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On Perturbations of the Periodic Toda Lattice
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Abstract. A class of Hamiltonian systems including perturbations of the
periodic Toda lattice and homogeneous cosmological models is studied.
Separatrix approximation of oscillation regimes in these systems connected
with Coxeter groups is obtained. Hamiltonian systems connected with simple
Lie algebras are pointed out, which generalize the system describing periodic
Toda lattice and allow the L — A pair representation.

1. Introduction and Summary

The Toda lattice is known [1-5] to be an infinite system of unit mass particles,
whose interaction is determined by the potential

V= Y

where q{ is the displacement of the i-th particle from the equilibrium. The periodic
Toda lattice is determined by qi + n+1 = qi condition and has the Hamiltonian

i - ί i ) . (1.1)

In the present paper we study the Hamiltonian systems generalizing (1.1):

Here α l 9 . . . ,α M + 1 are vectors in /^-dimensional space Rn with coordinates otk =
(dkl9 ...,dkn\ q being the vector (ql9 ...,qn). In Rn two scalar products (x9y) and
{x, y} are given:

(*> y) = Σh ^ijχiyj > ίχ> y} = Σ?= 1 χ ^ i



202 O. I. Bogoyavlensky

Vectors ak and quadratic forms ^ , Skm satisfy the conditions A and B:
A. For any vector p in Rn

B. For all k

Among Hamiltonian systems (1.2) there are perturbations of the periodic
Toda lattice (at the total zero momentum pί + . . . + pn + x =0) with arbitrary masses
of particles and periodic potential of the type, for instance:

Vγ= Σ i e x p ( ^ - g ί + 1 + f i i f e - - g i + 2))> ε i + π + 1 = e f . (1.2)'

The author has remarked, that Hamiltonian system (I.I) looks like Einstein
dynamical systems in the theory of homogeneous cosmological models (hamil-
tonian of the most complicated model of type IX see (1.7) below). Qualitative
theory of these models was constructed in the cycle of works by the author and
Novikov [7-9]. The open set S of physically permissible meanings of phase
variables was marked out. The compactification of region S was made and the
boundary was "glued" then. On the initial stages of the Universe evolution the
trajectories of Einstein dynamical system are near boundary Γ. The structure of the
dynamical system on boundary Γ turns out nontrivial: there are complicated
sets of singular points and their separatrices. Close attractive subsystems, which
are in fact so-called "attractors", may be marked out from these sets of separatrices.
These attractors give birth to oscillation regimes with complicated ergodic
properties (for the first time the regime of such type was discovered by Belinsky,
Lifshits, Khalatnikov by other methods [15]). The results of qualitative theory
were applied [7-10] for the study of the Universe expansion dynamics on the
initial stages. Similar results for the hydrodynamical models were received in
[10]. Note, that some hamiltonian systems of the type (1.2) on mapping

β k = exp({αk,0}), fc=l,...,n+l (1.3)

transform into systems of hydrodynamical type (at a1 + . . . + (xn + 1 =0) in terms of
paper [18].

Natural hypothesis has arisen that already in the perturbations of periodic
Toda lattice of (1.2) type similar complicated oscillation regimes with ergodic
properties spring up, and the Toda lattice is isolated by some deep algebraic
symmetry.

Such regime at a positively determined metric ^υ is realized at the energy
HpΊ1. In this oscillatory regime momentum p changes in the following way.
There are long sections IN of the trajectory along which momentum p is approx-
imately constant, momentum p changes between two successive sections IN,
IN+1 and

p(IN+ί)=T(p(IN)) = τk(p(IN)), (1.4)

1 After this paper was completed Ya. G. Sinai acquainted the author with the new preprint [6]
in which dynamics of the two particles system with arbitrary masses and Toda potential has been
investigated numerically. The results [6] evidently point out the presence of stochastisity at / / > 1 .
This agrees with the results of the given paper
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where number k is determined by the condition

(αk, p(/N)) = maxm(αm, p(IN)) (1.5)

and map τk is the reflection in the plane orthogonal to vector otk (in the metric ^ ί 7 ):

p-γ^*>. (1.6)

The map T given in (1.4)—(1.6) is almost everywhere determined in i?" and is
piecewise continuous.

