resp. Fp^ — pj, fc')] and the cor-
responding discontinuities Ayί9>2F

1(pJ, ίc) [resp. zl^ί^F2( — p/? ίc')], taken on the
face #/ = () are continuous functions of pl in the region 4m2 5Ξp2 <9m2.

Then as a straightforward consequence of this assumption and of the previous
remarks, it is seen that the distributions FJ

Λ^β^(pΛ9pβ9k) [resp. FJ

Λ^βls4pΛ9pβ9k)']9

j=l929£f arbitrary can be identified with continuous functions on

In later applications (in Section 5), the physical rc-point functions there
considered will satisfy the above properties, which will be established on the
basis of the postulate of "smooth spectral condition" previously introduced in
this series [2].

2.3. A Discontinuity Formula

Now we are in a position to prove the basic

Theorem I. In the face qI = qN\I = 0 associated with the convolution channel (/, N\I)
ofHG, consider the "flat tube" :

x " - :

where Σ(2] denotes the "two-particle region" :

In ?̂̂ 2 the discontinuity function A1HG is given by the following formula, in the
sense of continuous functions of pj :

= J F^k^kJA^F^-p^-k^)^^^

^+ f A'ptfa, fc1? fcα)F2(-Pl, -kα, k2)

*Λ

+ (2πz*/Z)2 J F

(2)

Here p^= — pΛ, δ~ = θ( — p°)δ(p2 — m2) and ($<?ί (resp. ^2) is a contour in the space

C4 of the internal variable kα, which will be described in the following.

Remarks, i) The integrand of each term in the right-hand side of (2) would be an
"unallowed product" of distributions in pI if the technical "smoothness property"
of the boundary values of the F7's had not been specified.

ii) The discontinuity formula (2) brings out the contribution of each vertex
function (first two terms) together with the one due to the poles carried by the
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internal lines. This can be graphically illustrated as follows:

39

iii) The proof is rather long. The reader who is not interested in its technical
details may skip the rest of this section.

2.4. Proof of the Theorem

Let us consider a couple of adjacent tubes (^>+,^>_) separated by the face
qj = qN^ = Q and rewrite the expression (1) of HG under the form:

)= f dkn+1

Here Hτ is the (n + 2)-point function associated with the tree

T^ } JV\J; <&±(k)=TR3 x 5£ ± is a cycle with real dimension four

n+1 n+2

in the space C4 of kn+ί, with J^?± some contour of the fc°+1 -plane threading its
way from — ίoo to +ίco through the singularities of HQ.

The latter are "cuts" which correspond to the "vertex partitions" of the tree
T [1], that is to the following channels: {n + 1}, {n + 2}, Ju{τι+l}, Ju{n+l}
for any Je^*(/), and Lu{n + 2} for any Le^*(JV\J). In the following
{ΓίίΓ2,Γl9ΓJ,ΓL} will denote the corresponding singular sets and
{f1,f2,fI,fJ,fL} their respective traces in the /c°+1-plane. In general they
are note confused and the line £?± is not "pinched" (Fig. 1).

In the limit q® = 0, Γz becomes imbedded in the subspace with k®+1 real and
the two subsets yί = {k2

l+1=m2} and γI={(kn+1+pI)
2 = m2} of (respectively)

Γ1 and Γj have an intersection which is a sphere σ. In the k£+1-plane, sections
of σ only appear for special values of pn+1. At these special values of pn+l9 the
contour ^>± is apparently pinched between the two coinciding poles γί and yt.
However we shall see below that the local analytic structure of the integrand in a
complex neighbourhood of σ will allow us to avoid this pinching by suitable
distortions of 1R3 x & ± in (C4 (provided that p2ή=4m2).

α -ε-

Fig. 1
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Fig. 2

2.4.1. Three Contributions

Let us choose two points k+ (resp. k_) in ̂ + (resp. ^>_) symmetrical with respect
to the common face q° = q^j = Q, that is k+ =(p°±iε,pιl k) with ε>0 and (p/? k)
fixed in y^2.

In order to study the discontinuity

^2ff
G(pj, k) = lim [tf£+(fc+)-#£_(M] (4)

it is now necessary to release the constraint kn+1 + kn + 2 = Q and to consider the
analyticity properties of the integrand Hτ in all its variables. Around the real
region {pIεΣ(2\pn+ί-i-pn + 2=Q}.> it is easily seen (Fig. 2) that there are four
disconnected determinations of Hτ corresponding to the four sign prescriptions
(<?ι ^0> <?jv\/^0) We denote by //+ (resp. Hτ_, HQ) the determination corresponding
to the choice ( + , -) [resp. (-, +), ( + , + )].

Since in the following we shall be only concerned with the dependence of the
contours on the variables (q®, g#\/), we can rewrite (3) under the form:

H*±(k±)= J Hτ

±(k(a±\kn+1)dkn+ί (5)
^(αi)

where a+ = {±ε, +ε, 0} is the projection of k± in the plane π of the triplet of
variables {tf,^\/^«+ 1 + ̂ +2) and Hτ

±(k(a±\ kn+1) is a shorcut for Hτ

±(k(a±\

Now in view of (5) and of the above analyticity properties of Hτ, the discontinu-
ity (4) can be rewritten :

i),*,+ ι)^+ι- ί HT

0(k(b2\kn+1)dkn
bι) ^ + (b2)

I Hτ

0(k(c2\kn+,)dkn+l

-^-(c2)

HT

0(k(c2),kn+1)dkn+1- ί

Here bl9b29 cl9 c2 are points in the space π as shown on Figure 2. The contours
(&+(bί) and ^+(ί?2) [resp. m~(c^ and ^~(c2)] are obtained by continuous distor-
tion of the original (&+(a+) [resp. #~(<z_)] inside the analycity domain of the
integrand. The points k(b^ [resp. k(cj] and fc(b2) [resp. k(c2J] are "small perturba-
tions" of k whose projections onto π are b1 (resp. Cj) and b2 (resp. c2). We have
used the homotopy of the cycles ̂ + (b2) and Ή+(c2) in the analyticity domain of HQ.
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Q Jβ^

Fig. 3

Letting b1 and b2 (resp. cx and c2) tend to bε (resp. cε), we finally obtain:

Δy^2H
G=\\m j LHT

+-P

Hτ

0(k(cc\ kn+1)dkn (6)

which brings out the contribution of the "pinching" of the contours (third term)
and those of the discontinuities of the integrand.

