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Nonextendible Positive Maps
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Abstract. Positive maps of ordered vector spaces into the algebra of all bounded
operators acting on a Hubert space are considered. A special class of so called
nonextendible maps is introduced and investigated. This class is much smaller
than the class of extreme maps.

Any positive map can be obtained from a nonextendible one by restriction.
In the C*-algebra case, the nonextendibility of a normalized positive

map φ is related to the properties of the expression φ(a2) — φ(a)2. In particular
Jordan representations are non-extendible.

2-positive nonextendible maps are representations. Similar result holds
for copositive maps. For abelian C*-algebras, notion of nonextendible map
and that of representation coincide.

The nonextendible positive maps of the Jordan algebra M2s of all 2 x 2
symmetric matrices and of the full 2 x 2 matrix algebra are especially in-
vestigated. Any nonextendible normalized positive map of M2s is a Jordan
representation. M 2 admits nonextendible normalized positive maps not
being Jordan representations. A large class of examples is given.

0. Introduction

Let 21 and 93 be C*-algebras. We denote by 2Ϊ+ and 93+ the cones of positive
elements and by 1^ and l<g the unity elements of these algebras. We shall consider
linear maps φ of 91 into 93 such that </)(2ϊ+)c93+ and φ(lm)=l<B. To stress these
properties we write

0:(2I,2ί+, 1 ^ ( 2 3 , 23 + , l s ) . (0.1)

We say that φ is a normalized positive map. In recent years, positive maps
have become of common interest to mathematicians and physicists in particular
in connection with the operator theory (cf. [1]) and the quantum theory of open
systems (cf. [6, 8,12]). The notion of positive map generalizes that of state, re-
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presentation, Jordan representation, conditional expectation and (semi-) spectral
measure. As it is shown in the beautiful review article [18] of Stormer, many
properties and constructions related to these particular concepts can be generalized
to larger classes of positive maps giving rise to the general theory. We refer to
this article for basic definitions and results.

Despite the great interest, the existing theory of positive maps contains no
convenient formula expressing all positive maps in terms of a smaller class of
objects having a richer structure and exhibiting interesting properties.

In this paper we present a new approach to this problem. This approach is
suggested by the Stinespring theorem.

Let us recall that (0.1) is called n-positive (where n is an integer number) if the
tensor product map

φ®id'M®Mn-+to®Mn (0.2)

is positive. Here Mn denotes the algebra of all n x n matrices with complex entries.
A map is called completely positive if it is n-positive for every n.

Let H be a Hubert space and B(H) be the algebra of all bounded operators
acting on H. The Stinespring theorem says that

φ M->B(H) (0.3)

is a normalized completely positive map iff

φ(a) = Pφ(a)P (0.4)

where φ is a representation of 21 acting on a Hubert space H containing H and
P.H^H is the orthogonal projection. We refer to the formula (0.4) saying that φ
is an extension of φ.

One may introduce the notion of copositive map replacing in (0.2) the identity
map by the transposition of n x ^-matrices [20]. It turns out that (0.3) is a com-
pletely copositive normalized map iff it can be extended to a corepresentation.

We say that a map φ is of Jordanian type if it splits into sum of completely
positive and completely copositive maps. In virtue of the foregoing and a result
of Kadison [10]: (0.3) is of Jordanian type iff it can be extended to a Jordan re-
presentation (this fact justifies our terminology).

Only for a few pairs of C*-algebras (91, 93) all positive maps from 91 into 33
are of Jordanian type. As far as matrix algebras are concerned, this is the case
only for (M l 5 Mn\ (M2, M2), (M2, M3), (M3, M2) and (Mπ, M J (cf. [20]).

We would like to point out that, although positive maps of non-jordanian
type are widerspread (as it is seen from the above list), the first concrete example
of such a map was found only recently [4]. This discovery was unexpected. It
turned out that the formula (0.4) does not exhaust all normalized positive maps
when φ runs over all Jordan representations of 91.

In our theory we replace the class of Jordan representations by a larger class
of positive maps; the members of this larger class are called nonextendible positive
maps. The precise definition of this notion will be given in the next section. In-
tuitively, a map φ is nonextendible if it can not be written in the form (0.4), where
φ is another positive map, in a nontrivial way.

It turns out that any normalized positive map can be extended to a non-
extendible one. Therefore the Formula (0.4) expresses all normalized positive
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maps (0.3) in terms of nonextendible ones. We shall see that the nonextendibility
of a map implies many interesting properties. For example any normalized non-
extendible map is extreme in the cone of all positive maps.

This fact shows the essential advantage of our approach over the program
based on the Krein-Milman-Choquet theory [16]. By using the standard methods
of the theory of compact convex sets one gets a formula expressing all normalized
positive maps in terms of extreme ones. However the extreme positive maps do
not exhibit interesting properties and do not admit any good description (cf. [4]).
Moreover if 91 is not separable, then we meet difficulties related to the measure
theory.

In our theory we deal only with a small special subclass of extreme positive
maps and the problem of good description is not so hopeless as in the case when
all extreme positive maps are involved.

Let us shortly describe the contents of the paper. The three first sections are
devoted to the theory of positive maps of ordered vector spaces into B(H). There
are many reasons for this generalization. Ordered vector spaces form a natural
domain for positive maps. We hope that the detail investigation of the set of all
positive maps defined on such a space will result in a better understanding of the
structure of the space.

In the first section we introduce the basic concepts and state the main results
of the extension theory. The Section 2 proves that any normalized positive map
admits a nonextendible extension.

On the way we derive interesting conditions characterizing nonextendible
maps. These conditions are expressed in terms of a seminorm associated with
the investigated positive map.

The definition of the seminorm given in the Section 2 is not convenient for
applications. In the Section 3 we introduce the seminorm in another equivalent
way, not related directly to the extension theory. As a result we get an interesting
sufficient condition for the nonextendibility in the finite-dimensional case. We
use this condition in the Section 6.

The Section 4 is devoted to the study of nonextendible positive maps of
C*-algebras. We discover a remarkable relation between the Kadison inequality
and extension properties. In particular Jordan representations turn out to be
nonextendible. We prove that nonextendible 2-positive maps are representations.
The similar result holds for 2-copositive maps. Consequently the representations
are the only nonextendible normalized positive maps of abelian C*-algebras.

In the Section 5 we investigate the nonextendible positive maps of the Jordan
algebra of all symmetric 2 x 2-matrices with complex entries. It turns out that
any such a map is a Jordan representation. Then, applying our main theorem we
obtain many facts about the structure of any positive map of this algebra. Some
of these facts were known before (cf. [2, 3, 9], [11], Lemma 4, p. 15, [17]).

In the Section 6 we deal with the full algebra of 2 x 2-matrices with complex
entries. It turns out that in this case there exist nonextendible normalized positive
maps not being Jordan representations. A large class of examples is presented.
We hope that the further investigations with the use of the methods elaborated
in this section will lead to a good description of the set of all nonextendible maps
ofM2.
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1. Ordered Vector Spaces and Positive Maps

One can easily notice that the notion of a normalized positive map is not related
to the whole C*-algebra structure. Indeed, only the linear structure of 91, the
cone 9ί+ and the distinguished element 1^ are involved in the definition given
in the beginning of this paper. The most general structure dealing with these
formations is that of an ordered vector space with the unity. The following
definition copies the well known properties of C*-algebras.

Definition 1.1. Let 91 be a complex vector space, 91+ be a cone in 91 (i.e. a convex
subset such that /19I+ C91+ for any λ^O) and 1 be an element of 91+. We say that
(91, 9ί+, 1) is an ordered vector space with the unity if

1. Any element αe9I admits the unique decomposition

a = aΐ + ia2 (l l)

where au a2e
(Άr and 9Ir denotes the real vector subspace generated by 9Ϊ+ :9ίr =

9 ί + - 9 I + .
2. For any αe9I+ one can find /leR such that
/ U - α e 9 l + . (1.2)

3. 9 I + n ( - 9 I + ) = {0}. (1.3)

The word "ordered" refers to the following partially ordering relation ^
compatible with the vector space structure:

iff (α

for any α, be91. Elements of 9Ir are called selfadjoint or hermitian. They are
characterized by the equation a* = a, where ^-operation is defined in the usual
way: if a is given by (1.1) then a* = a1 — ia2.

Although the structure described in Definition 1.1 is very simple, the theory
of ordered vector spaces contains many nontrivial results. One problem is specially
interesting: What are conditions distinguishing C*-algebras and Jordan algebras
among other ordered vector spaces with the unity. This question is of great
importance especially with its relation to the modern approach to the foundations
of quantum mechanics [15]. We believe that the existence of the complete system
of selfpolar forms [19] besides some obvious topological conditions is
characteristic for Jordan algebras. It seems that the most natural approach to
this problem consists in an investigation of positive maps of ordered vector
spaces into B(H).

It is obvious, what is meant by a normalized positive map of ordered vector
spaces with the unity. We give the formal definition for the case when the target
space is the algebra of all bounded operators acting on a Hubert space (this is the
only case, we are interested in this paper).

