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Abstract. Particles are shown to exist for a.e. value of the mass in single phase φ4

lattice and continuum field theories and nearest neighbor Ising models. The
particles occur in the form of poles at imaginary (Minkowski) momenta of the
Fourier transformed two point function. The new inequality dm2/dσ^Z, where
σ = ml is a bare mass2 and Z is the strength of the particle pole, is basic to our
method. This inequality implies inequalities for critical exponents.

1. Introduction

Euclidean φ4 fields are believed to describe the asymptotic long distance behavior
of certain lattice models of statistical mechanics at their critical points (e.g. the Ising
model). It was proposed [9] that a construction of φ 4 fields could be based on this
expectation, and partial results in this direction are given in [6-8, 10, 11,1, 12]. In
this construction, the field φ will be nontrivial (i.e. not a free field) only in the case in
which the corresponding lattice model critical point is asymptotically nontrivial at
long distances.

In order to better distinguish between the trivial and the nontrivial cases, we
continue here our investigation [7, 10, 11] of critical exponents (see also §5). In
general, our results have the form

canonical exponent^general exponent, (1.1)

^-exponent g 02-exρonent, (1.2)

and in particular if the lattice φ2 field (e.g. the Ising model energy-energy
correlation) is canonical, then so is the corresponding lattice φ-field and also the
resulting continuum φ-field. The converse to this statement seems to be false, and a
counterexample may be found in the φ\ lattice field at weak coupling. In this model,
there is some evidence that φ2 deviates from canonical by a logarithm.
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The bounds (1.1) are given in [7] while the bound [10]

η^ηE/2 (1.3)

of the form (1.2) is an elementary consequence of Lebowitz' inequality. This
inequality compares the anomalous dimension η for φ with the anomalous
dimension ηE for φ2. One result of this paper is an improvement on the bound [3]
1^(2 — η)v, namely

l^(2-ζ/v)v (1.4)

where v is the exponent for the mass and ζ the exponent for field strength
renormalization. (Note ζ/v^η in the case of Euclidean covariance and ζ/v = η,
assuming scale relations.) The stronger upper bounds on η in [11] required stronger
hypothesis.

Our proof of (1.4) follows from a stronger inequality for an Ising model, lattice
φ4 fields or d= 1,2,3 continuum φ4 fields. We show that

dm2/dσ^Z, assuming σ>σc (1.5)

where Z is the strength of the one particle pole in the truncated two point function,
m~ * is the correlation length and σ is the bare mass2 (or inverse temperature). The
equality (1.5) improves dm2/dσ g 1, established in [7], and integration of (1.5) yields
the relation (1.4) for critical exponents. (Recall that m \ 0 as σ \ σ c [1, 11].)

The main result of the present paper is that dm2/dσφ0 for almost all masses m,
so that by (1.5), Z Φθ for almost all masses. We infer that an elementary particle (a
pole in the propagator) exists for almost all masses in the region σ > σc, i.e. the single
phase region. Also as σ \ σc,

χ= \G{Z\x)dx-+oo, (1.6)

and so

Γi2)(p = 0)-+0 as σ\σc.

This convergence was assumed in [7] in the derivation of the inequality y ̂  1. We
give proofs for continuum fields, and the same methods then carry over to lattice
fields and nearest neighbor Ising models on a rectangular lattice. For the Ising
models σ (the coefficient of φ2 in the φ4 interaction) is replaced by — β.

2. Critical Behavior of the Mass and the Field Strength Renormalization

For pure imaginary (Minkowski) momentum ip, p real, we define

with \...dx replaced by a summation in the lattice case. We choose ip inside the tube
of analytically of G~. Then

0 ^ - dχ(p)/dσ =4 J (φ(x): φ(y)2 :

fg J <φ(x)φ(y)> <φ(y)φ(0)} e-*χ
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Thus

0^ -dΓ/dσ= -d(-χ(p)Γ1/dσ= ~χ-2dχ(p)/dσ^l (2.1)

for all such p. Since we have used translation invariance, the proof applies in the
infinite volume case, and also in the finite volume periodic case.

To apply this inequality in a finite volume with periodic boundary conditions,
we note that the Hamiltonian has discrete spectrum, and that its first excited state
occurs in the spectral decomposition of the two point function. Furthermore, the
first excited state occurs at zero momentum. Thus we take p = (p0, p), with p = 0, and
Z~1 < oo for all volumes V < oo. Let mp>v be the periodic mass. For — pi <m 2 , Γ is
an analytic function of the independent variables σ and pi by a standard application
of the Paley-Wiener theorem, cf. [11, §2]. The one particle curve + pi = m2 is
analytic in any region free of level crossings in the first excited state, and thus is at
least piecewise analytic. [15, VII, § 1] can be applied to the Hamiltonian H{σ\ which
is analytic in σ by second order estimates [16]. For example the inequality H(Reσ)2