2.4.2. The First Two Terms

In the first term of the right-hand side of (6), (£+(bε) is defined as the limit for b1^bε

of a contour ($+(b1) = lR3 x J£ + (b1) where <g + (b1) remains homotopous to J£?(α+)
in the analyticity domain of the integrand.

Figure 3 shows the situation in the limit b1 = bε, i.e. on the manifold
{#£u = 0, pn+1 +pn + 2 =0}' A and Γ2 lie at the distance ε, Γ7 and Γ2 are confused
but, due to the presence of the factor [^o2)(fcn + 2)]~1 in the integrand, Γ2 has no
pole and ̂  + (bε) is not pinched. The singularities {ΓL,Le^(N\I)} are no
longer present since they correspond to partitions "in Steinmann position" with
respect to the face gjv\/ = 0, and that the discontinuity function [Hτ

+ — H^~\ does
not have there any discontinuity (as a result of Steinmann relations for Hτ).

Let us now investigate what happens when ε->0, starting from a fixed value
ε0: in the limit ε = 0, IR3 x ^+(bε) is "pinched" between the two polar manifolds
γ{ and γ f . For ε:gε0, it is then necessary to modify the definition of(£+(bε) in the
following way.

First notice that it is sufficient to distort Ή+(bε) in its "central part", namely
in the region pn+1eΩ shaded in Figure 4. Then we shall use the local analytic
structure of the integrand in the neighbourhood of σ, as it has been recalled in
Section 2.2, namely analyticity with respect to fen+1 in V^Ω^y^yj) where V^(Ω)
denotes some complex neighbourhood of Ω.

For this purpose consider the following vector field defined on Ω and depending
continuously on ε for ε0^ε^0:

fl£lι(P»+ι) = («Λ+ι>rf+^ (7)



42 J. Bros and M. Lassalle

2m

2m

Fig. 4

with μ some positive constant, φ a continuous function with support Ω and
strictly positive in Ω and u~(p) = λ(p + pI/2) a radial attractive vector field (λ
negative).

For any β^ε0 sufficiently small, it is then easily checked that [Pn+i + iq^+i]
can be kept inside Vk(Ω)\(yι^yι\ everywhere on Ω. (&+(bε) is therefore defined
by the field q(

n

ε}

+ί when pn+1eΩ, and by k°+1E£?+(bε) outside. [^+(bε) must be
chosen to have the straight line ε(l + μp°+1) as restriction to Ω.]

In other words, at all the points where the critical pinching situation occurs
(i.e. points lying on the intersection σ of γί and y7), the contour ^+(i>ε) is given a
small distortion in space complex directions qn+1 which is kept continuous in Ω
(Fig. 4).

With such a definition we can write:

lim j [Hi -Hl\ (k(bε), kn+1)dkn + ί] = f 1&1 -Hi-] (k(0),kn+1)dkn+1

*+<0) (8)

or, in view of the tree-structure of Hτ:

= I ί 'fo, k,, kΛ)Δ^F2(-Pl, ~kΛ, k2

where the notation ̂ 1 restores the dependence of ̂ +(0) on the external variables
ki^^v Here the assumption of continuity in pl is required to give a sense to
the product of terms in the integrand.

Similarly consider the term :

J \ kn+1)dkn+1. (10)

Here the argument is slightly different from the previous one: indeed ^ (cε

is defined as the limit (for cί-^cε) of a contour (&~(c1)=]R3' where ££
remains homotopous to <£(αJ) in the analyticity domain of the integrand. But
(as it may be checked on Fig. 5) in the limit c1=cε, ̂ ~(cι) is pinched between
7j_ and yt on σ.

Starting from a given value ε'0 of s' = q°, ^~(c^) must then be distorted above
Ω as follows. Consider the vector field g^ defined on Ω and depending con-
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<β-(cε) Fig. 5

tinuously on ε' for ε'0 ̂  εf ^ 0:

with u+(p)= — u~(p) a radial repulsive vector field. For any ε'^ε'o,^ is
then efined b the field ε for Ω and b fc°J2? " c outsidethen defined by the field ^ε+\ for pn+1εΩ, and by fc°+1eJ2? "(cj outside
having the straight line ε'(l — μp°+ 1) as restriction to Ω].

With these specifications, (10) is meaningful. Moreover in the limit ε = 0, ̂ ~
is not pinched and the second term of (6) can be written :

where the notation ̂ 2 restores the dependence of #~(0) on the external variables
A;2 e ̂ >2. There again the product of terms in the integrand is meaningful on the
basis of our smoothness assumption in p7.

2.4.3. The Double Residue on the Sphere σ

Let us now consider the third term of (6), namely :

J Hτ

0(k(cε),kn+1)dkn+1.
^ + (cε)-^-(cε)

Instead of the contours ^?±(cε), it will be convenient to use other representatives
(j>±(cε) in the same class of homology in the analyticity domain of HQ. These
contours ^?±(cε) can be described as follows.

Since ^+(cε) [resp. #~(cε)] has been defined by continuous distortion of
Ή+(c2) [resp. ̂ "(A)] when the point c2 (resp. cj tends to cε as shown on Figure 2,
we shall first introduce a new representative of (&+(c2) [resp. <^~(cl)~\. We choose
Ή +(c2) as a "handle-shaped" domain whose sections at fixed pn+ί are made up
of the union of the two following contours in the fc£+ 1 -plane (Fig. 6a):

i) a complex line 3? which is independent of pn+1, crosses Γ7 always on the
left of yr and threads its way between the singularities {ΓL, Le^*(ΛΓ\/)} and
{f j, Je ̂ *(/)}. Let rf+ ! = c the intersection of ̂ f with the real axis.

ii) when pn+ί is such that p®+1 = —ω1 = — (Pn+i +m2)1/2 (i.e. the trace of γj
is bigger than c9 we add to & an anticlockwise oriented circle 8yί(pn+ί) around
the trace of 7^

The way in which the "handle" dγί= (J δγί(pn+ x) can be attached
|pn+ι |^(c 2 -m 2 ) 1 / 2

continuously to the fixed part & is obvious.
Actually £g can always be chosen so as to keep fixed when c2 tends to cε.

