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Abstract. A lattice homogeneous under the modular group Γ of fractional
linear transformations is constructed. The generating function for close
packed dimer configurations on this infinite lattice is found directly, without
doing it first for a finite lattice, using the Pfaffian method. This requires
orienting the lattice. The group SL(2, Z) is used to this end. Computation of the
generating function is reduced to a particular case of the problem of finding
the number of words reducible to the identity for a group which is the free
product of two cyclic groups. Solution of this problem gives the dimer generat-
ing function as the solution of an algebraic equation. Considered as a function
of the activities, the free energy has a logarithmic singularity.

Next an Ising model is built on the same lattice. The free energy per spin
is evaluated by solving a dimer problem on an associated lattice following
the general prescription of Fisher. It is a rational function of the solution of a
system of two algebraic equations.

I. Introduction

In the solution of the dimer problem for rectangular lattices by the Pfaffian
method [1,2] use is made of the in variance of the lattice under a group of transla-
tions. In fact, the generating function in this case is given in terms of the
determinant of a cyclic matrix which is easily diagonalized by means of a Fourier
transformation. The question naturally arises then, whether it is possible to
construct lattices which are homogeneous under a group other than the transla-
tions, say, a non-abelian one, and solve there the dimer problem. Since the Ising
problem for a two-dimensional lattice is rather simply related to a dimer problem
[3], one would also hope to find the Ising partition function for this new homogene-
ous lattice.
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It is the purpose of this work to construct a lattice which is homogeneous under
the modular group of fractional linear transformations and solve there the dimer
and Ising problems by the Pfaffian method developed by Kasteleyn [1] and Fisher
[3].

Consider then the Poincare model of the hyperbolic plane [4]: it consists of
the upper half H of the complex plane C Its geodesies are arcs of circles and
straight lines orthogonal to the real axis. If we let ze(£, z = x + ίy, then the metric
of this plane is

\ y \ (1.1)
y

Notice that with this metric, any point on the real axis is infinitely far away from
any point on the upper half plane. The fractional linear transformations

z^ ad-bc = U α,fc,c,deIR (1.2)
cz + d

are orientation preserving isometries of this geometry, and it is easy to see that
they form a group. The modular group Γ is the subgroup of (1.2) in which α, b, c, d
are integers. It is a discrete subgroup. As such, it has a fundamental domain D
which is known to be

D = { z e H | R e z < i | z | > l } . (1.3)

Also, Γ is isomorphic to SL(2,Z)/{±i}, the group of 2x2 matrices with integer

coefficients and unit determinant divided by its center. In fact, and f
\c d) \-c -dj

determine the same fractional transformation. When no confusion arises, we shall
denote by the same symbol the elements of Γ and SL(2, Έ). Let now

T:z->z + l . (1.4)

These transformations generate Γ. They satisfy the identities S2 = (ΓS)3=I, which
are essentially unique, as all others are a consequence of them. More precisely,
a presentation of Γ is given by <S, T; S2, {TS)3}. In other words, Γ is the free
product of the cyclic group of order 2 generated by S and the cyclic group of order 3
generated by TS.

The transformation S leaves i = | / ^ T fixed, TS leaves ρ = e3 fixed and ST
leaves ρ2 fixed. These are the only points of D which are left fixed by elements of Γ.

By acting on D with Γ one obtains a tesselation [5] of the hyperbolic plane.
It is here that we construct a lattice as follows: Take an arbitrary point inside D,
call it α, and act on it with geΓ. That is, consider all its images under the modular
group. Then connect with bonds the points g(a) with gS(a), gT(a) and gT~1(a)
and associate an activity x with the T and T " 1 bonds, and t with the S bonds.
In this way the lattice of Figure 1 is formed. This may be described in an alternative
way: it is well known that the upper half plane may be conformally mapped inside
the unit circle and that if we consider straight lines as limiting cases of circles,
this map is such that circles go into circles. In particular, the new geodesies are
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Fig. 1. Lattice homogeneous under the modular group, drawn on the upper half plane

circular arcs orthogonal to the unit circle. In this way, another description of the
hyperbolic plane is obtained. The tesselation induced by the modular group as
well as the lattice we have just constructed are illustrated for this model in Figure 2.
We see that the lattice consists of hexagons, each one connected to three others
along alternating faces in such a way as to form an infinite tree.