The map Tfor the Toda lattice (1.1) is periodic—here vectors αf are the roots
of the simple Lie algebra of type An(SL(n+l)). The map T will be periodic for the
Hamiltonian systems (1.2), provided the Coxeter group G generated by reflections
(1.6) is finite (if d is the order of group G, then τd]-Td=Td, the map T, however,
may be irreversible). All the finite Coxeter groups G are known [11], and, except
for three special cases, they are Weyl groups of the simple Lie algebras (provided
G is not decomposed into a product of two other groups). The exceptions are two
Coxeter groups in three- and four-dimensional spaces and the infinite series of
dyadral groups (symmetry groups of regular polygons) in two-dimensional space.

The periodicity property of the map T isolates the Toda lattice (1.1) among
its general perturbations (1.2). In the general case (1.2) the Coxeter group G is
infinite and its closure (at positively determined metric ^tJ) coincides with the
orthogonal group O(n); for general vector p the set T\p) (where k are all natural
numbers) is everywhere dense on the sphere (p, p) = const. The general Hamiltonian
system (1.2) is unlikely to have any integrals, except for the energy H.

However, there are several exceptional systems of the (1.2) type with the
periodic map Γand a large set of integrals. Hamiltonian systems of type (1.2) for
each simple Lie algebra are presented in Section 4, allowing as well as the Toda
lattice (1.1) [3-5] L — A pair representation and having n integrals. These systems
and the way of their construction differ essentially from those investigated in
papers [12-14].

Note, Hamiltonian systems of type (1.2) also arise in the theory of homogeneous
cosmological models [15]. For instance, the model of type IX in empty space
(at the level H = 0) is described by the Hamiltonian system with Hamiltonian [7]

j— Σf=i Pf^~^TJ<jQXP(Qi~Qj)~ Σf=i exP(2^i) (1.7)

Metric ^tj for this case is indefinite and Coxeter group G is infinite.

2. Transformation of the Hamiltonian System

The Hamiltonian system (1.2) by the mapping (1.3) is transformed into the system

Q^QAΣljdki^jPj), (2.1)

determined on invariant submanifold L:

Qΐ1 .» β » ί 1 = ί, β f > 0 ,
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where

Introduce

rk = Qk/G,

new

s.

coordinates

= Pi/P, w

O. I. Bogoyavlensky

: 1)
112, P = ( P Ϊ + . . . + P Ϊ ) 1 / 2 (2.2)

and perform substitution of time

System (2.1) in coordinates (2.2) and time τγ has the form

Si = M- Σk,m hmΨu + dmi)rkrm + sf £ k J f m s/km(dkj + d m j ) r k r J , (2.3)

W = 2w&ij,k rKduΛijSj) 4" W ̂ i,ik,m S.^m^W + dmί) Vm)

As a result of transformations of the coordinates (1.3), (2.2), the system (1.2)
(manifold L) transforms into the system (2.3) determined in the region Sx

w>0, rk>0

on the 2n-dimensional invariant manifold V:

System (2.3) is sure to continue on the closure S of region S 1 ? where

The components of the boundary Γ of manifold S (w = 0, f̂c = 0) are invariant
submanifolds of system (2.3).

3. Separatrix Approximation of the Oscillatory Regime

System (2.3) has n + 1 sets Mt ( i = l , . . . , n+1) of singular points. Each set Mt

is an (n— l)-dimensional sphere and has coordinates

rk = δki, w = 0, sf + . . . + s ^ = l .

The point s on the set Mk is denoted by a pair of {s, k}.
The eigenvalues of system (2.3) on the manifold V in the singular point {s, k}

are the following (the corresponding eigen directions are shown in brackets):

λm = ((xm,s)-((xk,s) (variable rm9 m = l , . . . ,w+l, m + k)

λ n = 2 (ιxk, s) (variable w) (3.1)

Xn + χ = . . . = χ2n — 0 (variables s f).

It follows from condition A (Section 1) and (3.1) that all singular points Mk,
except for submanifolds of less dimension, are nondegenerated and unstable
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(the singular point is called nondegenerated, provided the number of its zero
eigenvalues is equal to the dimension of the set Mk).