Definition 1.2. Let (91, 9I+, 1) be an ordered vector space with the unity and

be a linear map. We say that φ is a normalized positive map if φ(α)^0 for any
αe9I + and φ(l) = I. In this case we write
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where obviously B+(H) denotes the set of all positive operators and / is the
unity of B(H).

The Hubert space H is called the carrier Hubert space of φ.
Let (91, 21+, 1) be an ordered vector space with the unity and αe9I r It follows

easily from (1.2) that for sufficiently large λ

-λl^a^λl. (1.4)

We denote by ||α|[ the greatest lower bound of the set of Xs satisfying (1.4). The
function || || is a seminorm on 9Ir [to prove that it is a norm, one needs a little
stronger version of (1.3)]. All topological properties of 2IK will be refered to the
topology defined by this seminorm.

Let us notice.that 1 is an interior point of 9 I + c 9 ί r Indeed, if αe9I r and
\\a— ί\\^j then — l^a — 1 and O^α i.e. αe2l + . This fact is very important. To
get any reasonable Hahn-Banach type theorem for positive functionals one has
to assume that the cone has interior points.

It can be easily shown that normalized positive maps are continuous. The
very reason is that the topological structure is determined by the ordering.

Definition 13. Let (21, 91+, 1) be an ordered vector space with the unity and

We say that φ is an extension of φ (φ is a restriction of φ) and write φDφ if HDH
and

φ(a) = Pφ(a)P (1.5)

for any ae 9ί P in the above formula denotes the orthogonal projection H onto H.
The extension φDφ is called elementary (resp. finite) if dimίί/H^l (resp.
dimH/H<oo).

Let φ and φί be two normalized positive maps of (91, 21+, 1) with the carrier
Hubert spaces H and H1 respectively. One can easily introduce the direct sum
(φ®φ1)(a) = φ(a)φφ1(a). This is a positive map of (91, 9I+, 1) with the carrier
Hubert space H@HV Clearly φ® φ1 is an extension of φ. We call such extensions
trivial.

Definition 1.4. An extension φDφ is called trivial if the carrier Hubert space H
of the map φ is invariant under the action of operators φ(a) for all αe9ϊ. Then

φ(a)h = φ(a)h (1.6)

for all aeM and heH.

Remark. In many cases the inclusion HcH mentioned in Definition 1.3 is realized
by an isometric embeding

Then the formulae (1.5) and (1.6) should be replaced by

φ(a) = i*φ(a)ί (1.7)
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and

φ(a)i(h) = ί(φ(a)h) (1.8)

respectively.
Let φ be a normalized positive map of (91, 91+, 1), if be the carrier Hubert

space- of (/>, αe9I and heH. Sometimes it is more convenient to write φ(a®h)
instead of φ(a)h. By linearity one may define φ(a) for any αe9l(χ)//:

Clearly #χ)e if.
lϊ φjφ and αe9I(x)// then φ(α) and 0(α) are well defined and φ((x) = Pφ(a).

Therefore

| | # x ) | | ^ | | # x ) | | . (1.10)

If the extension φDφ is trivial then φ(a)eH and we get the equality in (1.10).
Conversely if for any αe9ί®if

\\φ(a)\\ = \\φ(a)\\ (1.11)

then φ((x) = φ(ά) and the extension φDφ is trivial. It means that the property (1.11)
is characteristic for trivial extensions.

Now, we introduce the basic notion of this paper

Definition 1.5. Let (91, 91+, 1) be an ordered vector space with the unity and

We say that φ is a nonextendible normalized positive map if it admits only trivial
extensions. In other words φ is nonextendible if

\\φ(a)\\ = \\φ(a)\\ (1.12)

for any φDφ and αe9I(χ)i7.
In the next sections we find many interesting properties of nonextendible

maps. Here we show that the nonextendibility is the more restrictive property
than the extremality (in the sense of the theory of convex sets [16]).

Theorem 1.6. Nonextendible normalized positive maps are extreme in the convex
set of all normalized positive maps. Irreducible nonextendible positive maps belong
to the extreme rays of the convex cone of all positive maps (91, (Ά+)-^(B(H\ B+(H)).

Let us remind that a map φ\ς&-+B(H) is irreducible if the scalars (multiples
of /) are the only operators commuting with all φ(a).

Proof. Let

be nonextendible. Assume that

φ = λφ1+μφ2 (1.13)

where φl9 φ2 are linear maps (91, 9I+)->(£(H), B+(H)), λ, μ are positive numbers
and λ + μ=l.
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Let H1 and H2 denote the closure of </>i(l)# and φ2(l)H respectively. Then
φiil) is invertible on Hί we denote by φln the normalization of φγ:

φln(a) = φ1(lTll2Φi(a)φ1(lΓ112. (1.14)

One can easily show that this formula defines a bounded operator acting on Hv

In the same way we introduce φ2n:

φ2n(a) = φ2(lΓ1/2φ2(a)φ2(lΓί/2. (1.15)

Let

H = H1®H2

Φ^ΦinΘφm (1.16)

Then

Let

i.H^H (1.17)

be a linear map introduced by

ί(h) = (λφ1(l))ll2h®(μφ2(l))^2h. (1.18)

Using (1.13)—(1.16) and (1.18) we get immediately

(k\φ(a)h) = (ί(k)\φ(a)i(h))

for any k,heH and <ze2I. Setting here α = l we prove that (1.17) is an isometric
embeding. Now, the above formula means that φ is an extension of φ (cf. (1.7)).
We assumed that φ is nonextendible. Thus φDφ is a trivial extension. In virtue
of (1.8), for any αe2I and heH we have

φ(a)i(h) = ί(φ(a)h).

Using (1.16) and (1.18) one may rewrite this formula in the more explicite way:

It shows that

φ1(a) = φί(ί)φ(a) (1.19)

and

φ2(a) = φ2(ί)φ(a). (1.20)

Assume now that φx and φ2 are normalized. Then we get φί(a) = φ2(a) = φ(a)
and the first part of the theorem is proved.

To prove the second part we remind that the product of two hermitian
operators is hermitian only if the operators commute. Therefore the formula
(1.19) implies that φ^ί) commute with all φ(a). If φ is irreducible then φ^ϊ) is a
scalar operator and φx is proportional to φ. The same holds for φ2. Q.E.D.
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The following theorem shows that the classification of normalized positive
maps can be reduced to that of nonextendible maps. This is the main result of the
paper, as far as the general setting is concerned.

Theorem 1.7. Any normalized positive map φ of (2Ϊ, 9ί+, 1) admits a nonextendible
extension φDφ. If*H and the carrier Hilbert space of φ are separable, then one may
choose φ such that its carrier Hilbert space is seperable.

The proof of this theorem will be given in the next section. As one may expect,
it uses the methods related to the Zorn's lemma.

2. Extension Theory for Positive Maps

This section is mainly devoted to the proof of Theorem 1.7. We show that the
process of successive extensions can be carried out in such a way that in the end
it produces a nonextendible map. On the way we get interesting properties
characteristic for nonextendible positive maps.

Let (21, 9I+, 1) be an ordered vector space with the unity, H be a Hilbert
space and

φ:(% 2I+, 1)->(B(H), B+(H\ I). (2.1)

We shall consider the set of all elementary extensions of φ. It will be denoted by
el (</>). One may assume that the carrier Hilbert space of these extensions coincides
with H1=Hφ(L. In oi(φ) we introduce the topology induced by the weak op-
erator topology of £(#i ) . Remembering that weakly closed bounded subsets of
βfΉi) are weakly compact, one can easily show that ol(φ) is compact.

Let us fix an element αe2I(χ)iϊ. We shall use the notation introduced by (1.9).
Denoting by yeHί a normalized vector orthogonal to H we have \\φι((x)\\2 =
\\Φ(a)\\2 + \(y\Φι((x))\2 for any φγed{φ). It follows easily that

ά(φ)*Φi-+\\ΦM\\ ( 2 2)

is a continuous function. Any continuous function defined on a compact set
attains its maximum value. The maximum value of (2.2) will be denoted by | |α| |^:

| | α | | φ = max• \\φM\\ (23)
φiee\(φ)

Clearly (2.3) introduces a seminorm on 9I(χ)i/. As we shall see later, this
seminorm plays an essential role in the extension theory. The Definition (2.3) is
adapted to the main purpose of this section i.e. to the proof of Theorem 1.7 and
is not convenient for other applications. In the next section we introduce this
seminorm in another way without any reference to extensions of φ.

Let us note that (2.3) implies the similar formula involving all (not necessarily
elementary) extensions of φ:

| |α | |φ = s u p | | # x ) | | . (2.4)
ΦDΦ

Indeed, given an extension φjφ and an element αe2ί(x)i7, one may consider
the restriction (in the sense of Def. 1.3) of φ to the subspace spanned by H and φ(a).
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Denoting this restriction by φί we have φiEQ\(φ) and φ(oc) = φ1(a). Therefore

| |#x) | | = \\φM\ S \\*\\φ and (2.4) follows.
For some elements α e 2 I ® # the seminorm ||α||^ can be easily calculated. Let

α=l®/z, where heH. Since φ(ί) = I for any extension φDφ,φ((χ) = h and (2.4)
implies immediately

Φ =I|Λ| | . (2.5)

We shall give another application of (2.4).