^constH(σ~)H(σ) + const implies that H(σ) is closed, on the domain ^(iί(Reσ)).
With the same discrete exceptions at possible level crossings, Γ vanishes along the
one particle curve p2 = — m(σ)2. From these facts, it follows dΓ/dp2 is a multiple of
dΓ/dσ on this one particle curve. In particular, in the (σ, — p2) plane, the vector
(I,dm2/dσ) lies along the one particle curve, and so

0 = VΓ {dm21 do, 1) = [δΓ/δ( - p2)~]dm2/dσ + dΓ/dσ (2.2)

or

Thus by (2.1),

0 ^ dm2/dσ = - Z dΓ/dσ ^ Z , (2.3)

proving (2.3). In the case of level crossings, one sided derivatives dm2/dσ± satisfy
(2.3), since Z is semicontinuous at a level crossing.

For later use, we note that

dm2/dσ^ const. (2.4)

by [7] in the continuum case, or (2.3), since Z :g 1 for canonical continuum fields.
For lattice fields and Ising models, the p-space canonical upper bound [4] on the
two point function, and its Herglotz representation [11], show Z ^ const. Thus by
(1.6), the bound (2.4) extends to φ 4 lattice fields and Ising models in a finite periodic
volume, with a constant independent of the volume.

By passing to the subsequence F,-^ oo, we have mPtV-+mPt ^ but we do not know
(yet) that mp ^ is the mass mp of the corresponding infinite volume theory. However,
by semicontinuity of the spectrum.

By [5], mp = md, where md is the mass in a theory with Dirichlet boundary
conditions. We define the corresponding critical values σcd = σcp^σcp oc. By (2.4)
and Ascoli's theorem, we have uniform convergence and uniform Lipschitz
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continuity of mpV(σ) and the limit m2

>oc(σ). In particular, both md and mpoc go
continuously to zero at their critical points [7, 1, 12].

By definition of σc, the quantity dm2/dσ cannot vanish in a one-sided
neighborhood (σc, σc -f ε] of σc, and by (1.5) the measure of the set on which dm2/dσ
Φθ is proportional to m2(σc-hε), uniformly in V It follows that by the diagonal
process, we can choose Vj-*co so that there is a sequence σ>\σcpoc with the strict
inequality

lim dm 2 /dσ| σ = σ .>0.
Vj-*OD

For these values of σi5 we also have Z bounded away from zero by (1.5), which
implies mp = mpoc for σ = σf. Because the m's are monotone in σ, it follows that σcd

ucp ucpoc'

Extending the above argument, we can work with Σ = {σ: dmpQ0/dσ > 0}, which is
a set of positive measure in every interval (σc, σc + ε). On this set Z Φ 0 and mpoc = mp.
However since mpoc is constant on~Z", while mp is monotone (and hence monotone
on Σ) we must have mpQC=mp everywhere. We summarize these results.

Theorem 1. For σ>σ c , we have

and

drn2/dσSZ(σ).

Furthermore Z(σ) uppersemicontinuous:

We now argue that Z Φθ for all masses m not in a set of measure zero. Consider
m2(σ) and σ(m2) as monotone functions. Thus they have bounded variation and are
differentiable a.e. with derivatives m2\ σ' which are positive and Lv Thus

as a function of m, and by (2.3) ZφOa.e. as a function of m. The region of non
uniqueness of mass renormalization corresponds to intervals in which m2(σ)
= const, hence to ^-functions in the measures dσ(m2). These occur for a most
countable number of values of m2.

Remark. The above result completes the proof of the second of three steps of [9]
for a possible construction1 of Φd fields: that defined by the long distance behavior
of the corresponding lattice field at its critical point. The first step was established in
[7,1,12]. The third step seems to depend on showing scaling behavior as σ\σc, i.e.
the isolation of leading long distance behavior from next to leading, etc.

3. Divergence of χ at the Critical Point

In this section we show that χc = χ(σc) = oo, which is related to the upper bound η S 2.
Again we work in the (σ, — p2) parameter space, but in the V= oo theory directly.
Below or on the one particle curve — p2 = m2, the quantity dΓ/dσ is bounded, while

1 If the nontrivial part of the critical behavior occurs only in the next to leading terms for all values
of the bare charge, then the construction of [9] is inappropriate (cf. § 5)
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below this curve or on nonhorizontal portions of this curve, dΓ/d(p2) is bounded
also, and Γ vanishes, at least on non-horizontal portions of the curve. Moreover, by
the Herglotz representation for Γ, any bound on dΓ/d( — p2\ with p2=—m2,
extends to 0 ̂  — p2 ̂  m2, since dΓ/d( — p2) is decreasing in — p2 in this interval. Thus
by (2.2) and integration,

where σt is chosen as in § 2, so that Z =f= 0, hence G(p2 = — m2) = oo and Γ(p2 = — m)
= 0. Thus

Assuming χσc finite, we have

dm/dσ S const, m.