By construction, this lattice is homogeneous under Γ. Its generating function
per site for close packed dimer configurations will be computed directly, without
finding it first for a finite lattice and taking the thermodynamic limit afterwards.
This is done as follows: according to Kasteleyn [1], the dimer generating function
Zs for a lattice with N vertices is given by the determinant of a certain operator A
associated with a prescribed orientation of the lattice:

logZ s = — —

Now, A acts on a vector space of dimension N, so that

(1.5)

(1.6)

where I is the identity. This expression then holds for arbitrary N, and it is possible
to take it as the definition of log Zs in the thermodynamic limit, when the vector
space becomes infinite dimensional. That this definition makes sense is shown by
actually performing calculations with it. In particular, it has been used [6] to
recover the generating function of Kasteleyn [1] and the free energy first found
by Onsager [7] for the Ising model on a rectangular lattice.

In what follows we shall omit the factor ( t r l ) " 1 from our expressions, so that
one should read ( t r l ) " 1 tr^4 whenever tr,4 appears. In particular, the trace of the
identity will be one.

In Section II the lattice is oriented according to Kasteleyn's rules. In so doing
the invariance under Γ is lost. However, it is possible to retain invariance under
the larger group SL(2,7L). The operator whose determinant gives the generating
function is expressed in terms of the regular representation of certain elements
of this group. Use of (1.5) reduces the problem then to the combinatorial question
of counting a certain class of elements in SL(2, Έ\ which is a particular case of the
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Fig. 2. Lattice homogeneous under the modular group, drawn inside the unit circle

problem [8] of finding the number of words reducible to the identity for a group
which is the free product of two cyclic groups. This is solved by means of generating
functions and gives logZ s as the integral of a solution of an algebraic equation.

The Ising problem for the lattice is considered in Section III. The corresponding
dimer counting lattice is constructed following Fisher [3]. After this, the steps
of II are repeated. They become more complicated, especially the counting
problem. The free energy turns out to be a rational function of the solution of a
system of two algebraic equations. Section IV contains some final remarks.

II. Dimer Generating Function

The first step is to orient the lattice such that every hexagon has odd parity (i.e.,
such that the number of bonds oriented in either direction is odd). A "fundamental
hexagon" is oriented first and then the rest. Take then the original point (a) from
which the lattice was constructed and the points T(a\ TS{a\ TST(a\ (TS)2(al
(TS)2T(a). They are the vertices of the fundamental hexagon. Draw arrows now
in the following way:

a^T(a)->TS{a)-^TST{a)->{TS)2(a)-*(TS)2T(a)+-(TS)3{a) = a .

Clearly this fundamental hexagon has odd parity. Draw also an arrow from
T~1(a) to a. This orientation, however, breaks the symmetry of the lattice, as it is
incompatible with the identity S2 = l.

We consider then two vector spaces: one spanned by vectors ag, geΓ, which
are in one-to-one correspondence with the points g(a\ and the other spanned
by ah, he SL(2, Z), in which the labels are 2 x 2 matrices. The bonds incident on the
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point a define the action of an operator O~ on απ.

O~an=ίas+xaτ—xaτ-i. (2.1)

We want to know what is 0~aφ geΓ. The first guess, namely O~ag = /a
xagT-i is wrong, as it is inconsistent with S2 = l. We can define however an
operator 0 acting on ah heSL(2,Z), in a similar way without contradiction:

a o -i\ + xa

h(i i\-χa

hn -iv (2 2 )
Hi o) Λlo IJ lo ί)

Now, to each # e Γ there correspond two elements in SL(2, Z) say ± X 1 1 2

\#21 #22

There are then infinitely many injections of Γ into SL(2, Z). Consider a particular
one, say the one that associates to each g a 2 x 2 matrix such that # n > 0 , and
when gίl = 0, then # 2 1 >0. Notice that glx and # 2 1 cannot vanish simultaneously.
Such a matrix will be called positive. A non-positive matrix will be called negative.