Lemma 2.1. Let φCφ and αe2l®ίf (where H is the carrier Hubert space of φ).
Then

l |α | | ^ | |α | | ^ | | 0 (α) | | ^ | | 0 (α) | | . (2.6)

In particular

Proof. The left inequality follows from (2.4), because any extension of φ is an
extension of φ. The middle inequality also follows from (2.4): φ is an extension
of φ. The last part of (2.6) coincides with (1.10). Q.E.D.

The last statement of the Lemma 2.1 is very important. It says that the relation

can not be destroyed by passing to an extension. The next proposition shows
that this relation plays a crucial role in the theory of nonextendible maps. It
gives the nice characterization of these maps.

Proposition 2.2. Let φ:(% 2l+, 1)->(B(JΪ), B+(H\ I). Then the following conditions
are equivalent:

(a) φ is nonextendible.
(Έ) For any ae<Ά(g)H:

Nlφ=ll#*)ll- (2.7)

@ There exist total subsets 2t0C31 and HOCH such that

\\a®h\\φ=\\φ(a)h\\ (2.8)

for any αe2I 0 and heH0.
Let us recall that a subset of a topologίcal vector space is said to be total if it

generates a dense subspace.
(3) Any linear functional f on 21®if continuous with respect to || ||^ is of the

form

f(a®h) = (y\Φ(a)h) (2.9)

where y is a fixed vector belonging to H.
(e) Let Nφ={oce<Ά(g)H: ||α||φ = 0}. Then Nφ contains the kernel of the mapping

(2.10)
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Proof. The scheme of the proof:

if © n

© @
@=>®- Assume that φ is nonextendible. Then (cf. Def. 1.5) φ(a) = φ(oί) for

any φDφ. (2.7) is now implied by (2.4).
® = > © It is obvious.
© = > @ . Assume (2.8). Let φ be an extension of φ. Then, in virtue of (2.4)

\\φ(a)h\\^\\φ(a)h\\.

On the other hand φ(a)h = Pφ(a)h, where P :H-^H is the orthogonal projection.
It follows immediately that φ(a)heH for any αE9I0 and heH0. The same fact
holds for any αe3I and heH due to the linearity and continuity. It means that φ
is a trivial extension. Therefore φ admits only trivial extensions i.e. is non-
extendible.

(5)=>(3). It follows immediately from (2.7) that any linear functional / on
2I(x)ίf continuous with respect to || ||^ is of the form /(α)=/'(0(α)), where / ' is a
continuous functional on H. Now, using the Riesz theorem (cf. [13] Ch. II, p. 50)
one gets (3).

@=>(e). Assume that αe2l(χ)// and ||α||φΦ0. Then there exists a linear
functional /, continuous with respect to || \\φ, such that /(α)φθ. According to (d):
/( α ) = (y I φ(u)\ Therefore φ(ot) + 0.

©=>©. Assume (e). Let αeSI®//. Then α— l®0(α) belongs to the kernel
of (2.10) and therefore

\\a-l®φ(a)\\φ = 0. (2.11)

Now, using (2.5) we have

The method of elementary extensions is not sufficient to construct non-
extendible extensions of any positive map. Indeed this method (applied repeatedly)
produces only finite extensions. Infinite extensions can be constructed by means
of inductive limits.

Proposition 2.3. Let (91, 9I+, 1) be an ordered vector space with the unity and
{φω}ωeΩ be a family of normalized positive maps defined on 91. We assume that this
family is directed i.e.: for any ω.ω'eΩ there exists ω'ΈΩ such that φωCφω» and

Φω' C Φω»
Then there exists a normalized positive map φ^ such that

l ΦωtΦoo far any ωeΩ.
2. φ^ is the smallest positive map satisfying the Condition 1. (i.e. any other

is an extension of φ^).
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Proof. Let Hω be the carrier Hubert space of φω. Clearly the family {Hω}ωeΩ is
directed by inclusion. Therefore (J Hω carries the natural pre-Hilbert space

CO

structure. Let H^lim inάHω denotes the completion of (J Hω.
ω

For any ae 91 and h, ke (J Hω we put
ω

(k\φJa)h) = (k\φω(a)h)Hω (2.12)

where ωeΩ is chosen in such a way that k,heHω. Evidently the RHS of (2.12)
does not depend on ω.

The Formula (2.12) defines φ^ia) as a sesquilinear form on (J Hω. If a = a*e%

then for sufficiently large positive λ: — λl^a^λl [cf. (1.4)]. Therefore — λl^
φja)^λl9 \\φja)\\ ^λ and in virtue of (2.12) we have

\(k\φJa)h)\Sλ\\k\\\\h\\.

This inequality proves that φ^a) exists as an operator acting on H^. The
corresponding result for any αe2ί follows from linearity.

Clearly

and φ^Dφω for any ωeΩ. It is also evident that φ^ is the smallest extension
ofallφ ω . Q.E.D.

Remarks. 1. The normalized positive map satisfying the conditions 1 and 2 of
Proposition 2.3 is called the inductive limit of the family {φω}ωeΩ and will be
denoted by lim ind φω.

ωeΩ

2. If a family {φω}ωeΩ contains the largest element </>ωmax, then

l i m i n d 0 ω = ( / > ω m a x .

ωeφ

Now we are ready to prove our main theorem

Proof of Theorem 1.7. Let

We choose total subsets 2I0 C 91 and H0 C H.
Let Ω be the set of all finite sequences of the form (h,al9a2, .-.,an) where

heH0, α fe9ϊ 0

 a n d ^ 0 . The subset of Ω containing all sequences of the length
^ 2 (i.e. n ^ l ) will be denoted by Ω.

If ω is an rc-element sequence belonging to Ω and αe2I 0 ? then ωa denotes the
(n + l)-element sequence obtained from ω by adding the element a in the last
place. Clearly ωaeΩ.

Let us introduce in Ω an ordering relation :g such that (Ω, ^ ) is a well ordered
set and ω^ωa for any ωeΩ and αe2ί 0 . We refer to [7] for the theory of well
ordered sets and the transfmite recursion.
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By using the transίinite recursion we shall introduce a family of normalized
positive maps {φω}ωeΩ and a family of vectors {kω}ωeQ such that:

1. φCφωCφω> for any ω, ω'eΩ such that ω^ωl.
2. {kω,:ώeΩ and ω'rgω} is a total subset of the carrier Hubert space Hω

oϊφω.

3. \\a®kj\φω>a=\\φω,a(a)kω,\\ (2.13)

for any αe2ϊ 0 and ωeΩ.
At first we define kω for one-element sequences

k{h) = h

for all heH0.
Let ωλ be the first element of Ω. Then ω x is a two-element sequence ωί=(h, #i)

where /zeH0 and α^SIo. According to (2.3) there exists an elementary extension
φωiDφ such that

Moreover, since dimHω,/H^l, one can choose a vector kωieHωi such that
H ω i is spanned by H and /cωi.

Now assume that φσ and kσ are already introduced for all σ< ω, where ω is an
element of Ω. Let ω = ω'a, where ω' eΩ and αe2I 0. According to (2.3), there exists
an elementary extension φω D lim ind φσ such that

σ< ω

\\a®kQ/\\UmiBdφa=\\φω(a)kω.\\. (2.14)
σ <ω

Moreover, since dim i/ω/lim ind Hσ^l, one can choose a vector feω such
σ <ω

that //ω is spanned by lim mάHσ and kω.
σ <ω

According to the transfinite recursion principle, kσ and φω are introduced
for all σeΩ and ωeΩ. Properties 1. and 2. are obviously satisfied. The Equation
(2.13) follows immediately from (2.14) and (2.6).

Now, we put

φ = lim ind φω
ωeΩ

ω
ωeΩ

It is clear that {kω:ωeΩ} is total in H. Moreover, using the second part of the
Lemma 2.1 and (2.13) we get

\\a®kω\\φ=\\φ(a)kω\\

for all αe9ί 0 and ωeΩ. It means that φ satisfies the condition (c) of Proposition
2.2. Therefore φ is nonextendible extension of φ.

If 9ί and H are separable, then one may assume that 2l0 and Ho are
denumerable. In this case Ω is denumerable and the space H is separable.

This ends the proof of Theorem 1.7.
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3. The Seminorm Associated with a Normalized Positive Map

In the previous section we showed that the nonextendibility of a normalized
positive map φ is equivalent to various other properties (cf. Prop. 2.2).
Unfortunately these other properties are expressed in terms of the seminorm || \\φ,
which itself, according to the Definition (2.3) is closely related to the extension
properties of φ. It means that Proposition 2.2 is almost a tautology and no
interesting applications can be expected.

In this section we give another definition of the seminorm associated with a
normalized positive map. This definition seems to be more "explicite" and no
extensions of φ are involved in it. We prove the equivalence of this new definition
with (2.3).

As a result, Proposition 2.2 becomes meaningful. We derive a simple condition
implying nonextendibility in the finite-dimensional case. Other useful applications
are described in the following sections.