Define two subsets Vk and Wk on each Mk:

on Vk (αfc, s)<0

on Wk (ak,s)

Separatrices going from the point {s°J} (at τ1-^ — oo) on the set FJ pass
(at τί-^ + oo) to the point {s°, k} on the set Wk (almost all) and have the form

rm( τ i) = cm exp((αm5 s ^ τ j (£, c? exp(2(α,, s 0 )^))" 1 / 2 ,

w(τ i) = 0, φ ^ s ? , c m ^ 0 . (3.2)

Here m, / are numbers z, for which λt>0 [see (3.1)]; in case ^ < 0 r( = 0.
The separatrix going from the point {s°, k} on the set Wk passes to the point

{θτk(s°\ k} on the set Vk9 where τk is the reflection (1.6) and θ is the projection on
the sphere Mk (by rays passing through the centre). This separatrix in the co-
ordinates pi9 w and time τ:

has the form

= δik9 σ = sign4 f c. (3.3)

Note, system (1.3) after transformation into coordinates pi9 rt, w has the n-
dimensional singular sets Rk, corresponding to Mk (on Rl momenta pt are
arbitrary). The separatrices of singular points R% in the coordinates sh rh w turn
into those of singular points Mk.

The separatrix (3.3) at τ = 0 goes from the singular point p°. At

[here condition B (Section 1) is used] separatrix (3.3) is inserted into the singular
point

belonging to the set Vk, since

( α f t , p 1 ) = - ( α k , p o ) < 0 .

Thus, the map Tλ is determined on sets Vj9 Wk

T^.Vj^W,, Tx:Wk^Vk9 {j9k = l,...n+l)9

where the arrow denotes separatrix [(3.2) or (3.3)] going from the initial point
to the finite one. The trajectory of the system (2.3) initiating in the neighbourhood
of one of the sets Vp Wk will move along the succession of separatrices

^ W ί K ^ (34)
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Due to (3.2) or (3.3) the corresponding trajectory in the initial coordinates qt

moves in the first approximation as follows: at the transition along separatrix
(3.2) the motion along straight line proceeds with the constant momentum pt,
this motion terminates when some Qk>Qm for all m. Then at the transition along
separatrix (3.3) an effective "reflection" of the momentum pt described by the map
τk (1.6) occurs. Then the motion along a straight line with the constant momentum
p\ = τk(pι) follows again, etc.

This oscillatory regime is realized at H >̂ 1 in the case of a positively determined
metrix au [see (1.2)]. Indeed, from condition A (Section 1) follows

The energy H in the coordinates (2.2) has the form

H = 1/2 P2(£itJ ^js.sj + w χ k j m 4 m r k r m ) .

Since at the transition along separatrix (3.2) w<ξl, at the positively determined
metric a,^ we get H > 1. For the case of the indefinite metric #,φ as (1.7) shows,
the oscillatory regime is also realized at H = 0. (See discussion in Section 1).

4. The Hamiltonian Systems Connected with Simple Lie Algebras

This Section presents new examples of Hamiltonian systems of the (1.2) type,
which, as well as the Toda lattice (1.1), assume a representation in the L — A
pair form. The theory of simple Lie algebras © is used for constructing these
systems.

Summarize the data on the Cartan-Weyl basis eai, hk in © [11], necessary
for the subsequent analysis. In the Cartan subalgebra H (H—the maximum
commutative subalgebra in ©) there is a set of vectors α1 ? . . . , α s called roots,
and some basis /il9...,fιw is chosen (n = άimH is called a rank of algebra ©).
Vectors ea.,hk form the basis of the algebra © and satisfy the commutation
relations:

[Λfc,e«£]=(ftfc,αf)^, lhi9hj-] = O. (4.1)

The scalar product (x, y) is determined by the Killing-Cartan form

), ad x(z) = [x, z] .