Then ^+(cε) has the form 3yί"u(lR3 x ^f), where δyj1" is homotopous to dγί in the
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Fig. 6

domain of H%. Note that dyl is made up of circular sections which are transverse
to γ1 but can no longer lie in the k°+ !-plane when pn + ί belongs to the intersection
σ of 7i and y, [i.e. when |pπ+1| = ((p?/2)2-m2)1/2].

Similarly we can introduce a new representative ^ (cx) for # (c^ with
another handle-shaped domain using the same fixed part ΊR3 χ j £ (Fig. 6b).
When c1 tends to cε, the handle tends to a position dγϊ which only differs from
dyl by the way it turns around the sphere σ.

Then we can write:

f Hl(k(c,\ kn+ ,)dkn+! = f Hl(k(cε\ kn+ ,)dkn+1 (11)
* + (ce)-«-(ce) S y + - ί 5 y ϊ

and in the right-hand side the integration domain can always be restricted to:

U ίPn+ι>dyϊ(pn+ιft- U l>π+ι»dyΓ(j> Λ +ι)]
| P n + l | ^ 0 | p n + l | ^ 0

ρ being an arbitrary number satisfying the inequalities :

Now let us apply the residue theorem in its general form [13]. We get:

^Hτ

0(k(cε),kn+1)dkn+ί

= (2ίπ) J (p2

n+ί-™2)Ho(k(cεlpn+ί) \ Pn + 1 (12)

where the "residue contour" γΐ(cε) [resp. yϊ(cj] has to be defined on the complex
mass-shell k»+1 = m2 by continuous distortion of a corresponding residue contour
yΐ(c2) [resp. yΓ(cι)] which we shall study now. Note that here we have used the
fact that for /?jΦ4m2, at any value of c1 ? 2 the relative situation of the manifolds
γ1 ana y7 in the neighbourhood of their intersection σ never degenerates, so that
the ambient isotopy procedure [14] can be applied.

Then if we parametrize γ1 by means of polar coordinates (r, Ώ), i.e. by putting
pn+1=rΩ (with |Ω| = 1), the residue contours yl(c2] and y["(cι) are both given
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ϊj* (cg-ϊr(<g Fig. ?

by the ball {ΩeS(2)} x {r Orgr^ρ}. However in the situation corresponding to
c2, the trace of y/ in the complex r-plane (namely r = ((k®/2)2 — m2)1/2) tends to
the real from above when c2-*cε. In the situation corresponding to c l 5 this trace
tends to the real from below when c^cε. The limiting residue contours yf (cε)
can then be pictured in the r-plane as shown on Figure 7.

In view of (11) and (12) and applying again the residue theorem in the r-plane
(or equivalently in the ω-plane, ω = (r2 + m2)1/2), we get:

J Hτ

0(k(cε),kn+1)dkn+ί

n°ϊ2 — 4m2~
= (2iπ)2 J (p2

n+ , - m2) [(pB+ 1 + Pl)
2 - m2] H J(/c(cε), pn+l) \ -0 - dΩ

σ σ °Pl

which can be rewritten :

(2/π)2 J Hl:™*(k(cάpn+1)δ-{pn+1)δ + (pn+1 +Pl)dpn+1 (13)

where #J;*mp stands for the restriction to the sphere σ of the "amputated"
(jp2

+1 — m2)[(pn+1+pj)2 — m2] ̂ J. Now the limit of (13) for ε->0 is meaningful
since the compact set of integration remains inside the analyticity domain of the
integrand.

Finally taking into account the tree-structure of H τ and the definition of HQ,
it is easily checked that when kn+ί stays in a complex neighbourhood of σ and
k inside ^>1 x ^>2, the corresponding branch of H^ is the following:

so that :

where the notations are those of Section 2.2. Finally in the limit ε = 0, we get

limf ί
ε-^θL^ + (cε)-^-(cε)

= (2πi/Z)2 J

This achieves the proof of Theorem 1.

2.4.4. Final Remarks

i) In the previous argument, we always supposed pj>4m2. When pj tends to '4m2

(situation where the sphere σ is degenerated), the third term vanishes as the
integral of a bounded continuous function on a vanishing cycle. It is shown in [18]
that it is also the case for the two other contributions.
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ii) An analogous discontinuity formula can be established by introducing
the branch of Hτ which corresponds to the ( — , — ) choice on Figure 2. The contribu-
tions of the discontinuities of the vertex functions on the faces g?=0 and <^\/ = 0
are of the same type as those studied in 2.4.2, with appropriate contours Ή^
and $y2. The pinching contribution is the following:

(2πί/Z)2 J F^βirβί, pα, pβ)

Both expressions are equivalent: in the following, one of these will be more
suitable according as we shall want to exploit the asymptotic completeness of
"outgoing" or "incoming" states (see Section 5).

3. The General Bethe-Salpeter Equation

In this section we shall investigate the analyticity properties of the solution of the
general Bethe-Salpeter equation, which is usually written under the graphic form:

(14)

and will be given a precise meaning in the complex four-point primitive domain
D(4\

Let us first define our notations. We shall be dealing with general four-point
functions, defined in the space (C12 of four complex four-momenta {kp l^j'^4}

4

linked by the relation £ fc/ = 0. Since we want to distinguish a given channel,
j=ι

for instance [{1, 2}; {3, 4}], let us introduce the following "barycentric" indepen-
dent four- vectors :

=ki-k2

Then in the four-point complex domain D(4), let us consider the following
integral equation, which is the analog of (14):

Here F(K, Z, Z') denotes a general four-point function which is considered
as given; G(K, Z, Z' λ) is the reciprocal Fredholm kernel the analyticity properties
of which are under study. Γ — IR3 x 5f is a complex contour with real dimension
four, threading its way through the singularities of the integrand, with euclidean
infinite parts ([1, 8]).