Let (21, 91+,1) be an ordered vector space with the unity, H be a Hubert
space and

H),I). (3.1)

Let αe2I(g)H. In this section

1 / 2 (3.2)

where the infimum is taken over all finite subsets {(aί,hi)}ί = ίi2>...,n of
such that a = Yjai®hb aie

(Ά+ and ^ α f ^ l .
At first we shall show that this formula defines a seminorm of 2ί(x)i/.
Let αe2ί(χ)H and λe<£. Assume that

^ 2 I + , Σ α ^ l (3.3)

hteH.

Then λa = Yjai(g)λhi and according to (3.2)

T a k i n g t h e i n f i m u m of t h e RHS over all finite s u b s e t s {(ai9hi)}i = ίt2t_
satisfying (3.3) we get

\\λa\\φ^\λ\\\a\\φ.

Replacing in this inequality α and λ by λoc and λ~ι respectively and multiplying
both sides by \λ\ we get the opposite inequality. Therefore

\\λ*\\φ=\λ\\\0L\\φ. (3.4)
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To prove the triangle inequality we consider two elements a,βe%®H.
Assume that

,X> ;^l (3.5)

hteH

and

Σbj^ί (3.6)

Then for any λ, μeIR such that λ, μ >0, λ + μ = 1 we have

i j

λai9 μbjeSΆ+, £ λa{

Therefore according to (3.2)

Taking the infimum of the RHS over all finite subsets {(ai9hi)}i = ίM^nC^ίxH and

{(bpgj)}j=ι,2,...,m^^xH satisfying (3.5) and (3.6) respectively we get

Now, setting λ=\\a\\φ/(\\a\\φ+\\β\\φ) and μ = ||j8|^/(||a||^+||j5||^) we get im-
mediately

This way we proved

Proposition 3.1. For any positive map (3.1), the function \\ \\φ introduced by (3.2)
is a seminorm o

Let us note that for any αe2ί+ and heH we have

\\a®h\\2

ΦύC{h\φ{a)h) (3.7)

where C=inf {/lelR. /ll ^α}. If C= 1, then the formula follows directly from (3.2);
if Cφl , one may apply (3.4).

The relation of the seminorm || \\φ to the extension problem is described in the
following proposition.
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Proposition 3.2. Let

be a linear functional. Then the following conditions are equivalent:

® l/(α)I^IMU (3 8)
for any αe2ί(x)//.

(b) There exist an elementary extension φγ'Dφ and a normalized vector
yeHί (H1 denotes the carrier Hilbert space of φj such that

(3.9)

for any αe2I and heH.

Proof (a) =>(§). Let

ω:2I-+C (3.10)

be a linear functional such that

ω ( l ) = l (3.11)

and

\f(a®h)\2^ω(a)(h\φ(a)h) (3.12)

for all aeςΆ+ and /Ϊ<ΞH. We shall show later that the existence of such a functional
is implied by (3.8).

As the carrier Hilbert space of the extended map φ1 we take the Hilbert space
spanned by H and a normalized vector y such that

(y\h)n=f{l®h). (3.13)

One can easily show that such a Hilbert space exists iff |/(1 <S>h)\2^(h\h). The
last relation follows immediately from (3.12) (set α = 1).

The extended map φ1 will be defined in terms of matrix elements

(/c|ψ1(α)ft) = (fc|ψ(α)A)) (3.14)

(y\φ1(a)h)=f(a®h), (3.15)

(3.16)

(y\Φi(a)y)=Φ) (3.17)

for all αe2I and k,heH. Comparing these expressions with (3.13) and (3.11)
we get

Φi(l) = IHi. (3.18)

Let αe2ϊ + . Then for any vector h1 = h + λy (where heH, λe<Π) belonging to
Hx we have

a®h)
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In virtue of (3.12), the RHS of the above equation in non-negative. This shows
that

(3.19)

for all αe2l+. Therefore the mapping

satisfies all requirements of the condition (B):
1. φί is a normalized positive map [cf. (3.18) and (3.19)].
2. φί is an extension of φ [cf. (3.14)].
3. This extension is elementary one: άimH1/H^l.
4. The formula (3.9) holds [cf. (3.15)].

Remark. Formulae (3.14)—(3.19) define φι{a) as a sesquilinear form on Hv In
order to show that φ^a) exists as an operator one has to prove some estimate.
In our case this can be easily done:

If αe2I+, then for sufficiently large positive λ, λί — αe2I+ [cf. (1.2)]. In virtue
of (3.19) we have

for any h1eH1. Now, using (3.18) we get

This inequality proves that φ^a) exists as a bounded operator. The corresponding
fact for any αeSl follows now from linearity.

To end this part of the proof we have to show that one can find a linear func-
tional (3.10) satisfying (3.11) and (3.12).

Assume (3.8). For any be21+ we put

&htf/ihAφiadhJ] (3.20)

where supremum is taken over all finite subsets {(ai9 ftf)}i=i,2, ...,«C2l xH such that

(3.21)

If there is no finite subset of 21 x H satisfying (3.21), we put Ω(b) =0.
It follows immediately from (3.20) that

Ω(b)>0
(3.22)

Ω(λb) = λΩ(b),

(3.23)

for any a, be21+ and λ^O. Moreover

\f(a®h)\2SΩ(a)(h\φ(a)h) (3.24)

for any αe2I+ and heH. Indeed, if(h\φ(a)h) + 09 then (3.24) is implied directly by
(3.20). lϊ(h\φ(a)h) = 0 then \\a®h\\φ = 0 [cf. (3.7)] and/(α®Λ) = 0 in virtue of (3.8).
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We shall show that

(3.25)

To this end take any finite subset {(α , Λf)}c9I x H such that

^ (3.26)
( Λ i l ^ α ^ + O.

Let

iadhdΆ. (3.27)

In virtue of (3.8) and (3.2) we have

Inserting here (3.27) we get

Therefore

Taking the supremum of the LHS over all finite subsets {(aί9 h^)}i = 1 n c9ϊ xH
satisfying (3.26) we get (3.25).

Let us consider the set

ZΩ={aeSΆ+:Ω(a)^l}. (3.28)

In virtue of (3.22) and (3.23), ZΩ is convex. Moreover according to (3.25), 1 is
not an interior point of ZΩ (here we consider ZΩ as a subset of 21,.).

Assume for the moment that ZΩ is not empty: beZΩ. Then for any αe9ί +

we have Ω(α + b) ̂  Ω(α) + Ω{b) ̂  Ω(b) ̂  1. It means that

b + SΆ+cZΩ. (3.29)

Therefore ZΩ contains interior points and we may apply the well known
separation theorem (see e.g. [5], Ch. 1, p. 24, Th. 3). It says that there exists a
(closed) hyperplane 2I0 C %• passing through 1 such that ZΩ lies on one side of 9ί0.

Let ω :9Ir->lR be the linear functional defining 2ί0:

M0={aeMr:co(a)=l}.

Then

ω(l) = l . (3.11)

In virtue of (1.2) and (3.29), λleZΩ for sufficiently large positive λ. Therefore,
at least for some points aeZΩWQ have ω(a)>ί. Since ZΩ lies on one side of 9ΪO,
we have ω(α)^l for all αeZ Ω . Now, taking into account (3.28) and (3.22) we get

for any αe2ί+. Combining this inequality with (3.24) we finally obtain (3.12).
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If Z β is empty, then Ω() and /(•) vanish identically and relations (3.11) and
(3.12) are satisfied by any normalized positive functional ω.

(K)=>®. Assume (3.9). Let αe9I(x)# and

α= t ai®ht ( 3 3°)
i = l

where

1 + > Z j ι ~ (3.31)

M^-
Using the Cauchy-Schwarz inequality in the two different forms (first for

positive sesquilinear forms on Hu second for scalar product in C") we have

i(Φi\)2

Now we may replace (y\y) by 1 (y is a normalized vector) and {h^φ^a^h^ by
(hilφia^hi) (φiDφ and fy eif). Taking the infimum of the RHS over all finite
subsets {(ai9 ht)}C^ixH satisfying (3.30) and (3.31) we get (3.8). Q.E.D.

Now we are able to show that our Definition (3.2) is equivalent to the Definition
(2.3) used in the previous section:

| |α||φ = max 'JφMl (3-32)

To this end we note that

| |α | |φ = max|/(α)|

where / runs over the set of all functionals satisfying the condition (3.8) (Hahn-
Banach theorem) and

where y runs over the set of all normalized vectors in Hv Now (3.32) follows
directly from Proposition 3.2.

Combining Proposition 2.2 and (3.2) we get the following sufficient condition
for nonextendibility in the finite dimensional case.

Theorem 3.3. Let (91, 91+, 1) be a finite-dimensional ordered vector space with the
unity, H be a finite-dimensional Hilbert space and

Assume that the subspace NcW(g)H spanned by all a®h such that αe9l+ and
φ(a)h = 0 is dim//(dim 91— 1) dimensional:

= ώmif(dim9I-l). (3.33)

Then φ is nonextendible.



Nonextendible Positive Maps 261

Proof. Clearly N is contained in the kernel of the mapping φ'M®H^>H. The
dimension of this kernel can be easily calculated and equals dim2ίdimiί —
dimH = dimN. Therefore N coincides with this kernel.

On the other hand, in virtue of (3.7) ||α||^, = 0 for all aeN. It means that NcNφ

(for the definition of Nφ see Proposition 2.2 condition (e)).
Now, the nonextendibility of φ follows directly from Proposition 2.2. Q.E.D.