The set of roots α 1 ? . . . , % is named admissible, provided vectors αf — α7 for
all ίj'SN are not a root; hence

In each simple Lie algebra © there is one important admissible set of roots

ωl9ω29...,ωni-Ω, (4.2)

where ωt are simple roots (all the roots αf are integer linear combinations of
ωk) and Ω is the so-called maximum root (Ω + ί1ω1 + . . . + / n ω n is not the root at
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^i^O). All subsets of an admissible set of roots are also admissible. Prove the
following

Theorem 1. Let © be a simple Lie algebra of rank n9hl9..., hn—a basis of its Cart an
sub algebra, <x1,..., ocN—an admissible set of roots, at = dn hί + . . . + dinhn, fiyarbitrary
real constants, the scalar product (x, y) in © is determined by the Killing-Car tan
form. The Hamίltonίan system in the In-dimensional phase space p^q^.

qt = dH/dpi9

H= 1/2 Σlm (hk, hm)pkPm + Σ"= i h e x P ( 2 ΣZ= i djtAά

is asserted to have a representation in the L — A pair form.

Proof. All the solutions of system (4.3) by the map

lj = fiV2 exp(Σ2 = i djkqk), j= 1,..., ΛΓ (4.4)

are transformed into the solution of system

h h Y Λ , j m ) . (4.5)

Consider in the Lie algebra (5 the equation [17]

' l=U,A(m (4-6)
where vectors l(t) and A(l(t)) have the form

l(t) = ΣJL i ψ) K + e - βJ) + ΣZ = i PA,

)

Using the commutation relations (4.1) and the determination of the admissible
set of roots α x , . . . , aN, it is easy to verify that system (4.5) is equivalent to Equation
(4.6) [under condition (4.7)].

Equation (4.6) at any linear representation T of the Lie algebra (5 determines
the L — A pair

T(l)' = [T(l\T(A(im. (4.8)

Thus, by mappings (4.4), (4.7) all the solutions of system (4.3) transfer to solutions
of Equation (4.6) and, consequently, equation (4.8). Take an exact representation
T of algebra © with minimal dimension. Then Equation (4.8) at l(ή given by (4.7)
and (4.4) will be equivalent to system (4.3). This proves Theorem 1.

It follows [16] from the representation in the L—A pair form that system (4.3)
has integrals

Ik = Ύr(Tk(l(t))).

Equation (4.6) always has integral (/, I) (I2) which under condition (4.7) has the
form

(I, 0 = Σlm (hk9 hm)PkPm + 2^=! I] = 2H .



208 O. I. Bogoyavlensky

Here are some examples of systems (4.3). We use the classification of simple
Lie algebras and standard list of algebra (δ roots in orthogonal basis eί9 ...,en

(see [11]) (for the algebras of types An, E6, EΊ, G2 it is convenient to expand the
Cartan subalgebras by the element commutating with the total algebra; in this
expansion we have the basis e l 5 . . . , en, en+ί). The orthogonal basis et is taken as
basis hh and set (4.2) is taken as admissible set of roots. The corresponding
Hamiltonian (4.3) has the form:

H = l / 2 Σ Γ = i P ? + ^(«,) (4.9)

Here m = n + l for the algebras of types An, E6, EΊ, G2 and m = n for the rest of the
types (n is a rank of algebra (5).

Denote

The explicit form of potentials V®(q^ depending on the type of algebra (5 is the
following:

2^3). (4.10)

Using standard linear representations of simple Lie algebras, the Hamiltonians
(4.9) may be shown to have m integrals; for some cases it is possible to prove that
integrals are in involution.

For Lie algebra of type An(SL(n+l)) the Hamiltonian (4.9) determines the
periodic Toda lattice, for the rest of the types we obtain new systems of particles
with a large number of integrals [note the system (4.9) for the type Cn is inserted
into the periodic Toda lattice with In particles]. Stochasticity is impossible in
all these systems.

For the two-particle systems from (4.10) in addition to the Toda lattice we
get two integrable Hamiltonian systems with potentials
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Note, that both these systems differ from that considered in [6] with the potential

describing the Toda lattice with one fixed particle.

Basing on Theorem 1 we may indicate many other examples of Hamiltonian
systems admitting representation in the L—A pair form, for instance, such
systems result from (4.9) by omitting some terms in potential V%. One of such
systems (for type An) has been recently studied in detail by J. Moser.
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