The operator (2.2) joins vectors labeled both by positive and negative matrices.
If ah is a vector labeled by a negative matrix h, we transform it into a vector labeled
by the positive matrix — h in the following way:

ah=-a_h, ΛeSL(2,Z). (2.3)

We thus obtain an operator which acts on the subspace spanned by basis
vectors labeled by positive matrices only. As these vectors are in one-to-one
correspondence with the aφ gεΓ, we define this operator to be 0~. In this way we
obtain an orientation of the modular lattice. This is seen as follows: Take the

point g(a\geΓ. Associate with g the positive matrix n 1 2 . Take next the
\021 #22/

product Γ 1 1 gί2)\ ~ | = Γ 1 2 ~Ql11. If this product is positive, we draw
\02i 022/U 0/ \g22 -g21)

an arrow from gS(a) to g(a).

Nexuakef^1 ^ Ψ J) = ( f f" ί " + ί " ) . The signs of β l ί and , 2 1

W21 #22/ \0 1/ Vflf21 #21+#22/

are preserved. The rule then is to draw an arfow from g(a) to gfT(α). Similarly, an
arrow must be drawn from gT~ί(a) to g(a).

First, we show that this rule does give the orientation we have imposed on the
fundamental hexagon.

i) g(a) = a, the matrix associated with g is J.

Since ί jί ~ π ) = (1 " " π ) 9 there is an arrow from α to S(α) = (ΓS)2T(α),

as required. An arrow also goes to T(a).

Since J = Lan arrow goes from T(a) to T,S(α). An arrow

from TT~1(a) = a to T(α) is also required, and this is consistent with the prescrip-
tion of i).

One sees similarly that the orientation of the remaining four bonds is correctly
given.
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Now we show that every hexagon g(a), gT(a), gTS{a\ gTST{a\ gST~\a),
gS(a) has odd parity. There are arrows from g(a) to gT(a\ from gTS(a) to gTST(a)

and from gST~1(a) to gS(a). Suppose now that l x 1 2 ) L is positive.
\021_ 022/ U 0/

In this case an arrow goes from g(a) to gS(a\ To gST'1 we associate the matrix

21 022/U 0/\0 1
012

,022

-011-012

-021-022

There are three possibilities: 01 2 larger, equal to, or smaller than zero. Take
0i2 > 0 first. Now,

/012 -011-01 2 \/O - 1 \ = /-011 -012 -012^

\022 -021 -022/ \1 0/ 1-021-022 -022/

On the other hand, to gTS there corresponds

- 0 i Λ

\021 022/\0 1/U °/ V021+022 ~02l/'

If - 0 n - 0 i 2 > O 5

 a n arrow goes from gST~1(a) to gST'^^Sia). But this means
0u+0i2<O> a n d an arrow goes then from gTS(a) to gT(a\ and the hexagon
is odd:

g(a)

gS(a)

gT(a)

gTS(a)

gST-\a) F gTST(a)

If 0u + 01 2 >0, the arrows go from gT(a) to gTS(ά) and from gST~1S(a) to
gST~1(a) and the hexagon again is^odd:

0(«) , gT(a)

gS(a)

gST~\a)

gTS(a)

gTST(a)

If 0u+0i2 = O, we have nevertheless that (gST~1S)21= -{gTS)2ί and the
same considerations hold.

The cases 01 2<O and 0i2=O are similarly treated, again obtaining odd
hexagons.

We have then oriented the lattice using (2.2) and (2.3) and a particular injection
of Γ into SL(2, Έ). The question arises whether different recipes could also give
good orientations while leading to different results. The only possibility for this
to happen is to have, instead of O, an operator 0' in which the relative sign of the
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activities is changed. An investigation of this possibility [6] leads to the conclusion
that the induced orientation of the lattice gives hexagons of even parity and is
thus inadmissable.

We must then compute the determinant of the operator resulting from (2.2)
with the constraint (2.3). The operator 0 may be written as

-
where M is the regular representation of SL(2, Έ).

Notice that if instead of (2.3) we had imposed the constraint αft = α_ft, we would
obtain exactly the regular representation for Γ. In fact, this constraint is saying
that we identify h and — h, which is precisely what one does when dividing SL(2,Z)
by {± 1}, and in particular 0l( — I) becomes the identity. Constraint (2.3) says that
instead of this, we want 0$( — I) to become minus the identity.