Let H' be the subspace generated by all heH such that we have φ(a)h = 0 for
some αe2I + , αφO. Let us note that N is contained in the kernel of the mapping

φ'M®H'->H.

Since φ(l) = I, the image of this mapping contains H'. Therefore
(dim2ί — 1). It shows that (3.33) can be satisfied only if H' = H.

4. Nonextendible Maps of C*-Algebras

In this section 21 is a C*-algebra, 21+ denotes the cone of positive elements of 21
and 1 denotes the unity of 21. It is well known that (21, 21+, 1) is an ordered vector
space with the unity.

Let

B+(H\I). (4.1)

Then we have (cf. [18])

φ(a2)-φ(a)2^0 (4.2)

for any selfadjoint element αe2ϊ. This important property of positive maps of
C*-algebras is known as the Kadison inequality.

Theorem 4.1. Assume that (4.1) is a Jordan representation, i.e. φ(a2) = φ(a)2 for
any αe2ί. Then φ is nonextendible.

Proof. Let φDφ. Then

φ(a)=Pφ(a)P

for any αe2I. Here P denotes the orthogonal projection of H onto H; H is the
carrier Hubert space of φ. Now, for any selfadjoint element αe2I we have

0 ̂  Pφ{a){IΆ - P)φ(a)P = Pφ(a)2P - φ(a)2

= Pφ{a)2P- φ{a2) = Pφ(a)2P- Pφ{a2)P

= P(φ(a)2-φ(a2))P.

The last expression is non-positive in virtue of the Kadison inequality for φ.
Therefore Pφ{a){lΆ-P)φ{a)P=^ and (Is- P)φ(a)P = 0. It shows that φ(a)heH
for any heH. This means that φ is a trivial extension of φ. Q.E.D.

Now, let us consider linear functionals

/ : 21® iJ-+C (4.3)
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such that

\f(a®h)\2^(h\φ(a2)-φ(a)2\h) (4.4)

for all selfadjoint αe2l and all heH.
Refining the previous argument we get the following improved version of

Theorem 4.1.

Theorem 4.2. Let (4.1) be a normalized positive map. Assume that / = 0 is the only
functional satisfying the estimate (4.4). Then (4.1) is nonextendible.

Proof. Let φjφ. We use the notation introduced in the previous proof.
Let us fix a normalized vector yeHQH. For any αe2ί and heH we put

f(a®h) = (y\φ(a)h). (4-5)

Then for selfadjoint a we have

\f(a®h)\2 = (h\φ(a)y)(y\φ(a)h)

S(h\φ(a)(Iβ-P)φ(a)h)

= (h\φ(a)2h)-(h\φ(a)2h).

Now, using the Kadison inequality for φ we get

\f(a®h)\2^(h\φ(a2)h)-(h\φ(a)2h)

= (h\φ(a2)-φ(a)2\h).

This shows that the linear functional /introduced by (4.5) satisfies the estimate
(4.4). We assumed that any such a functional vanishes identically. Therefore

(y\φ(a)h) = 0.

Since this result holds for every yeHQH, we have φ(a)heH and the extension
φjφ must be trivial. Q.E.D.

We do not know, whether the statement converse to Theorem 4.2 holds in
general. We have however

Theorem 4.3. Assume that dim2ί<oo and that (4.1) is nonextendible. Then f = 0
is the only functional on 21 ® H satisfying (4.4).

Proof. At first we note that 21 is a finite direct sum of matrix algebras. Therefore
there exists a linear functional

Tr :2I^C

such that T r e = l for every minimal non-zero projection e. Since any positive
element of 21 can be written as a linear combination of mutually orthogonal
minimal projections with positive coefficients, we get

(4.6)

forallαe2I+.

Assume now that (4.3) satisfies (4.4). Then

\f(a®h)\2^(h\φ(a2)h) (4.7)

for all αe2I. and heH.
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Let αe9ί® Hand

X (4.8)
where

^ '- (4.9)
h,eH.

Using the Cauchy-Schwarz inequality, (4.7) and (4.6) we have

Now, taking the infimum of the last expression over all finite subsets {(ai9 ht)}C
SΆxH satisfying (4.8) and (4.9) we get [cf. (3.2)]

According to Proposition 2.2 (3) there exists a vector yeH such that

f(a®h) = (y\φ(a)h) (4.10)

Setting a = ί in (4.4) we get /(l(g)ft) = 0. Formula (4.10) shows now that j ; = 0
and/ = 0. Q.E.D.

The Stinespring theorem says that any completely positive normalized map
of a C*-algebra can be extended to a representation. It follows immediately that
any nonextendible, completely positive map is a representation. It is interesting
that this result can be considerably improved.

Theorem 4.4. Assume that (4.1) is nonextendible and 2-posίtίve. Then (4.1) is a
representation, i.e. φ(ab) = φ(a)φ(b) for any a, be91.

Proof. We recall that φ is 2-positive if

a, h \ > 0 / # * # » \ > 0

c, dj- \φ(c), φ(d)j-

for any a, b, c, de 31.
Let αe2I+ and be'Ά. Then

Therefore

lφ(a), φ{ab*) \

\φ{ba\ φ{bab*)J- •

It means that for fixed b

U (4.11)
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is a (non-normalized) positive map. We apply the normalization procedure.
Let Q denote the value of (4.11) for a= 1:

Let H be the closure of Q(H@H). Then Q in invertible on H and we put

ΦW y \φ(ba), φ{bab*)Γ • l 4 1 J J

One can easily show that (4.13) defines a bounded operator acting on H.
Moreover

Let

i:H->H (4.14)

be a linear map introduced by

(4.15)

Using (4.13) and (4.15) we get immediately

(k\φ(a)h) = (i(k)\φ(a)i(h))

for any k, heH and αe2I. Setting here a=l we prove that (4.14) is an isometric
embeding. Now, the above formula means that φ is an extension of φ [cf. (1.7)].
We assumed that φ is nonextendible. Thus φDφ is a trivial extension. Therefore
[cf. (1.8)] for any heH we have:

φ(a)i(h) = i(φ(a)h).

Using (4.13) and (4.15) one may rewrite this formula in the more explicite way:

1/2(φ(a\ φ(abη \lh\ ll2(φ(a)h\

^ \φ{ba\ φ(bab*))[θ) ϋ [ 0 j

and-

!φ{a\ φ(ab*) \ ίh\ = (I, φ(bη \ ίφ(a)h\

\φ{ba\ φ(bab*))[θ) \φ(b), φ{bb*))\ 0 / '

In particular it means that

φ(ba)h = φ(b)φ(a)h. Q.E.D.

We know (cf. [18]) that any positive map of an abelian C*-algebra is com-
pletely positive. Therefore we have

Theorem 4.5. Any normalized nonextendible positive map (4.1) of an abelian C*-
algebra is a representation.

The theorem corresponding to Theorem 4.4 holds also for copositive maps.
We state it here without the proof.
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Theorem 4.6. Assume that (4.1) is nonextendible and 2-coposίtίυe. Then (4.1) is a
corepresentation i.e. φ(ab) = φ(b)φ(a) for any a,beW.

Theorem 4.5 can be slightly generalized.

Theorem 4.7. Assume that (4.1) is nonextendible and that b belongs to the centrum
of 91 (i.e. ba = ab for all aeM). Then

φ(ba) = φ(b)φ(a) (4.16)

and

φ(a)φ(b)=φ(b)φ(a) (4.17)

for all αe9ί.

Proof. Let αe9ί + . According to our assumption, the entries of the following
matrix

ba, bab*) =

belong to an abelian C*-subalgebra of "21 (which is generated by these entries).
Restricting for the moment φ to this subalgebra and remembering that positive
maps of abelian algebras are 2-positive we get

lφ{a\ φ(ab*) \

\φ(ba), φ(bab*))= '

It means that also in this case the map (4.11) is positive. Repeating the reasoning
following (4.11) we get (4.16). Now, (4.17) follows easily:

φ(a)φ(b) = (φ(b*)φ{a*))* = φ(b*a*)*

= φ(ab) = φ(ba) = φ(b)φ(a). Q.E.D.

We would like to end this section with the following remark.
Let 9Ϊ be a non-abelian C*-algebra. It is known that the triple (91, 91+, 1) does

not determine the multiplication rule of 91. More precisely one may introduce
in the vector space 91 at least two different multiplication rules (i.e. different
C*-algebra structure) which leads to the same cone of positive elements 91+ and
to the same unity 1. The multiplication rule, which differs from the usual one by
the order of factors is the best known example proving this statement.

We stress this property saying that (91, 91+, 1) is not susceptible to the order
of multiplication in 91. The same can be said about the notion of positive map.

On the contrary, the notion of completely positive map and of π-positive map
(n >1) are susceptible to the order of multiplication.

Theorem 4.4 shows us that if a nonextendible normalized positive map
satisfies some weak assumption susceptible to the order of multiplication, then
it must be multiplicative. In the abelian case, where no question about the order
of multiplication arises, any nonextendible normalized positive map is
multiplicative.
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5. Positive Maps of the Jordan Algebra M2s

In this section we show that the general theory given in the Section 2 provides
us with the complete description of the set of all positive maps of the simplest
nonabelian Jordan algebra. It turns out that any nonextendible normalized
positive map of this algebra is a Jordan representation.

