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Schrδdinger Operators with /^-Potentials
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Kiev Polytechnic Institute, Department of Mathematics, Kiev 252056, USSR

Abstract. We discuss the question of when the closure of the Schrodinger
operator, — A + V, acting in Lp(Rl, dlx\ generates a strongly continuous contrac-
tion semigroup. We prove a series of theorems proving the stability for
— A :LP~+LP of the property of having a m-accretive closure under perturba-
tions by functions in Lfoc(l<p5^g). The connection with form sums and the
Trotter product formula are considered. These results generalize earlier results
of Kato, Kalf-Walter, Semenov and Beliy-Semenov in that we allow more
general local singularities, including arbitrary singularities at one point, and
arbitrary growth at infinity. We exploit bilinear form methods, Kato's
inequality and certain properties of infinitesimal generators of contractions.

1. Introduction and Results

Kato [1] showed that the ZΛoperator sum, — A + V, is essentially self-adjoint on
C$(Rl) if 0 ̂  Ve Lfoc(Rl, dlx), q = 2.In particular, the Trotter product formula holds
in this case. However, if q<2, it can happen that 3ϊ( — zl)n^(F) = {0}, so that the
operator sum — z l - h F i s not densely defined. Nevertheless, in Semenov [3] and
Beliy-Semenov [7, 12], an operator H is constructed so that the Trotter product
formula

holds so long as 0 ̂  VεLq(Rl, dlx) q^lorO^ VeLq

loc(R\ Ac), q^L (Here and below
the symbol s-lim stands for an L2 strong limit.) H was constructed as a form sum,
and, in the second case, Kato's inequality was essentially employed. In addition we
developed a criterion for a sum to have an m-accretive closure.

We recall that an operator A is called m accretive if and only if —A generates a
contraction semigroup e~tA. We call D an m-accretive core for A if and only if the
closure of A\D is m-accretive. If more than one Banach space is possible, e.g. D
= C^(Rl) we will sometimes modify the phase m-accretive with a Banach space, e.g.
U — m-accretive.
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In the present paper, we wish to generalize the aforementioned results for
Schrόdinger operators -Δ + V: Lp(Rl)^Lp(Rl\ l<p<oo.

Theorem 1.1. Let I be an integer^ 1, and let q>l. Suppose that:

(1) 7 = F + _ F _ ; F ± ^o.

(2) V±eLlc(Rl).

(3) For suitable fixed b^O and 0^α<^ and all ueC%(Rl):

Then the closure of (-Δ + V}[C%(Rl)\Lq-^Lq is a generator of bounded
holomorphic semigroup.

Theorem 1.2. Let 1^3, q>l. Assume that
(1) V=V+^0.

(2) neAUK'MO}).
Let p^r = min(q,l/2). Then C£(R\{0}) is an Lp -m- accretive core for -A -I- V.

Theorem 1.3. Let 1^.3 and q>l. Assume that
(1) V=V+^0.

(2) V+εLlc(R\{0}).

LetH = H0 + Vbe the form sum of H0 = (-ΔΪC$Γ ana V. Then on L2 :

for each ί>0.

Theorem 1.4. Let 1^2. Assume that
(1) FeL^NίO}).

(2) F^[l-(l-//2)2]|xΓ2.

Then-Δ + V:L2-^L2 is essentially self-adjoint on C$(R\{Q}).
In particular, for each — oo < t < oo,

~ itH°/ne ~ ίtv/nγ = e' itH .

Remark 1. Theorem 1.1 in case q = 2 (but with a<\ replaced by the weaker a < 1) is
due to Kato [1]. Theorems 1.2 and 1.3 are generalizations of results of Beily and
Semenov [7, 12]. Theorems 1.3 and 1.4 are generalizations of a theorem of Kalf-
Walter [14] (see also [2]). Simon [11] has also proven Theorem 1.4.

Remark 2. If condition (2) of Theorem 1.4, we require that

then, we obtain supplementary information about H, namely

Remark 3. Our method of proof of Theorem 1.4 may be extended to the case of JV-
particle Hamiltonians with two particle potentials ^eL2(^\{0}) that

for the "physical" dimension 1=1,2,3 [15].



Schrodinger Operators with Lfoc-Potentials 279

Remark 4. Since Ljfo ccLfo c for p<q, under the hypothesis of Theorem 1.1, we have
that CQ is an Lp — m-accretive core for — A + F+ (note the + ) for any p with 1 <p^q.

In the proofs of the above theorems, we use Kato's inequality, and contraction
and holomorphic properties of the semigroup generated by A.

2. The Semigroup Extension of— A + Fon Lp Defined via a Form Sum

Let tf = L2(R\dlx\ / ^ l and let HQ = \_-Δ\C$(Rl)Y where- denotes operator
closure. It is well-known that H0 is a self-adjoint operator and that the generated
semigroup exp( — tH0) is a contraction on all Lp, l^p^oo; i.e. for all f^O,

\\Qχp(-tH0)u\\p^\\u\\p.