Since we want to follow the perturbative theory as a heuristic guide, we choose
the given function F(K, Z, Z') to be the "one-particle irreducible part" f ί1*2);*3 '4)
of the physical four-point function H(4\ with respect to the considered channel
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[{1,2); {3,4}]. It was proved in [2] that this function enjoys the primitive struc-
ture of general four-point functions5.

Since (from the Wightman axioms) F{1'2}; {3'4} is expected to have a polynomial
increase at infinity inside the primitive domain, it is necessary to avoid divergences
on the (euclidean) infinite parts of Γ. For this purpose, F will be multiplied by
the following "cut-off factor:

where μ^>2m and r are sufficiently large positive numbers. It is clear that this
regularization at infinity does not spoil the primitive analytic structure of F\
moreover it does not change its restriction to the mass-shell, a point which we
shall need below in Section 5.

Then the conservation of the primitive structure of four-point functions by
convolution [1, 8] allows us to prove:

Proposition 1. For each given cut-off factor ρ, the unique solution G(K,Z,Z';λ)
of the Fredholm equation (15) is meromorphic in the product {(K, Z, Z')eD(4)} x
μeC}.

Proof. We shall only sketch it since it has already been presented in [8]. The
formulae of the classical Fredholm theory [15] indicate that (15) is identically
satisfied by the following function:

G(K, Z, Z' λ) = B(K, Z, Z' λ)/A(K λ)

with °°

« = o

B(K,Z,Z';λ)= (17)

and A0(K) = 1, B0(K, Z, Z') = F(K, Z, Z'),

F(K,Zl9Zi) ... F(K,Z19ZJ

An(K)= J[
Γn F(K9Zn,ZJ ... F(K,Zn,ZJ

Bn(K,Z,Z')=

F(K,Z,Z')

F ( K , Z n , Z )

2 }

,Zι)
!,Zl) .

„ z,) .

j

.. F(K,

• F(K,

- F(K,

z,zn)
Zl'ZJ

ZB, ZB)

•π
7 = 1

5 Up to a finite number of poles of the form {/C2 = α v,0<α v<m2}. Such poles can in principle be
produced by the zeros of the propagator [i.e. the physical two-point function H(2)(KJ], their occurence
being connected with the existence of "ultraviolet" polynomial increase for H(2\ However it is a
reasonable hope that such zeros are also present (with the same order) in the physical rc-point functions
and consequently do not produce poles in the one-p.i. rc-point functions
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As recalled above, F(K, Z, Z') is analytic in the domain D(4\ minus the set
of real poles {IC2 = α v,0<α v<ra2}. We call D(4) the domain thus obtained6

(with the hope that D(4) = D(4), see the footnote 5). Then in view of the conservation
of analyticity by convolution proved in [1], An(K] [resp. Bn(K, Z, Z')] is also
analytic in D(2} (resp. Z)(4)).

The independence of the definition of G(K, Z, Z'; λ) with respect to the choice
of the contour Γ in its homology class can be easily checked.

As for the (absolute) convergence of each series (16) and (17), it is established
in the whole complex A-plane by using the following bounds [8] (inspired by
classical Hadamard's majorizations of determinants):

\An(K)\ ^ Cnnn/2 [1 + d(K, Z, Z')" ̂ nM

-\Bn(K,Z,Z')\^C'n(n+l)

where C and C are positive constants, M an integer and d(K, Z, Z') stands for the
distance of the point (K, Z, Z') to the boundary dD(4} of D(4). The sums (16) and
(17) are then analytic functions in the respective domains {KeD(2)} x {λeC} and
{(K, Z, Z') <Ξ D(4)} x {Λe C}, from which follows the meromorphy of G(K, Z, Z'; λ)

Remarks, i) In addition to the possible real poles {K2 = α v,0<α v<m2}, the only
singularities of G(K, Z, Z'; λ) in D(4) x C are induced by the zeros of A(K\ λ) and
localized on analytic manifolds of the type f(K; λ) = Q. These poles induced by
the zeros of a general two-point function can be considered as generalized C.D.D.
singularities [3,9].

ii) The estimates (18) are not sufficient to imply that the analytic functions
A(K;λ) and B(K, Z, Z' λ) have boundary values in the sense of distributions on
the boundary of their domain. Actually for each Fredholm determinant An(K)
[resp. Bn(K, Z, Z')], the boundary value is a distribution whose order can increase
linearly with n. Therefore nothing can be said about the boundary value of the
sum (16) [resp. (17)], at least in the framework of distributions.

However as a consequence of the technical postulate of "smooth spectral
condition" introduced in [2], a regularity property in the convolution variable
P = Re K can be established as follows.

Inside the face Im K = Q, let us consider the following "flat" tubes:

&e,e> = {(P9 Z, Z')elR4 x <C8:Peί(2),β ImZe V + , ε' ImZ'e V + , ImZΦ ±ImZ'}

with 8, β' = ± 1 and Σ (2) the "non-C.D.D." open set [2] :

Then consider the boundary values of F(K,Z,Z') onto the face ImK
namely:

F ± (P, Z, Z') - lim F(P± iρ, Z, Z'} .

We similarly call j5(2) =D(2)\{KeC4; K2 = αv, 0<α v<m 2}
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On the basis of the results derived in [2] from the "smooth spectral condition",
the following property is proved in [18] :

Proposition 2. In each flat tube ^ε>ε'9 F±(P, Z, Z') is an analytic function of(Z9 Z')
and a (Holder-) continuous function of P.

Now in view of the "conservation of smoothness" in P by convolution proved
in Appendix A, we can state :

Proposition 3. In each flat tube J^j£', the boundary values:

Bf (P, Z, Z') = lim Bn(P ± iρ, Z, Z')
ρeF +

ρ^O

AΪ(P)= lim An(P±iQ)
ρ^O

ρeK +

are analytic in (Z, Z7) and continuous in P.