Let M2s be the set of all symmetric 2 x 2-matrices with complex entries.

One can easily check that M2s is a Jordan subalgebra of the matrix algebra M2.
The cone of symmetric positive matrices will be denoted by M2s+ and the unity

matrix by 1. Clearly (M2 s, M 2 s + J 1) is an ordered vector space with the
\0 j

unity.
Let us note that extreme rays of M2s+ are generated by one-dimensional

projections.
Let

φ:(M2s,M2s+, l)-+(B(H),B+(H),I). (5.1)

Proposition 5.1. Let e and e' be two orthogonal one-dimensional projections belonging
to M2s and k, kΈH. Then

l. (5.2)

To prove this statement we need the following estimation

Lemma 5.2. Let

tί9 t29..., ί B e R 5

Then

where h = YJOLihi.
i

Proof. Assume at first that f φO for all i and ttή=tj for /Φj. We put

( 5 4 )

) (5.5)

where t is a real variable.
h(t) is a vector valued polynomial with respect to the variable t. We have

h(t) = - {Y α^/z/Q ( - tj)\ f ~ι + terms of smaller order .
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Now, using one of our assumptions one sees that h(t) is a polynomial of the
order ίg(n —2). Therefore u(t) is a polynomial of the order ^(2n —2).

Let us notice that I ' 2 ] e M 2 s + . It shows that u(ή^0 for all ί e R Therefore

where υ(t) is a complex valued polynomial of the order ^(n— 1) [to obtain this
factorization, one writes u(t) as a product of order 1 polynomials and clusters
the factors in a suitable way].

We shall use the Lagrange formula for the polynomial v(t) expressing v(t)
for any t in terms of the values in n given points

In particular

Setting t = tt in (5.4) we get

and

Therefore, denoting by R the RHS of (5.3) we have

# = Σ \(u(td/*d Π ( i - ί Λ )"2l - Σcfija,
i I jΦi J i

where

Now using the relation

which can be easily derived from the Cauchy-Schwarz inequality and (5.6) we get

To end the proof we note that u(0) coincides with [h\φi )h I.

If two tt coincide (say t1 = t2) then (5.3) can be reduced to the case already
considered:
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where h = (a1/(ot1 + α 2 ))^ 1 +(α 2 /(α 1 + α2))/z2. This inequality follows immediately
from the well known convexity of positive quadratic functionals.

If some ti vanishes (say tί=0) then we separate the corresponding term in the
sum (5.3):

Now we may use (5.3) to estimate the second term (all ί̂ ΦO for i>\). We get

where h = £ α Λ / Σ αί Now, using once more the convexity of positive quadratic
i Φ l i Φ l

forms we get

where h" = £ αΛ/Σ αf. Clearly the RHS of the above inequality coincides with
i i

the LHS of (5.3). Therefore (5.3) is proved in full generality. Q.E.D.

Proof of Proposition 5.1. We assume that e= ' and e' = I ' . The general

case can be reduced to this particular one: the group of automorphisms of M2s

acts transitively in the set of all pairs of orthogonal one-dimensional projections.
Let

be a finite subset of M2s x i ϊ such that

(5.8)

^ (5.9)

We have to prove that

(5.10)

Any element in the interior of M 2 s + is a sum of two extreme elements of M 2 s + .
Therefore we may assume that all a{ are extreme (here "extreme" means: "belonging
to an extreme ray"). Moreover we may remove from (5.7) all couples (ai9 ht) such
that αf is proportional to er. This operation decreases the value of the RHS of
(5.10) and does not affect the conditions (5.8) and (5.9). (At most it may change k\
but k does not enter (5.10).)

Extreme rays (except the one generated by e') are generated by element of

the form I ' 2 , where teWL Therefore

, ί,
2
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where α ^ O , ί^eR Using (5.8) and (5.9) one gets immediately ^ α ^ l , Σoiih—k
and ^ α ^ / z ^ O . Now (5.10) follows immediately from (5.3). Q.E.D.

Now, we may prove the main result of this section.

Theorem 5.3. Assume that (5.1) is nonextendible. Then φ is a Jordan representation:

φ(a2) = φ(a)2 (5.11)

for any aeM2s.

Proof. Let e, e' be one-dimensional orthogonal projections in M2s and heH.
We put

α = e ® φ(e')h + e'® (φ(e')h - h).

By direct computation one checks that 0(α) = O. According to Proposition 2.2 (B)
we have ||a||^ = 0. Now using (5.2) we get

(φ(e')h\φ(e)φ(e')h) = O

and

φ(e)φ(ef)h = 0.

This way we proved that

φ(e)φ(e') = 0 (5.12)

for any two one-dimensional orthogonal projections e9e'eM2s. We shall show
that this property implies (5.11). At first we have

φ(e)2 = φ(e)(φ(e)+φ{e')) = φ(e), (5.13)

)φ(e') = φ(e'). (5.14)

The Equations (5.12), (5.13), and (5.14) imply (5.11) for any a of the form
λe + λ'e', where λ, λ'elR. On the other hand any selfadjoint element of M2s can
be written in this form (e and e' have to be chosen in a suitable way). Therefore
(5.11) holds for any selfadjoint a.

To extend this formula for arbitrary a we use the identity:

(α + hi)2 = (1 - i)a2 + i(a + b)2 - (1 + i)b2 . Q.E.D. *

Remark. Jordan representations of M2s are nonextendible positive maps. The
proof of Theorem 4.1 applies in this case as well.

The following theorem describes the structure of Jordan representations
of M 2 s .

Theorem 5.4. Let (5.1) be a Jordan representation of M2s. Then
1. There exists a representation

φ1:M2^B(H) (5.15)

such that

φ(a)=φι(a) (5.16)

for all aeM2s.
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2. The carrier Hilbert space H can be written as the tensor product H = (£2®K
in such a way that

Proof. It is known [10] that any Jordan homomorphism φ satisfies the following
identity:

φ(abc + cba) = φ{a)φ(b)φ(c) + φ(c)φ(b)φ(a) (5.17)

for any α, b, c belonging to the domain of φ. In particular

φ{aba) = φ(a)φ(b)φ(a). (5.18)

Let (5.15) be a linear mapping such that:

Mo oHlo oj Mo oHlo oMi o)Ήo i

oΓφ[o i)φ[i o)φ[o oj'Ήo ιΓφ[o

It follows easily from (5.17) that φA \=φi i.e. that (5.16) is satisfied.

After simple, but not interesting calculations with the use of (5.18) one also checks
that (5.15) is multiplicative.

The second part of the theorem follows from the representation theory.
Now, collecting the results: Theorem 1.7, Theorem 5.3 and Theorem 5.4

we get

Theorem 5.5. Let

φ:(M2s,M2s+,l)^(B(HlB+(H\I).

Then there exist a Hilbert space K and an isometric embeding

i:H-+<£2®K (5.19)

such that

φ(a) = i*{a®Iκ)i (5.20)

for all aeM2s.

The similar result holds for non-normalized positive maps. In this case (5.19)
is not an isometry, but a bounded linear mapping.

The positive maps of M2s are closely related to the second order polynomials
of one real variable with the values being positive operators. The one-to-one
correspondence is given by the formula

(5.21)
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The Theorem 5.5 implies the following nice result:
Any second order polynomial w2(t) of one real variable t with values in B+(H)

can be factorized:

w2(0 = w1(ί)*w1(ί) (5.22)

where wx(t) is a first order polynomial with values in 5(7/,//^; H1 is a Hubert
space.

Indeed if

then (5.22) follows from (5.20) and (5.21).

Remark It is interesting to consider factorizations of the type (5.22) with the
smallest possible Hx. One can always assume that Hγ is generated by {w^ήh :f eIR,
heH}. In this case dimH1 ^ 2 dim//. By using differential geometry methods
Michel improved this result and got dimHί = dimH [14].

6. Nonextendible Positive Maps of the Matrix Algebra M2

In the previous section we showed that any nonextendible normalized positive
map of M2s is a Jordan representation. The situation changes rapidly when one
replace M2s by the full matrix algebra M2. In [20] we proved that there exists a
positive map M2->M4 of non-jordanian type. By the procedure described in the
Section 2 one may construct a nonextendible positive map M2->B(H) not being
Jordan representation. It is however very difficult to carry out such a construction
in an explicite way.

In this section we construct a large class of nonextendible normalized positive
maps of M2 different from Jordan representations. This class does not contain
all such maps, but we believe that the methods used in this section will give in the
nearest future the fair classification of nonextendible positive maps of the matrix
algebras.

Let X be a two-dimensional Hubert space. Elements of M2 represent bounded
operators acting on X. Thus, in what follows we shall deal with the operator
algebra B(X) instead of M 2 .

We denote by X the Hubert space complex conjugate to X. It means that X
is a two-dimensional Hubert space and that an antilinear, norm-preserving
mapping

is given. We shall identify B(X) with X ® X setting

\χ)(y\=y®χ

for any x, yeX. The cone of positive elements B+(X) is generated by {x®x:xeX}.
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The carrier Hubert spaces of nonextendible maps constructed below concide
with the symmetric tensor product of many copies of X.