Let Sp(t) be the unique bounded extension of exp( — tH0) \2? r\LP to all of ZΛ Then,
for 1 :gp< oo, Sp(t) is a C0-contraction semigroup, so that there is an operator H0 p

with Sp(ί) = exp( — ίH0>p). In particular, H0 2 = H0.
Let Fbe a non-negative function in L^C(R\{0}) and use Fto also denote the

associated self-adjoint operator on lA As above define a C0-contraction semigroup
Qp(t):Lp-+Lp(l^p«x>) and Vp so that Qp(t) = e\p( + tVp) 9 V2 = V.

Define H = H0 + F as the self-adjoint operator obtained as the form
sum [8, Chapt. VI]. It is easy to see (e.g. [3, 4, 7]) that the semigroup
exp( — tH) is a contraction on each Lp(l^p<Ξoo). Moreover the extension Rp(t)
of Qxp( — tH)[Lpr\J^ to Lp defines a C0-contraction semigroup if l<p<oo
(see [7] or Proposition 2.2 below). As above, Rp(t) = Qxp( — tHp); H2 = H.

We systematically use the following notation in the results below: A = H0ίp, B
= Vp,C = Hp9 Bn = Bon the space where B^n,Bn = Q otherwise, Cn = A + Bn. We use
Rl

+ to denote R\{0} and g (Lp, Lq] denotes the space of bounded operators from Lp

toZΛ

Proposition 2.1. For each f>0 and all l<p<oo,

lim exp ( - tCn) = exp ( - tC)
n-+ oo

in the strong ^(Lp) topology.

Proof. The case p = 2 follows from theorems of Kato [8, Chapt. VII, Theorem 3.13]
and Trotter-Kato [9]. The general case follows from the following Proposition.

Proposition 2.2. Let Sk Z/nL00-^^00, fc = 0, 1, ..., so that \\Skg\\p^ \\g\\ p, all fe, 1
^p^oo. If Skg-^S0g for all geJjf, then Skg

 J^S0g for all geLp, l<p<oo.

Proof. Let/eL^L00. By Holder's inequality, for

and for 2 ̂  p < oo

Thus, for such/, Skf-+S0fm Lp-norm. Since such/'s are dense, Skg-+SQg for any g
inZΛ
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Proposition 2.3. The semigroups exp( — tC\ exp( — tCn)n =1,2,... are holomorphic on

Γp = {t||argί|<(l-|l-2p-1 |)π/2}

and uniformly bounded on Γp. The convergence o/exp( — tCn) to exp( — tC) in the
strong Lp topology is uniform on compact subsets K of Γp for 1 <p< oo.

Proof. The semigroups exp( — tBn) are holomorphic on Re£>0 and

\\exp(-tBn}g\\p^\\g\\p^\\g\\p l^p goo; Reί>0. (1)

The semigroup Sp(£) = exp( — tA) is a contraction on U for 1 rgp^g oo. Thus, by the
Stein interpolation theorem (e.g. [13, Proposition II.5]):

\\Sp(z)g\\p^\\g\\p zεΓp (2)

and Sp(z) is analytic on Γp. By the Trotter formula, for each t > 0 and any g e Lp, 1 < p
<oo

exp(-fCB)0= Lp-lim [_Sp(t/κ)e^p(-Bat/κ)γg. (3)

Now, by (1) and (2), the functions ̂ κ = [Sp(z/κ)Qxp( — Bnz/κ}~]κg are analytic and
uniformly bounded on Γp. By (3), they converge pointwise on the positive real axis.

Thus, by the Vitali convergence theorem, exp( — zCn)g is analytic in Γp and:

exp(-zCΠ)0= LMim./^; zeΓp, geLp, (4)
κ-> oo

| |exp(-zCJ#||p^Mip zεΓp,geL*>. (5)

Using (5) and Proposition 2.1, we can repeat the above argument for the
convergence of exp( — tCn) to exp( — ίC).

Proposition 2.4. Let Vbea positive function in Lfoc(Rl

+)for some fixed q>l. Then, for
any φeC%(Rl

+), ί>0 and

exp ( - 1 C) (A + B)φ = C exp ( - ί C)φ .

Proof. By Proposition 2.3, Cn exp( — ίCJ converge strongly to C exp( — ίC) in Lp for
each ί>0 and l<p<oo. Also exp( — tCn)Aφ and exp( — tCn)Bφ converge respecti-
vely to exp( — tC}Aφ and exp( — tC)Bφ. Thus we need only show that

But since ||exp(-ίCJ|| ^1, and Fis in L«oc(Rl

+l this is evident.