Recall that m(σc-f0) = 0, so that after integration from σc to σ>σ c ,

0 S m(σ) S m(σc + 0) econsi <σ ~ σ<> = 0.

This is a contradiction, which shows that χc= oo. As a corollary of this result, we
observe that σc is characterized as the largest value of σ for which the effective
potential (see [2]) has zero curvature at the origin:

4. The Ising Limit

We consider the interactions

12ΣnΛΦi-Φv)2+ Σi Wtf-i) 2 +Wf] (4 i)
and

-Σn.nβψiΨϊ+ΣMψϊ-V2 (4.2)

where ]ΓΠ<J1 denotes a sum over nearest neighbor pairs. With

and

λo = λ-(σ + 2d)/4λ, β = l-{σ + 2d)/4λ,

these two expressions differ by a constant, and thus define the same lattice field
theory. For the purpose of studying the Ising limit (λ or Λ0-»oo, β fixed), it is
convenient to use the representation (4.2). Let βcI be the critical value of β in the
Ising model.

Theorem 2. As A0->oo, m(β,λo)-+rnI(β\ the Ising model mass, for β<βcJ, and βc j

ύ lim βc(λ0).

Proof. As in (2.1), — dΓ/d( — β)^2 for imaginary momenta below the one particle
curve, and as in (2.3), 0 ̂  dm2/d( — β)^ 2Z. These bounds are uniform in λ0 ̂  oo, in
the one phase region. Thus they imply uniform convergence (through a subsequence
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Λ,Oj.-> oo) and uniform Lipschitz continuity in β of m2(β, λ0). Let m2(/?, oo) be the limit
value of the mass2, and let m2 (β) be the Ising model mass2. We have m2(β, oo) ̂  m](β)
for β^βcJ by semicontinuity of the spectrum. Next we choose values βt for which
Z(βi9λ0) is bounded away from zero as Λ0 J-*oo. For these values of βi9 we have
m2(β, oo) = m2(β). By monotonicity, m2(β, co) = mj(β) throughout the single phase
region. Convergence of the full sequence follows from uniqueness of the limit, in the
single phase region. With convergence of the masses assured for β^βc j , it follows
that Ίim βc(λ0)^βcJ.

λo-»oc

The same method applies to variation of the β's which couple between layers.
Let J = (J 1,...,Jd) and let

H(σ)=-±ΣβJjσiσi + ej (4.3)

where βj is the unit vector in the j t h coordinate direction. Then (4.3) defines a d-
dimensional Ising model. For simplicity we consider only the case in which Jd-»0
and set J 1 = . . . = Jd_ ί = 1. Then βc = βc(Jd) is a function of Jd. As above, we have

Theorem 3. For J d ^ 0 , m is continuous and βc is semicontinuous as functions of Jd, in
the single phase region.

Remark. Continuity of βc would follow from a uniform lower bound on dm2/d( — β),
for example v < oo.

5. Trivial vs. Nontrivial Fields

We give a simple sufficient condition for triviality of the φ4 continuum limit. We
parametrize the single phase even φ4 lattice fields by λ( = bare charge), m( = physical
mass), ε( = lattice spacing) and d( = space time dimension).

Theorem 4. Suppose that Z = Z(λ, m, ε, d) is continuous and bounded away from zero
for 0^/ l^oo,0^m^(5, ε = 1, and for some δ >0, and some d^3. Then the continuum
limit of an even single phase d-dimensional φ4 lattice field with arbitrary charge
renormalization has a free two point function.

Proof The continuum fields are constructed with the arbitrary renormalization λ
= λ(ε\ 0 < m = m(ε) :§const, where £,-—>0 through a subsequence. Existence of the
limit follows from the bounds of [6,4], which establish compactness of the sequence
of Schwinger functions. Properties of the ε-*0 theory are reduced to properties of
the ε = 1 theory by a (canonical) scale transformation. Z is invariant under scale
transformations, so that

Z(/l(ε),m(ε),ε) = Z(ε4~d/l(ε),ε m(ε), 1).

There is a similar transformation law for the spectral weight of the two point
function. The Fourier transformed two point function at zero momentum has the
Herglotz representation [11]

+ J (coshα —
m+0
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for ε = 1. Continuity of Z at m = 0 can be expressed as the following property of the
measure dρ:

limlim } dρ(α,A1(m),l,d) = 0 (5.1)
y->0 m-> 0 m

2 + 0

for any λ = λ1(m). We choose m = εm(ε)->0 and

Under scaling, (5.1) transforms into

lim lim j dρ(α, λ(ε), m(ε), ε, d) = 0,
y-^0 ε->0 m (ε) 2 + 0

which implies that limit two point function is free.
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