Let Xk denote the subspace oϊ X®X®...(g)X (the tensor product of fc-copies
of X) containing all symmetric tensors. Xk carries the natural Hubert space
structure. One can check that dimXk=k+l.

Xk+1 can be considered as a subspace of Xk®X1. We denote by

π:Xk®Xι-+Xk+1

the orthogonal projection (the symmetrization operator) and consequently by

the natural embeding.
The symmetric tensor product of two elements peXk and qeX1 will be

denoted by pq:

pq = π(p®q).

In particular xk denotes the (symmetric) tensor product of fc-copies of xeX.
It is known that {xk:xeX} generates linearly Xk.

Symmetric tensor algebra is an integral domain:

/either p = 0
( M = ( M o r ί = θ

for any peXk and qeX1.

Remark. All vector spaces, we deal with in this section are finite-dimensional.

In the following theorems H = X3 and Q = X2. Theorem 6.1 gives examples
of nonextendible positive maps B(X)^>B(H) not being Jordan representation.
Theorem 6.2 shows that the assumptions of Theorem 6.1 are selfconsistent.
Theorem 6.3 shows that the nonextendible positive map constructed by the
method described in Theorem 6.1 depends essentially on the "initial data" of this
construction, so we have the continuum of essentially different (non equivalent)
nonextendible positive maps.

Theorem 6.1. Let σ:Q-+Q be a hermitίan ίnvertible operator. For any p,qeQ,
x, y, r, seX we put

(j>\q)σ = (p\σq), (6.2)

ά-ί = (ys\σ-1(xr)). (6.3)

Clearly these formulae introduce hermitian sesquilinear forms σ and σ"1 de-
fined on Q and X<S)X. Assume that the signatures

signσ = ( + , + , - ) , (6.4)

1 = ( + , - , - , - ) . (6.5)
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Then
1. The operator Q\X®H^X®H introduced by the following diagram (the

unnamed arrows represent the identity map X->X):

X ® H

I [-
X ® X ® Q

(6.6)

X ® X ® Q

X ® H

is invertible.

2. The linear map

φ:B(X)-+B(H) (6.7)

defined by the formula

) = (x®k\ρ-1(y®h)) (6.8)

(where x, yeX;k,heH) is positive. In general (6.8) is not normalized, but in any
case R = φ(ΐ) is invertible. In what follows φ' denotes the normalized positive map
obtained by the normalization procedure:

3. φ! is nonextendible.
4. φ' is irreducible.
5. φ' is not Jordan representation.

Before the proof we remind the elementary facts of the "signature calculus"
of hermitian sesquilinear forms.

Let ( I )α be a hermitian sesquilinear form defined on a complex vector
space K. Then K admits the decomposition

K = K+φK0®K_ (6.9)

such that α is strictly positive on K+ (i.e. (fc|fc)α^0 for all keK+ and the equality
holds only for k = 0\ α is strictly negative onK_ and α vanishes on Ko. Moreover
K+,K0 and i£_ are mutually α-orthogonal.

It turns out that the dimensions of the spaces entering (6.9) are determined
uniquely by α (Sylvester's law of inertia). The signature of α is by definition the
collection of signs:

s ignα=(+ + . . . + , 00...0, v •••-,)•
dimK+ dimKo dimK-

times times times

If s is a signature then we denote by s+, s0 and s_ the number of signs + , 0

and — entering s.
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Example. Let y be the hermitian sesquilinear form o n l ( χ ) l such that

(6.10)

for all x\ / , x, yeX. Then

(6.11)

Indeed y is strictly positive on the three-dimensional subspace of symmetric
tensors and strictly negative on the one-dimensional subspace of skewsymmetric
tensors.

Now, let α be a nondegenerate (i.e. dimi£o = 0) hermitian sesquilinear form
defined on K, K! be a subspace of K and K" be the subspace containing all vectors
α-orthogonal to K'. We shall call K" the α-orthocomplement of K. (Note that
in general K' + K" + K, however always dimK' + dimK"=dimK.) Let α' and α"
denote the restrictions of α to K and K" respectively. It turns out that signα" is
determined uniquely by signα and signα'. We shall write

sign α" = sign α θ sign α'. (6.12)

The computation rule for this subtruction is rather simple (s and s' are sig-
natures)

(sθsf)o=s'o

For example (we use the obvious short-hand notation)

( + 6 - 2 ) θ ( + + 0 - ) = ( + + +0) (6.13)

( + 7 - 5 ) θ ( + ) = ( + 6 - 2 ) - (6.14)

Now, let α and β be hermitian sesquilinear forms defined on complex vector
spaces K and L respectively. The tensor product of these forms oc®β is a ses-
quilinear hermitian form defined on K®L\

for all k,k'eK and I, ΐeL. The signature of α(x) β is determined uniquely by those
of α and β. We shall write

signα(x)/?= signα® sign/?.

To calculate the tensor product of two signatures s and s' one has to multiply
each sign from s by each sign from sf according to the usual rule. The collection
of obtained signs is s®s'. For example

- H ( + 7 - 5 ) . (6.15)

Now, let α be a hermitian sesquilinear form on K and A:L->K be a surjective
linear map. One may introduce the inverse image A~γaL. This is a hermitian ses-
quilinear form on L such that
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for all /, ΓeL.Then the signature of A~*α can be obtained from that of α by adding
dim(kerγ4) signs 0. We shall write

s ignμ" 1 α)=s ignα0(O d i m ( k e r i 4 ) ) . (6.16)

In particular, \ϊ A is one-to-one map then sign(A~1ot)= signα.
We shall use in the following proof all rules of the signature calculus men-

tioned above.

Proof of Theorem 6.1. Ad 1. We introduce the sesquilinear hermitian form ρ de-
fined on X®H setting for all h,keH and x, yeX:

(x®h\y®k)ρ = (x®h\ρ(y®k)). (6.17)

We shall show, that

signρ = ( + 6 - 2 ) . (6.18)

In particular this means that the form ρ is not degenerate and the invertibility
of the operator ρ follows immediately.

According to our notation HcX®Q and X®HcX®X®Q. In X®X®Q
we introduce another form ρ setting for all x, y9 x'9 y'eX and q,q'eQ:

(x®y®q\xf®y/®q')c = (x\y')(y\xf)(q\q')σ. (6.19)

Let us notice that the form ρ coincides with the restriction of ρ to X®H.
This fact follows immediately from the Definitions (6.17) and (6.19) and the
Diagram (6.6).

The signature of ρ can be easily calculated. Indeed ρ = y®σ, where y is the
form on X®X introduced by (6.10). Therefore [cf. (6.11), (6.4), and (6.15)]

signρ = ( + + + — )<g)( + + - )

=(+7-5).
Let L be the ρ-orthocomplement of X®H and let ρ' denote the restriction of ρ

to L. We have dimL= dimX(χ)X® Q- dimX(χ)JH
r = 2 2 3 - 2 4 = 4. It turns out

that

signρ' = signσ~x . (6.20)

Now, according to (6.12) we have

sign ρ = sign ρ θ sign ρ'

and (6.18) follows [cf. (6.14)].
To end this part of the proof we have to show (6.20). Let (eί9 e2) be an ortho-

normal basis of X. For any xeX we put

j(x) = (x\e1)e2-(x\e2)e1. (6.21)

It can be checked immediately that

y.X-*X (6.22)
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is an antilinear, norm-preserving mapping and that

(x\j{x)) = 0

for any xeX. Moreover

J2=-i-

Now, let us introduce a linear mapping

φ\X®X-+X®X®Q

setting for all x, yeX:

φ(x®y) = eί®j(x)®σ~1(ye2)-e2®j(x)®σ~1(ye1).

S. L. Woronowicz

(6.23)

(6.24)

(6.25)

Using this definition and formulae (6.19) and (6.21) we get after simple cal-
culations

(zf®z®q\φ(x®y))ρ = (z'\j(x))(q\yj(z)) (6.26)

for any z, z\ x, yeX and qeQ. If q = z2 then, in virtue of (6.23), the second factor
on the RHS of the above formula vanishes and we have

{zf®z3\φ(x®y))g = 0.

This equation shows that φ(x®y) is ρ-orthogonal to X®H. Therefore
φ (X ® X) C L. If φ is invertible (i. e. ker φ = {0}), then dim φ (X ® X) = dim X ® X =
4= dimL, and we get

φ(X®X) = L. (6.27)

Let x, y, x\ y'eX. Making use of (6.25), (6.26), (6.21), (6.24), and (6.3) we have

= (e1®j(x')®σ~ί(yfe2)-e2®j{x')®σ~ί{y'e1)\φ(x®y))g

HeΔj{x)){σ-\y'e2)\yj2{x'))-{e2\j{x)){σ-\^^

Therefore, for any a, beX®X:

i. (6.28)

Since σ " 1 is not degenerate [cf. (6.5)], φ is invertible and (6.27) is justified.
Now, (6.20) follows directly from (6.27) and (6.28). This ends the first part of the
proof.