However it is proved in Appendix B that the smoothness in P is preserved by
summation of Fredholm series, in other words that :

Proposition 4. In each flat tube ^>ε', the Fredholm series:

B±(P,Z,Z';λ)= £ λ"(n\r1BΪ(P,Z,Z')
n = 0

A±(P;λ)= £ A"(»!Γ M±(P)
11 = 0

are analytic in (Z, Z') and continuous in P.

For each fixed value of λ, let us then consider the two-particle region Σ(2\
minus the real C.D.D. zeros [i.e. zeros of H(+\pJ] and those (generalized C.D.D.
zeros) of the boundary values A±(p\ λ) of the two-point Fredholm determinant.

Namely :

It is easy to check that Σ(2) is a dense open subset of Σ(2\ as a consequence of the
analyticity of H(2) and A. Moreover from Proposition 4 it is straightforward to get:

Proposition 5. In each flat tube:

^ε,-{(P,Z,Z')eIR4χ(C8:Pef(

λ

2), εImZeF + ,ε / ImZ / eF + ,ImZφ±ImZ / }

the boundary values:

G±(P,Z,Z' ,λ)= lim G(P±ίρ,Z,Z';λ)
ρeF +

ρ^O

are analytic functions o/(Z, Z'; λ) and continuous functions of P.

However such a regularity property cannot be obtained in the other variables.
If no extra technical assumption is formulated (for instance those used in [8],
p. 112), when (Z, Z') tends to the real inside ^ε>ε>, the corresponding boundary
value of G+(P, Z, Z' λ) is only defined as a general hyperfunction in (X, Jf)-space.
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4. Generalization to Λf-Point Functions

4.1. Introduction

In this section we study the analyticity properties of the solution of a system of
integral equations which generalize the Bethe-Salpeter equation, when one is
concerned with all possible channels (/, N\I), with n=\N\ and ICN arbitrary.

Actually we shall start from the following graphical identities, which can be
checked in perturbation theory (at any order):

}N\I (19a)

and also:

}N\I.
These relations will be given a precise meaning in the complex rc-point primitive
domain D(n\

Let us first define our notations. We shall deal with general n-point functions
defined in the space C4("~1} of n complex four-vectors {/ct , I r g z r g n } linked by the

n

relation £ &,• = (). Since we want to distinguish a given channel (I,N\I) with
/ = i

n1 = I/I and n2 = \N\I\, a convenient notation will be the following: k = (kjy kl9 k2)
where kje(C4'(nj~1\j=ί92, and /q (resp. k2) stands for (n^ — 1) [resp. (n2~~l)ί
independent four-vectors chosen among {fef, ιe/} (resp. {kpjeN\I}).

Then in the primitive rc-point domain D(n), we shall write relation (19a) as
follows:

tf-Wfr,, k,, k 2 ; λ ) = FI'N^(kI,k1,k2)

-λf F"<« «(*7, I,, kJGW^-k,, -ka,k2;λ)
Γ

•IH^kJH^ + pM^dk,. (20)

Here Γ^R3 x <g is a contour in the class defined in Section 3. GItNV(kl9 fc1? ίc2 )̂
denotes the unknown kernel which is under study. FItN^(kl9 fe1? fe2) i

s Λe general
n-point function which is given. In agreement with the perturbative heuristic
guide, FItN^ has to be the "one-p.i." part of the n-point function H(n} with respect
to the considered channel (/, N\I).

The definitions and analyticity properties of the FI>N^s have been given and
studied in [2]. It was proved there that these functions enjoy the primitive structure
of general rc-point functions (up to a finite number of real poles
{/c/

2-αv ?0<αv<m2}).
However, as in Section 3, in order to avoid divergences on the (euclidean)

infinite parts of Γ, FI>N^ is multiplied by the analytic cut-off factor:

Q(k,,. - . , U = Π [(m2 - μ2)/(kj - μ2)]' (20')
7=1

which enjoys the same properties as the one already used in Section 3.
However we should take care that the perturbative relations (19a) and (19b)

provide two different definitions of the function GI>N^. In this section we shall
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have to prove that the corresponding integral equations in D(n) have the same
solution. Actually the result we shall now prove is the following:

Starting from the integral relations (19a, b), it is possible to define consίstenly
the functions G/>]VVΓ for all channels (/, N\I). This will be done through a suitable
recursion over n1 = |/| and n2 = \N\I\, which we shall describe now.

4.2. The Recursion over nl and n2

i) Hί = n2 = 2

We start from the relations:

(14)

(21)

namely

where the symbol O stands as a shortcut for the convolution integral.
The Fredholm equation (15) has been studied in Section 3 and its analyticity

properties there investigated. Now we show that (15) and (22) have the same
solution. Indeed it is sufficient to apply the associativity and the distributivity of
convolution integrals and to write

from which follows :

13303)= = =©=^ and
ii) n1 = 2,n 2>2
Let us consider the set of relations:

} N\I .
We notice that while (23b) is a Fredholm equation for IHJHΓ (23a) provides

an explicit expression of the unknown function —@J^_ in terms of known ones.
Moreover both kernels zf2)."."." and ZUffiΓ must be identical, since we can write:

The analogue of (23a) is then chosen to provide the following definition of G{1)2};ΛΓ2:



52 J. Bros and M. Lassalle

ΐii) nί >2, n2>2

The relations to be used are then (19a) and (19b). We remark that, due to the
previous steps of the recursion, they provide an explicit definition for G7'^7.
Notice that (19a) and (19b) are equivalent since:

_ :ιr
G7)]VU is therefore given indifferently by anyone of the two following definitions:

iv) «! = !, n2 = 2

We consider the relations :

(26a)

(26b)

Both have the same solution since:

Then (26a) is chosen to give the following definition of G{1};{2'3}:

v) «! = !, n2>2

We use the relations :

Both are equivalent, as easily checked. We choose indifferently anyone of the
two as definition of G{1};N2:

'N^ . (28)

vi) nί=n2 = l

Then we have :

-φ- = -φ- + λ -<ΓX=@- = -®- + λ -<2X=φ- -

Both expressions are equivalent, namely:
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To summarize, we can say that, once solved the general Bethe-Salpeter equa-
tion, it is no longer necessary to handle any Fredholm equation to get the complete
set of functions {G/)]VU}. Indeed as shown above if the case nί = n2 = 2 has been
solved, the rigorous counterparts of the perturbative graphical identities provide
explicit definitions for the other functions.

