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Generalized Trotter's Formula and Systematic
Approximants of Exponential Operators and Inner
Derivations with Applications to Many-Body Problems

Masuo Suzuki

Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan

Abstract. New systematic approximants are proposed for exponential functions,
operators and inner derivation δH. Remainders of systematic approximants
are evaluated explicitly, which give degrees of convergence of approximants.
The first approximant corresponds to Trotter's formula [1]: exp(^4 + J3) =
lim [Qxp(A/n) Qxp(B/n)~]n. Some applications to physics are also discussed.
ft—•OO

1. Introduction

In this paper, we investigate systematic approximants and errors of exponential
operators such as eA, eA+B etc. and exponential inner derivations such as expδH,
exp(δHί + δH:) etc. These exponential operators and inner derivations are used
very frequently in many-body problems. As it is mostly difficult to diagonalize
such exponential operators, it is convenient to find appropriate systematic
approximants of them which can be easily evaluated. In Section 2, systematic
approximants of ex are discussed for illustrating our idea. In Section 3, systematic
approximants of exponential operators are introduced and studied in detail.
Some applications are listed in Section 4.

2. Systematic Approximants of an Exponential Function

In this section we present our idea in a simple exponential function ex. As is well-
known, this is expressed by

ex=Km{l+x/n)n, (2.1a)
n—>oo

or

(2.1b)

The above two formulae give methods to calculate ex numerically. The second
expression (2.1b) is more convenient for such a purpose, because the convergence
of (2.1b) is better than that of (2.1a).
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Is there a much more rapidly convergent expression for exΊ To answer this
question, we try to unify or combine the above two formulae as follows:

ex= lim en Jx)= lim en Jx), (2.2)
n->oo ' m->oo '

where

(2.3)

The case m = l corresponds to (2.1a) and w = l to (2.1b). It is easy to evaluate
(the upper bound of) the remainder Snm(x) defined by

x). (2.4)

In fact, using the generalized mean value theorem or Taylor's theorem, we obtain
the following result:

Theorem 1. With (2.3), we have

Proof. The proof is the same as Theorem 2 for general case.

It is easily seen from this theorem that the error SntJx) becomes extremely
small for large n and m. The convergence of enm(x) with respect to the series
m (or n) for a large fixed n (or m) is much better even than (2.1b). Consequently
the above formula (2.3) will be very useful in calculating ex (and other elementary
functions derived from it) by a high speed computer, in which the operation of
product is much reduced iϊn = 2p (wherep is an integer). Thus, we may call enm(x)
the n — m approximant of ex.

3. Systematic Approximants of Exponential Operators
and the Generalized Trotter's Formula

(i) We first discuss a simple exponential operator eA. Similarly to (2.3), we define
the n — m approximant of eA by

m i (Δ\k~\n

Σ F U ( 1 1 )

fc=O κ \nJ J

We obtain easily the following theorem concerning the convergence and error
estimation:

Theorem 2. For any operator A in a Banach algebra,

M £ ^ » , (3.2)

and fnim(A) converges to eA:

lim fnJA) = Jim fnJA) = eA (3.3)

for a bounded operator A.
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Using the properties of a norm in a Banach algebra, we can easily prove
Theorem2 as follows:

—ft|| exp

with

(3.4)

(3.5)

Next, the Taylor's theorem yields

Σ h
ύ Σ ^

k = m+ί K

£ γΛ\\A\\/n)k

k=0 K

1
(\\A\\/nr+1exp(θ\\Ά\\/n); (3.6)

Substituting (3.6) into (3.4), we get Theorem 2.
(ii) Next we study here systematic approximants of a non-commutative

exponential operator such as eA+B. It is convenient to introduce the following
approximant

fnΛ({Aj})={eMlneAφ...eA*ln}n.

We have the following theorem.

Theorem 3. For any operators {Aj} in a Banach algebra,

( y A ) _ f (fA\) <-(y \\A \\)2 ex ( — f
\j=i Ί nΛ j = n\j=i j I e X P l n j=1

with an arbitrary positive integer p. For bounded operators {

ί P

(3.7)

(3.ί

(3.9)

Corollary 1. For p = 2, Eq. (3.9) is reduced to the following Trotter's formula:

eA + B= lim (eA/n eB/n)n (3.10)
n-*co

for bounded operators A and B.

The above formula (3.9) and (3.10) have been used in statistical mechanics
[2-5].

Proof of Theorem 3. If we put

ij] and h = eΛίln...eA*/n, (3.11)
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then we obtain

Aj)-fntl({Aj}) = \\gn-h"\\

XX \\Aj\\),

where we have used the following lemma:

Lemma 1. For any operators a and b in a Banach algebra,

(3.12)

Then we get

(3.13)

< l
j=l

wM-[ι+lί \\Λ}\\ nj=j=l

2 I v ii , X I2 £^ Σ IK H exp - Σ (3.14)

where we have used Theorem 1. From (3.12) and (3.14), we arrive finally at Theo-
rem 3.