Ad 2. Let xeX and x + 0. The sesquilinear hermitian form corresponding to
the operator φ(x®x) will be denoted by the same symbol:

for all ft, fee if.
It is sufficient to show that this form is nonnegative. We shall prove more:

sign φ(x ® x) = (+ + + 0). (6.29)
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For any h, keH we have

= (ρ~\x®k)\ρ-ί(x®h))ρ.

Therefore signφ(x(g)x) coincides with the signature of the form ρ restricted
to ρ~1(x0H). One can easily check that ρ-orthocomplement of ρ~1(x®H)
equals to x''®H, where x'ΦO is an element of X orthogonal to x [one may take
x'=j(x), cf. (6.23)]. Therefore

sign φ(x®x)= sign ρ Q sign ρx> (6.30)

where ρx, denotes the restriction of ρ to x'®H.
For any yeX, Ay will denote the scalar multiplication of elements of X® Q

by y. More precisely Ay is a linear operator X® Q^Q such that

Now, the formula (6.19) can be written in another form

(x®y®q\

In particular

for any k, heH. This shows that ρx, coincides with the inverse image of σ. One
can check that the mapping

is surjective. Taking into account the fact that dim//=dimβ + l we obtain
[cf. (6.16)]

sign ρx, = sign σ©(0)

= (++0-).

Now (6.29) follows immediately from (6.30) and (6.18) [cf. (6.13)].
Ad 3. Let j be the antilinear, norm-preserving operator acting on X intro-

duced by (6.21). For any xeX we put

kx = π{j(x)®σ(x2)). (6.31)

We have [cf. diagram (6.6)]

ρ(j(x) ®x3) = x® π(j{x) ® σ{x2)).

Therefore

ρ-1(x®kx)=j{x)(g)x3 (6.32)

and for any heH:

= (x®h\j(x)(g)x3) =
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on the basis of (6.23). It shows that

φ(x®x)kx = 0. (6.33)

Let us note that this result is in full coherence with (6.29); we found the vector
responsible for 0 in the signature (6.29). (6.29) implies that kx is the only vector
satisfying (6.33). It is obvious that kx is a nontrivial function of x: there exist at
least two elements x, y X such that kx and ky are not proportional. Then
φ{x®x + y®y) is strictly positive i.e. invertible. The invertibility of R = φ(ΐ)
follows immediately.

Now let

Kx = R1/2kx.

Then

φ'(x®x)k!x = 0.

Now, let us consider the subspace of B(X)®H = X®X®H generated by all
elements of the form x®x®kx. We denote this subspace by N. According to
Theorem 3.3 it is sufficient to show that

άimN = άimH(άimB(X) — 1) = 4 3 = 12 . (6.34)

It will be easier to calculate the dimension of an isomorphic image of N.
Let W\X®X®H-+X®X®H be an invertible operator introduced by the

diagram

X ® X ® H

X ® X ®H

X ® X

In virtue of (6.32) we have

W{x® x®kx) = x®j(x)® x3.

Therefore W(N) is generated by all vectors of the form

x®j(x)®x3.

Like in the theory of holomorphic functions, we may consider x and x as
independent variables. It means [remember that j(x) depends on x antilinearly]
that W(N) is generated by all vectors of the form

y®j(y)®χ3

where x, yeX. Therefore

W(N) = S®H

where S is a subspace of X® X generated by all vectors of the form y ®j{y).
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Let us consider the linear map of X®X onto X®X sending y®x onto
y®j{x). Clearly this is an invertible map and S coincides with the image of
X2CX®X. Therefore d i m S = d i m X 2 = 3 and (6.34) follows.

Ad 4. Let P be a projection operator acting on H and commuting with all
ψ'{x® x). We know that h = kxis the only vector satisfying equation φf(x®x)h = 0.
On the other hand one easily checks that h = Pk'x satisfies this equation as well.
Therefore Pkx is either k!x or 0 and we have either P=I or P = 0 (it is known that
{kx:xeX} generates H, cf. the remark at the end of the Section 3).

Ad 5. We know, that carrier Hubert spaces of irreducible Jordan representa-
tions of M2 are two-dimensional. Q.E.D.

Remark. In our signature calculations we took into account particular values of
signσ and signσ" 1 given by (6.4) and (6.5). To be more general one may calculate
signφ(x®x) without using these data. The result is

signφ(x®x) = (+ + - ) ® s i g n σ θ signσ" 1 θ ( 0 ) . (6.35)

Let us note that we get (6.29) assuming that

signσ = ( + H ).

It turns out however that (6.36) can not be realized by any operator σ.Q^Q.
The same can be said about the other possibility:

signσ = (+ )

signσ" * = ( )

also leading to (6.29). On the contrary, the set of operators σ satisfying (6.4) and
(6.5) is not empty:

Theorem 6.2. Let σ:Q—>Q be an invertible hermitian operator. Then the following
two statements are equivalent :

I. σ satisfies (6.4) and (6.5),
II. There exists a (not orthonormal in general) basis (x, y) in X such that:

(xy\a-\x2)) = 0, (xy\σ-\xy)) = λ3, (χy\σ-\y2)) = 0, (6.37)

where λuλ2—0 and λ1 + λ2+λ3<0.

Proof We shall only prove that II => I. From our point of view this is more im-
portant part of Theorem 6.2. It shows that Theorem 6.1 really gives us examples
of nonextendible positive maps. The proof that I => II is not difficult but rather
long and will be omitted.

One may summarize (6.37) saying that

λ

λ

1

1

+λ

o,
-λ

2^

2>

o,

o,

λ1 -λ2

0

+λ2
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is the matrix representing the form σ~γ in the basis (x2, xy, y2). The eigenvalues
of this matrix can be easily calculated. One obtains 2λί,2λ2,λ3. Therefore
signσ~1 = (+ H—) (λ3 is negative) and (6.4) is verified (the signatures of σ and
σ " 1 always coincide).

Using the Definition (6.3) one can compute the matrix representing the form
σ " 1 in the basis (x®x, x ® y , y ® x , y ® y \ The result is:

0,
0,

\

The eigenvalues of this matrix equal to λί+λ2 + λ3, λi + λ2 — λ3, λ1—λ2 + λ3

and —λί + λ2+λ3. Only the second eigenvalue is positive. Therefore

s i g n σ - 1 = ( + ). Q.E.D.

It turns out that different operators σ give rise to the essentially different
positive nonextendible maps.

Theorem 6.3. Let φ and φ1 be two positive maps of B(X) constructed according to
Theorem 6.1. Assume that there exists an invertible operator VeB(H) such that
φ(a)= V*φί(a)V for all aeB(X). Then the operators σ and σί corresponding to φ
and φx respectively are proportional.

Proof. We have [cf. (6.31) and (6.33)]

φ(x®x)π(j(x)(g)σ(x2)) = 0 ,

φ1(x®x)π(j(x)®σ1(x2)) = 0 .

Therefore Vπ(j(x)(g)σ(x2)) must be proportional to π{j(x)®σί{x2)). Denoting the
coefficient by λx we get

x2)) = ̂ U(x)®(Ti(x 2 )). (6.38)

Treating again x and x as independent variables we get

Vπ(j(y) ® σ(x2)) = λxyπ(j(y) ® σx(x2)) (6.39)

for all x, yeX.
Let x runs over X. Then n(j(y)®σ(x2)) and n(j(y)®σ1(x2)) span the three

dimesional subspace of H orthogonal to y3. The formula (6.39) tells that this
subspace is F-invariant. Therefore j ; 3 is an eigenvector of F* and this fact holds
for any yeX. It follows easily that V = λl, where ΛeC

Now, (6.38) can be simplified:

π(j(x)®ίλσ(x2)-,λxσ1(x2)-]) = 0. (6.40)

We know that the kernel of the projection π:X®Q^>H does not contain any
non-zero element of the form y®q [cf. (6.1)]. Therefore, using (6.40) we get



Nonextendible Positive Maps 281

It means that x2 is an eigenvalue of σ~1°σ1. Then σ~1°σί must be propor-
tional to IQ (the eigenvectors of other operators do not form a continuum gen-
erating the whole space). Q.E.D.

It is not difficult to produce examples of irreducible nonextendible maps of
B(X) with higher dimensional carrier Hubert spaces. To this end one generalizes
Theorem 6.1 setting H = Xn and Q = Xn"1. In this case σ " 1 is defined on X ® Xn ~ 2.
The formula (6.35) holds in this general case as well. In order to obtain

we have to assume that the signatures s=signσ and s ^ s i g n σ " 1 satisfy the fol-
lowing conditions:

The Theorem 6.3 is also valid in this general setting. On the contrary Theo-
rem 6.2 strongly depends on the assumption n = 3. We do not even know whether
for given s and s' satisfying (6.41) there exists an operator σ such that signσ = s
and σ~1=sf.lt seems that the answer is negative in most cases.

In the end of this paper we would like to present the first example of a non-
extendible positive map φ:M2-*M4 found rather accidentally after long and
unsuccesful attemps to construct such a map in a systematic way:

a, b
4a-2b-2c + 4d,

-2a + 2b,

0,

0,

— 2a + 2c,

2a,

b,

0,

0,

c,

2d,

-2b-d,

0

0

-2c-ά

4a + 2d

All the theory presented in this section is the result of the detail examination
of this single numerical example.
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