43. Analyticity Properties

Now if we take into account the conservation of the primitive analytic structure
by convolution [1] and the meromorphy properties of G{1'2};{3'4} such as given
in Proposition 1, we have directly, in view of the above described recursive argu-
ment:

Proposition 6. Each of the functions GI>N^I(k'9λ) introduced in Section 4.2 is mero-
morphic in the domain {keD(n)} x {Λe(C}. In addition to the possible real poles
{kj =αv, 0<α v<m2} (see footnote 5), its only singularities in this domain are
induced by the zeros of the two-point Fredholm determinant A(kI;λ). Besides, its
real boundary values satisfy all the relevant linear relations of general n-point
functions.

We then turn to the smoothness properties which can be established for the
G7'NV/r's on the basis of the "smooth spectral condition" [2]. First we note that
the following result concerning the FI>NV'S has been proved in [18] :

Proposition 7. Let £f+ and &*_ denote two adjacent cells of N, separated by the
partition (/, N\I) and 2Γy denote the commun face of the two corresponding tubes
^>+ and &~y_ on the manifold <Z/ = <?N\/ = 0. Then in the "flat" tube:

where Σ stands for the "non-C.Ό.Ό." open set:

the boundary values F^^pj, k) are analytic in k and (Holder) continuous in pl.

Now taking into account this result as well as Proposition 5 and the "conserva-
tion of smoothness" in p7 by convolution (such as given in Appendix A), we get:

Proposition 8. In the "flat" tube:

with

the boundary values GI

5^
I(pI, k; λ) are analytic in k and continuous in pp

Remark. When k tends to the real inside ^>, the boundary value of G^J(p/5 k; λ)
is a general hyperfunction in the variables p. Nothing more can be said in this
general framework, but this is irrelevant for what is done in the following.
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5. The Algebraic Algorithm of Irreducibility

This section is devoted to the proof that for λ = 1/2 each function G/!ΛΓVΓ previously
introduced is actually two-particle irreducible in the relevant channel (/, N\I).

In other words, we shall prove that the coincidence region of each function
G''NVΓ(/cz, fc; 1/2) in the channel (/, N\I) has the form:

Or similarly, that each corresponding absorptive part Δ^^2G
IίNχι(p!, fc; 1/2),

[with ^ (resp. ^2) arbitrary in S(I) (resp. S(Λ/V))], vanishes in the following
"flat" tube, on the face qI =

In view of the edge of the wedge theorem, both properties are indeed equivalent.
Since it can be seen from Proposition 8 that any absorptive part

^^ '̂̂ (p/, fe; λ) is an analytic function of k inside ί̂ 1 x ̂ 2, and a continuous
function of pl in Σ(2\ all that follows is established at fixed p7 in the sense of
continuous functions.

We first recall some basic results concerning the completeness of two-particle
asymptotic states.

5.1. The Two-Particle Completeness Relations

The two-particle non-linear information of general quantum field theory is
formulated in the following "completeness relations" [10,11,2] which express
the completeness of incoming (resp. outgoing) two-particle asymptotic states.

In each two-particle region :

with

the following relations are satisfied by any absorptive part A^^2H
(n) of the ft-

functions H(n} in the (arbitrary) channel (/, N\I):

A ̂ 2H
(B)(P/, P) = (2πi/Z)2(2 !)~ 1 [H?ttf£ * %/ 2̂](P/? P) (30α)

= (2πί/Z)2(2 !)- 1 [H< Vi£ * #?£] (P/> P) (30b)

Here both sides are distributions in IR4^"1* and the notations are those of Sec-
tion 2.2. In particular, n1 = |/|,n2 = |N\/|,α means that p^=—p^ and
Hfyβτly^Pai' Pβ'Pj) denotes the restriction to the mass-shell {pl=p2

β = m} of the
"amputated" distribution:

fl£)?t^(P«> Pβ> PJΪ = (P* ~ m^(P2β ~ m2)H^^(pΛ9 pp, pj) .

The symbol * stands as a shortcut for the "mass-shell convolution" product:

ΐύZ Hffi&lfaPM

= j Hffi&to., p^pj H(^\(pί,pl,p2)δ;δJδ(Pcι+pβ+pI)dPadPβ . (31)
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Now (30) and (31) are in general meaningful in the sense of distributions in IR4("~ 1}.
This is provided by the fact (shown in [10]) that, after testing in the external
variables pj9 each distribution H(^j^j)j (resp. H($β$) can be identified with a
square-in tegrable function on the mass shell σ={p(χeH~,pβeH~} with respect
to the measure (dpJ2ωa)(dpβ/2ωβ).

However if the technical property of "smooth spectral condition" is postulated
[2], (30) and (31) also make sense as distributions in p = (pl5 p2\ having a continu-
ous dependence on p7. Indeed it can be proved ([2], Proposition 3, and the remarks
made above in Section 2.2) that each Hty£$ (resp. Hfy^j}) is a continuous
function on σ.

Now let us consider the "non-C.D.D." two-particle regions:

with

It is easily seen that Σ(2} (resp. any Σ(2)) is a dense open subset of Σ(2) (resp. Σ(2}}
and we have the following

Theorem. [2] The system of non-linear relations:

%|̂ ](p/,/)) (32a)

F%f$vyPl,p) (32b)

satisfied on each corresponding Σ(2} by the various one-p.i. functions FI>N^9 is
equivalent with the original system of completeness relations (30a, b) expressed in the
same regions.

In other words, the two-particle non-linear information can be expressed in
terms of the one-p.i. functions, except on the "pathological set" corresponding
to possible C.D.D. singularities.

Relations (32) are valid as distributions in p and continuous functions in pp

Moreover they can be easily extended, as analytic functions of the complexified
variables k, in certain "flat" tubes as we shall describe now.