Next we introduce the following systematic n — m approximant fUίm(A, B):

fnJA, B) = {eAlneBlneC2ln2...en'mc-)

where {Cn} are defined recursively as

(3.15)

(3.16)

(3.17)

(3.18)

The coefficient Cn is a polynomial of order n (of operators A and B\ which appears
in the Zassenhaus formula [6]:

eλ(A + B) = eλAeλBeλ^C2eλ^C3 (3.19)

For this series of approximants, fn^A, B\ the following theorem holds.

c2

c 3

and in

— 2

1
= 3

dλl(e

general

1

n

~λBe~

[e~χ2c

e-»"

λA λ(A + B)\

λ-o 2

in — λB ̂  — λA ~λ(A + B)\

e e e j
= KC2,

>Cle-XB
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Theorem 4. For any operators A and B in a Banach algebra,

ί m /

C w > " gMII +11*11 (3.20)

where enm is defined by (3.31) and satisfies the following property

O^limc^oo. (3.21)

For bounded operators A and B,

lim fn (A, B) = exp(A + B). (3.22)
n—» oo '

Proo/. For the proof, it is convenient to introduce the following projection operator

— / (
7 I

k= 0

oo T k m 1 k

— 2^ι τ~ϊ J \y) — J \A)— 2~ι TΊ J ^ *> (J.ZJJ
k = m+ i K k=0 k.

for any operator or scalar function f(λ). Namely, 0>

m means to eliminate all the
terms of order lower than λm+1. Now we have

^\\g-h\\xn{max(\\gl\\h\\)γ-\ (3.24)

where

1 1

-(A + B)\ and h = [fnm{A,B)~]*. (3.25)
n j

Then, using the projection operator <Pm, and the definitions (3.16)^(3.18) of
{Cn}, we obtain

(3.26)

Thus, we arrive at the following inequality

[maxdlgll, Pll)]"-1 fmβ\, (3.27)

where

C 2 | | + . . .+A m | |C m | | ] ) . (3.28)

From the generalized mean value theorem and from the property that /m(0)=
Λυ(0) =. . . = firXO) = 0, we obtain
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with 0 < # < l and λ^O. Consequently, P is bounded as

~ nm(m+l)\

where the coefficients {cnm} are given by

(3.30)

(3.31)

and they satisfy the property (3.21), because all {Ck} are bounded and

lim cnm = f^ +1}(0) = finite (3.32)

for bounded operators A and B.
The above result can be easily extended to a more general exponential operator

Qxp(A1 + A1

Jr A3... + Ap). We first define a sequence {Ck} by

C — i
d2

(β λAp^χ λAleλ(Aί + ... + Ap)j

and in general Cn is determined recursively by

...+Ap)

, (3.33)

(3.34)

It should be noted that these coefficients are also determined formally by the

following generalized Zassenhaus formula:

exp
7 = 1

= eλΛ'eλA2...eλA^eλ2C2eλ3c\ (3.35)

With these preparations, we obtain the following theorem.

Theorem 5. For any operator {Aj} in a Banach algebra

where fnm denotes the n — m approxίmant defined by

and cnm is given by (3.31) with fm(λ) defined by

2λ Σ \\Aj\\+λ2\\C2\\ + ...
m(λ) = 0>m exp

(3.36)

(3.37)

(3.38)
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instead of (3.28). For bounded operators {Λj},

limfnJ{Aj}) = exp(t A). (3.39)
n^oo V/=l /

As a simple example, we consider the case that [A, B~] commutes with A and B.
Then, we have C3 = C4... =0, and consequently

as is well-known. Therefore, we get

eA+B = fnΛ(A B) exp (± [fl, A]\, (3.41)

or

\\eA+B-fnΛ(A B)\\ S(e^B^2n)-l) exp(M|| + ||B||). (3.42)

All the above results are easily extended to the inner derivation δH (i.e., δH(A) =
[H, A~\). In particular it should be noted here that the inner derivations {δH }
satisfy the following formula

)n(A) = (eHί...eH™)nA(e-H™...e-Hί)\ (3.43)

as is easily proven from the well-known formula [7]

H H ( 3 . 4 4 )

All the formulae derived in this section are applicable to strongly interacting
systems, for example, models for phase transition, in which two competing
interactions play equally important roles and consequently neither of them can be
treated as a perturbation.

4. Applications and Concluding Remarks

The theorems derived in the preceding sections, particularly (3.9), (3.10) and the
corresponding formula on δH are very useful for studying the following problems:

1. It is possible to prove that the ground state of the d-dimensional quantal
spin system described by

is equivalent to the (d+ l)-dimensional Ising model [5, 8].
2. The partition function of a quantal spin system in d dimensions is expressed

by that of the Ising model with many-spin interaction in (d+1) dimensions.
3. The above fact makes it possible to perform the Monte Carlo calculation

of quantal spin systems such as the Heisenberg model [9].
4. One can prove the existence of the thermodynamic limit of non-equilibrium

quantum mechanical systems [10].



190 M. Suzuki

5. It is possible to calculate approximately thermodynamic properties of
some quantal spin systems with the use of the n — m approximants introduced in
in the present paper. Detailed analyses will be published elsewhere.
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