Proposition 2.5. Let Vbea positive function in L^oc(Rl

+)for some fixed q>\. Then, for
each l<^q C(Rl

+}C@(C) and

Proof. Let φκ = exp( — C/κ)φ, φeC$(Rl+). Then, as %->oo, φκ-^φ and, by
Proposition 2.4, Cφκ-^^(A-\-B)φ. Since C is closed, the result is proven.

Remark. Using the same argument, it can be shown that C[CQ(RI\S)= — A
+ VlC$(R\S) on ZΛ l<p^q if V is positive and in Lfoc(Kz\S) where 5 is an
arbitrary closed set of measure zero.
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3. Kato's Inequality and the Generation of an Lp-Semigroup
by the Closure of- A + V

Proposition 3.1. Let V+ e L«oc(Rl) for some gφ oo. Then (A + B + l)C$(Rl) is dense in
Lq.

Proof. Suppose that (A + B + l)C$ is not dense in Lq.
Let M be its closure. Since MΦLg, there exists f e Lq> (q' = (I — q~ l)~ l ) so that

/ΦO and

Rewriting — A as a map from L/oc into (C™(R1))' we have that Af= V+f + f. Since
feLq' and F+eL?oc, V+f + feL}oc. Thus Kato's inequality holds:

Δ I/I ̂  Re((sgn/)zl/) - V+ \f\ + 1/| ̂  |/|

so that (-zl + 1)|/]^0 and/ = 0.
This contradiction shows that M = Lq.

Remarks. 1. The proof of Proposition 3.1 is, in fact, a slight modification of Kato's
proof [1, 10] that (-Δ + F+ + 1)C^ is dense in L2 when V+ ^0, F+ e l£c(Rl).

2. Since Lfo ccLfo c if p^ςf, μ + 5+l)C^(^) is dense in any Lp,

Proposition 3.2. Let F+ e Lfoc(-Rz) for some q>\. Then, A+B with domain
@(A)r}@(B) is closable. It closure, C, generates a contraction semigroup on all Lp(l
^p< oo ) and CQ(RI) is a core for C.

Proof. Apply Propositions 2.5 and 3.1.

Proposition 3.3. Let V= V+ — V_ 0^ V± eL^oc(R1} for some q>\. Suppose that for
some b^O, ae[Q, 1/2) and all ueC%(Rl):

Then

\\V_u\\q^a\\(A-V+}u\\q

forallueC$(Rl).

Proof. This proposition is a direct consequence of a lemma of Davies and Paris [6,
Lemma 2].

Proof of Theorem ί.i. Apply Propositions 3.2 and 3.3.

Proposition 3.4. Let I Ξ> 3. Let V+eLq

loc(Rl

+}for some q > 1. Let q0 =mm(q, 1/2). Then
the range of (A + B+l)[C%(Rl

+) is dense LP(R1} for any

Proof. The argument used in the proof of Proposition 3.1 may be generalized in the
following way: Let M be the closure o f ( A + B+l)C$(Rl+). By the Hahn-Banach
theorem, for any u Φ O in Z/\M, there exists an/eZ/' (// = (!— p"1)"1) with </,t;>
.= 1, </, M> =0 for all ueM. Since V+ ^0, by using Kato's inequality as in the proof
of Proposition 3.1, we have
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Suppose that for any φe^(Rl) with φ ̂ 0, we can construct a sequence φn ̂ 0 with

Then noting that (- A + 1)~ 1 takes {φe^\φ ^0} into itself we have that <)/), #> ̂ 0
for any #<E^ with 0^:0, for take <p = ( — zl + l )~ 1 f i f^0 in the above. Thus / = 0 and
the proof is complete.

Such a sequence is not difficult to construct. In fact, let λ and μ be fixed C°°
functions with O^μ, λ^ I so that λ(x) = l if |x |>l 5λ(x) = 0 if |x| =^; μ(x) = l if |x|<l,
μ(x) = 0 i f |x|>2. Let

n(x) = λ(nx)μ(n~1x).

and moreover:
x|<wωw(x) = 0,if |x |x|<l/2n

Now let φ e < f , φ^O and define φn = ωnφ. Then

J (ωnφ) = ωπzl φ + 2 Pωn

so

where /(fl) = <|/|, ωn(J-l)φ> clearly converge to <|/|, (J-
-Vφ) and /^^(l/l, (^ωn)φ>. Now, by Holder's inequality

\x\-q\yφ\qdlx]ί/q

, 7(

1

II) = 2<|/|, Vωn

which goes to zero as n -> oo since φ e 5̂  and f̂ ̂  ί/2 < /. Here ^ = (1 — q 1) 1. Again
by Holder's inequality:

„
\x\>n

\x\~2q\φ\qdlx
1/q which goes to zero as n-^co since φe,^ and:

f \φ(x)χ-2\qdlxV

which goes to zero as rc-^oo since the first term goes to zero and the second is
bounded when q ̂  1/2.