5.2. Extension to Flat Tubes

The left-hand side of (32a) is the boundary value of the discontinuity function
Δ IFI*W in the "flat" tube:

From the linear program (see Section 2.1) it is known that ΛIF1^1 is ana-
lytic in fc = (k l 5k 2) inside a domain Dl which is the union of all flat tubes
{SΓsfi x^2>^ιeS(/), 5^2eS(ΛΓ\/)} on tne manifold qI = qN^I = Qί with appropriate
complex neighbourhoods of real regions connecting these flat tubes together.

Let us now consider the following mass-shell convolution product:

HΓ(pl9 k1 ? k2) = (2πi/Z}2(2 !)- 1 f ##& (pα, Pβ, k^f^p^ pβ_, k2)

'^δβδ(pΛ + pβ + pj)dpΛdpβ (33)

where the argument (p/? k) is chosen to lie in the product Σ(2) x Dt.
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The integration variable lies on the compact mass-shell σ and, as recalled in
Section 2.2, it is a result of the linear program that each factor Fffifh (resp.
F l-τ'||

;^2 J) has an analytic dependence on k1 (resp. fe2) in DP

This is sufficient to conclude that the right-hand side of (32a) is the boundary
value in ̂ 1 x ̂ >2 of a function HΓ(p^ k) analytic in D7.

As a consequence of the edge of the wedge theorem, (32a) then implies the
coincidence of the corresponding analytic functions :

throughout the product {pjeΣ(2}} x

A similar extension could be obtained for (30a, b) and (32b). Moreover the
two non-linear systems thus obtained, satisfied on the relevant products Σ(2} x Dj
are still equivalent.

Finally we shall also need the following result:

Proposition 9. In the flat tube :

the absorptive part ΔseιSe^G1'N^l(pl, k\ λ) is given by the following integral relation
(in short) :

where G^ ]̂̂ 1 denotes the (continuous) restriction to the mass-shell σ of the "am-
putated" function (pi — m2) (p2

β — m2) G^'fy^.

Proof. Starting from the definition (25) of GIfN^ given in Section 4:

Ql,N\I _ pI,N\I _ χQl,

we apply the basic discontinuity formula of Theorem 1 to the convolution product
of the right-hand side. Propositions 7 and 8 establish the necessary smoothness
properties in pl. (34) is then a (shortened) form of (2) with an appropriate specializa-
tion of the notations.

5 J. Proof of Irreducibility

We now intend to prove that each absorptive part zl^^G7'^1^, fe; 1/2) vanishes
in the flat tube :

Or equivalently, in view of the one-particle irreducibility of the functions
in the flat tube :
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Discarding the exceptional manifolds corresponding to C.D.D. (or generalized
C.D.D.) type, we can prove:

Theorem 2. For λ=l/2, the two-particle irreducibίlity property of each function

arbitrary) is satisfied in the corresponding flat tube :

Moreover the complete set of these relations (for any channel (/, ΛΓ\/) and any
couple of cells (5 ,̂ &*2)) ^s equivalent with the non-linear system (32):

pI> k)

which is itself equivalent with the original two-particle completeness relations (30):

expressed in the same flat tubes

Remarks, i) Here we have only formulated the equivalence of two-particle ir-
reducibility with completeness relations involving two-particle outgoing states,
i.e. with "negative" arrows [. The proof would go similarly for incoming states
(see the second remark in Section 2.4.4 above).

ii) Theorem 2 establishes that the coincidence region of each function
GItN^(kl9 k; 1/2) in the relevant channel (/, JV\7) has the form:

is a dense open subset of $(?\ The restrictions correspond to the possible
C.D.D. (or generalized C.D.D.) singularities. They can be deleted by using methods
of the on-shell non linear program of general quantum field theory [16] (study
of the unitarity relations: see also [17]).

iii) The possibility for the functions G/>]VVΓ to have a fixed pole at λ =1/2,
induced by a fixed zero of ^4 + (p/; 1/2) can also be discarded [19].

Proof. First we define for all channels (/, N\I):

which is the "two-particle completeness" kernel of the function FIίNV. Then the
proof goes in three steps and starts from (34).

i) First, consider the convolution product GIi(Λtβ}QAF^}'tNV in the right-
hand side. Considerations of local analyticity in the neighbourhood of the mass-
shell σ have shown in Section 2.4.2 that the contour ̂ 1 which occurs in this
convolution belongs to the domain of the analytic continuation (denoted

^W*Ίf fe -};W) of the two absorptive parts A^F^^1^1 and A^^F&ew.



58 J. Bros and M. Lassalle

We note Θ^^^2F
{-^];NV the analytic continuation of the two corresponding

completeness kernels. Then we can write (34) under the form:

i î$1 + (2 !Γ W » QF^£f\ * Fftftg1 . (35)

But the last bracket can be rewritten by using the following expression:

which is one of the definitions introduced in Section 4.2, after amputation in
{λ,μ} and restriction to the mass-shell σ = {pλ<=H~,pμeH~}. Here we have used
the fact that the contour 9^ occuring in the left-hand side convolution is not
pinched when the external variables (kλ, kμ) are restricted to σ.

Taking (36) into account, we get:

= (2 !)' l Fift$, +(λ-(2\Γ l )

and this allows to write (35) under the form:

-μ-(2 !)- ^πi/Z)2 G'^ Fftfg1 . (37)

Finally for λ = 1/2, we get the following algorithm which we shall apply now :

tr1FW ™ . (38)

ii) Applying relations (32), namely in any ^(y\y-i :

(Λ pΊ,N\I_Q
uffΊy2r ~υ

and inserting them in (38), we obtain :

Δ^&w+ϊ j JG^^^F^^^^^^/cJ^^/c^-Mfe^O (39)
%

where a more detailed notation has been used.
Like in Section 4.2, the proof then goes by recursion over nί = |/| and n2 = \N\I\.

We start from the case n± = n2 = 2, where (39) is an homogeneous Fredholm
equation with contour ̂ 2. If i is the identity for 0, we get:

But here the right kernel admits a right inverse, since:

[1+ ^F{1'2^A^]O[1- |G{^};{3'4}]=i (40)
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which is nothing but the definition (15) of G{1'2};{3'4}. Then we get:

in the union of the relevant flat tubes ^"142,3^4- By recursion over n± and π2,
inserting (41) in (39), we then achieve the proof of the first part of Theorem 2.

iii) The proof of the converse result goes in the same way. We start from the
two-particle irreducibility relations in any

which we insert in (38). We get:

Θ^F' W- i G^^QΘ^β^F^^^O . (42)

For nί = n2 = 2, this is an homogeneous Fredholm equation, with contour ̂ 1 :

and the left kernel admits a left inverse in view of (40). Then we obtain:

ft Z7(l,2};{3,4}_0Ulϊ2,3l4* — U

in the union of flat tubes ^42,314- We achieve the converse proof by recursion
over H! and n29 after inserting this result in (42).

This ends the proof of Theorem 2.

6. Conclusion and Outlook

In this paper we have shown that the two-particle non-linear information of
general quantum field theory (originally known through the two-particle com-
pleteness relations) can be alternatively and (up to the technical problem of C.D.D.
singularities) equivalently formulated in terms of the two-particle irreducibility
in a single channel of a given set of π-point functions.

In other words we are now provided with an analytic formulation of the two-
particle structure of the rc-point functions, which is more convenient as far as
one is concerned with analytic extension properties.

Here we emphasize that this equivalence has been obtained on the only basis
of two-particle irreducibility in a single channel. A very natural complement to
our study should be the introduction of functions simultaneously two-p.i. in
several channels. If this is not necessary as far as the above statement of equivalence
is concerned, it plays a basic role when trying to carry through further steps in the
non-linear program ([20, 21]).

Actually, at the present stage, one can expect progress along two directions.
On the one hand, from the better analyticity properties of the two-p.i. functions,
together with the algebra of the various convolution relations linking them
together, it may be expected to improve the local analyticity properties of the
n-point functions, and possibly isolate pieces of some Landau surfaces.
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On the other hand, the mechanism which has been illustrated here for p = 2
seems able to be reproduced at higher orders. In particular a better knowledge
of the analytic structure of absorptive parts for convolution products with two
vertices and p > 2 internal lines (i.e. a generalization of Theorem 1) should certainly
allow one to construct a simple algorithm [such as (38)] linking the non-linear
algebra of p-particle completeness relations with the analytic formulation of
p-particle irreducibility properties.

A similar question would be the derivation of (p + /c)-particle completeness
relations for the p-p.i. irreducible functions, when p^2, such as it was done in
[2] (Theorem 3) for the one-p.i. functions.

These problems are connected with residue calculus in several complex
variables [13,14] and "pinching"-type techniques similar to those used above
in Section 2. They are at present under study.

Appendix A : Conservation of Smoothness by Convolution

In this appendix, being given a general π-point function F(n} and a given channel
(/, N\I), we shall say that F(n} is "smooth in this channel" if the following property
is satisfied by its boundary values:

Let (^+,^L) denote any couple of adjacent cells separated by (I,N\I) and
^ be the common face on the manifold qI = qNV = 0 of the corresponding tubes
^~<?+ and ^>_. Then in the following "flat" tube:

the boundary values F(£\(pl9 k) are analytic in k and continuous in pf.
Here we shall prove that this property is preserved by convolution, in the

following sense: starting from a vertex function F1 (resp. F2) smooth in the channel
[/; {α, /?}] (resp. [{α,jβ};'Λ/V]), the convolution product obtained is smooth in
the channel (/, N\l).

The proof goes as follows. Consider two adjacent cells £f± separated by the
convolution channel (/, N\I) and the corresponding boundary values H%± (p/? k)
of the convolution product. By using methods very similar to those of Section 2.4,
it is seen that the following representation holds for these boundary values :

= f F^ fc1? fcα)F2(-P/, -fcα, k2)

^±where the contour #^± can be represented by a "handle-shaped" domain of the
type described in Section 2.4.4, namely the union of a fixed part 1R3 x & (with
euclidean infinite parts) with a handle dγ*.

Then the continuity in pr of the integral on the fixed part IR3 x & is easily
checked, provided that one assumes that the integrand is (uniformly) bounded in
Pj at infinity by an integrable function of fcα. This assumption is satisfied in Sec-
tions 3 to 5.



Two-Particle Irreducibility 61

As for the integral on each handle dyf, using like in Section 2.4.4 the residue
theorem in its general form [13], it can be rewritten as the integral on a compact
set of a continuous function in p/? which achieves the proof.

Appendix B: Conservation of Smoothness by Summation of Fredholm Series

This appendix is devoted to the proof of Proposition 4.
From the conservation of smoothness in P by convolution, it is first seen that

each boundary value:

Bf (P, Z, Z') - lim Bn(P ± iρ, Z, Z')
ρ^O

ρeV +

Af(P) = lim An(P±iρ)
ρ^O

ρeV +

is analytic in (Z, Z') and continuous in P.
Moreover considerations of local analyticity very similar to those given in

Section 2.4 display for these boundary values a representation in terms of Fredholm
determinants [F±(P, Z^Z^ )] integrated on a contour (^+)n, with <β± of the
"handle-type" described in Appendix A.

Taking into account the (uniform) bounds of each F+(P, Zί5 Zj) and applying
the Hadamard's trick [15], the (absolute) convergence of each series:

is then established in the whole complex A-plane.
Considered as series of functions continuous in P, they are therefore uniformly

convergent, which establishes the continuity in P of their sums, q.e.d.
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Note Added in Proof

In Section 4 an extra technical postulate has been implicitly assumed, which asserts the uniformity
with respect to n of the bounds at infinity of all the rc-point functions {F/>NVί}. This has been expressed
by using analytic cut-offs (20') with the same exponent r. If such uniform polynomial bounds do not
hold, one may use more general analytic cut-offs

where λ(k2} is a two-point function with exponential decrease at infinity and λ(m2)=l. Then the
arguments used in Sections 4-5 remain valid, provided the same function λ is used to regularize all
the