Proof of Theorem 1.2. Apply Propositions 2.5 and 3.4.

Remark. It follows from Proposition 3.4 that if / g: 4, — zl + V+ : L2 -^L2 is essentially
self-adjoint on C£(jRz\S) whenever V+eL?oc(Rl\S) where S-{α0, ...,flv}.
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Theorem 3.1. Suppose that the hypotheses of Theorems 1 .1 or 1.2 hold. Then for ί<p
<oo

exp( - tC) = lim [exp( - tA/n) exp( - tB/n)Y (6)
ft— > oo

in the strong Lp-topology.

Proof. If l<p^q, then (6) follows from Theorems 1.1 or 1.2 and the Trotter
theorem. To obtain (6) for p>q, it suffices to use Proposition 2.2 modified by
replacing the assumption Sκg-+Sg in ffl by an assumption of convergence in ZA

Proof of Theorem 1.4. Let j80 = 1 - (1 - 1/2)2 and let Fε - V+ ε\x\ ~ 2 for some εe (0, 1).
We begin by showing that — A + Vε is essentially self-adjoint on C™(Rl

+).
As in the proof of Proposition 3.4, we obtain

We use the fact that - A + β\x\~ 2 is essentially self-adjoint on C$(Rl

+ ) for β ̂  β0

and the inequality [2] :

Rl

+). (7)

Let Z= - A + (jS0+e)M~2 with 9(Z) = C$(Rl

+\ By (7), the closure oί Z, obeys
~)c^(|xΓ2).

Let {ρn} be a sequence of functions obeying

Rl

Given φ^O in @}(Z~\ let φn = ωnφ, φn^ = φn*Qκ where ωπ is the sequence
constructed in the proof of Proposition 3.4. Clearly 0^φπ > κeCg )(R+) and

lim <|/|, (Z~ + £K, κ> =
κ->

Since

lim <|/|,(Z~ +£)?„> = <|/|,(Z~ +£)<?>
n— >• oo

by using the argument from Proposition 3.4.
Noting that (Z~ +E)"1 is positivity preserving [4, Theorem 5.1], we conclude

by the standard argument [1] already used that — A + Vε is essentially self adjoint on
CQ O / p / \

o(K+)

By a lemma of Davies and Paris [6, Lemma 2],

so-A + Vε-ε\x\~2=-A + V is essentially self-adjoint on C$(Rl

+).
Theorem 1.4 is thus proven.

Added Note. The methods of this note have been extended by the author to deal with
many particle Schrodinger operators. These results will appear in Ann. Ins. H.
Poincare.



284 Yu. A. Semenov

References

1. Kato,T.: Schrodinger operators with singular potentials, Israel J. Math. 13, 135—148 (1972)
2. Schmincke,U.W.: Essential self-adjointness of Schrodinger operators with strongly singular

potentials. Math. Z. 124, 47—50 (1972)
3. Semenov, Yu. A.: On the Lie-Trotter theorem in //-spaces (preprint). Kiev (1972)
4. Paris, W.G.: Quadratic forms and essential self-adjointness. Helv. Phys. Acta 45,1074—1088 (1972)
5. Simon,B.: Essential self-adjointness of Schrodinger operators with positive potentials. Math.. Ann.

201, 122—220 (1973)
6. Paris, W.G.: Essential self-adjointness of operators in ordered Hubert space. Commun. math. Phys.

30, 23—34 (1973)
7. Beliy,A.G., Semenov,Yu.A.: One criterion of semigroup product convergence (preprint). Kiev

(1974)
8. Kato,T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966
9. Yosida,K.: Functional Analysis. Berlin-Gδttingen-Heidelberg: Springer 1965

10. Simon,B.: Schrodinger operators with singular magnetic vector potentials. Math. Z. 131, 361—370
(1973)

11. Simon,B.: Essential self-adjointness of Schrodinger operators with singular potentials. Arch. Rat.
Mech. Anal. 52, 44—48 (1973)

12. Beliy,A.G., Semenov, Yu. A.: Kato's inequality and semigroup product formulae. Funct. Anal. 9,
59—60 (1975) (Russian)

13. Simon, B., Hoegh-Krohn,R.: Hypercontractive semigroup and two dimensional self-coupled Bose
fields. J. Funct. Anal. 9, 121—180 (1972)

14. Kalf,H., Walter,!.: Strongly singular potentials and essential self-adjointness of singular elliptic
operators in C '̂MO}), J. Funct. Anal. 10, 114—130 (1972)

15. Semenov, Yu. A., Kovalenko,V.F.: Essential self-adjointness of many-particle Hamiltonian opera-
tors of Schrodinger type with singular two-particle potentials (to appear)

Communicated by W. Hunziker

Received July 25, 1976