More precisely, if we call 8 the vector space for the regular representation of
SL(2, Z), then the regular representation of Γ is given by <ί/kerj/, where
s/ = 0l(l) + 0l(-l). In fact, (a-h-ajekers/, which means that, in 8/keτjί, ah

and α_Λ are identified. Analogously, we construct (f/ker^, where 06 = 0t(t) —
ffl(-l). This time, one has (ah + a_h)eker0$ so that -ah and a_h are identified
as required by (2.3). Consequently, O~is the endomorphism induced in (f/kerJ1

byO.
We now know that the generating function Z s we are looking for is given by

2 log Zs = log det 0 ~= tr log 0 ~. (2.5)

We shall want then to compute traces of operators acting on <?/ker^ induced by
the regular representation of some element of SL(2, Z) which acts on 8. We
know that tτ0tψ) = ί9 tτ0l(h) = O9 ΛΦleSL(2, Έ). Let h~ be the operator induced
by 0i(h). What is tr/Γ?The answer is

(2.6)

That tr(ll~) = l is clear since the identity induces the identity. Also, ( —1)~=
~(I"), and more generally, ( - h)~= — (Λ"). This is just another way of saying that
0t( — ΐ)ah = a_h and — ah must be identified. Only ± 1 induces operators pro-
portional to the identity in 8/ker0$. In fact, suppose fc~=αi, k+±l, a a scalar
and i the identity of 8/keτ08. In this case we should identify ak and αα,. But α, is
identified only with — α_j (and with itself, of course). Consequently α = — 1 and
k=-l or α = l and fc=I.

We are finally in a position to compute (2.5):

xT~- 1 ), (2.7)

where we abuse somewhat the language by calling011 \ =S~,0ll

and 011 j = T"""1. Factoring out the /S~ term and developing the logarithm
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in a power series, we obtain

β \ ~ - S ~ T ~ - ψ . (2.8)

The problem is now to find how many words of length k in the two letters S~Γ~
and -SΓ3 1 can be reduced to the identity, using {-S~T)3= + I = (S~T~1)3.
These two letters generate cyclic groups of order three, and words in them are
elements of a group which is the free product of the two groups. We consider then
the slightly more general case of a group which is the free product of two cyclic
groups of order n and m. Its presentation is <JR, U; Rn, Um}. What we shall do is to
compute the generating function

where N(p,q) is the number of words in R and U only (that is R~* and U'1 do
not appear) with R appearing p times and U q times which are reducible to the
identity. Notice that

tr(R+U)k= £ Nfaq). (2.10)
p + q = k

At this point we must introduce some definitions:
a) The product of two words /Wι and if2 is the word Ί ^ ^
b) A word reducible to the identity will be called simply an identity word.
c) An identity word which cannot be factored as the product of two identity

words will be called a monoblock. If it can be decomposed as the product of two
monoblocks, but not of three, it will be called a diblock. Similarly we shall have
3-blocks and in general n-blocks. We shall also refer to identity words which are
not monoblocks as multίblocks.

d) A UR-word is a word whose first letter is U and its last letter is R. We have
then UR-, RU-, RR-, and UU-words.

e) N%R(p, q) is the number of U R-k-blocks with R appearing p times and U
appearing q times.

f) NυR(p, q) is the number of UR-idGnύty words with R appearing p times
and U appearing q times.

A word in R and U is reduced to the identity [8] by deleting the letters Rn

and Um. In order to find all the identity words of a given length we shall employ a
constructive procedure inverse to the reduction: we start with the empty word,
that is, 1. Then we insert repeatedly Rn and Um until we get to the desired length.
It is clear that in fact all the identity words can be constructed following exactly the
reduction steps in reverse order. We want to count how many different words we
can obtain. Notice, for instance, that R2n counts as only one word, although it
can be obtained by inserting Rn into Rn in (n+1) ways.

First, we establish the following

Lemma 2.1. There are no UR or RU monoblocks.

Proof. Since # " = 1 and l/m = l, the minimum length of an identity word where
both R and U appear is m + n, and the only [/^-identity word of this length is
UmRn which is obviously not a monoblock. Larger UR-wovds are formed by
inserting identity words in this basic UR-word, so that they have the form
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which is clearly the product of the three identity words (UΨΊ... ΊVm _ 1 U\ (WJ, and
(RiΓm+1...R). Adjoining identity words to the right or left of UmRn makes things
even worse as there is one more factor in the product. Thus, there are no UR-
monoblocks. The same reasoning holds when R and U are interchanged which
shows that there are no IW-monoblocks and the proof is complete.

Consider now the most general L/C/-monoblock. It has the form
UWJJ...LΓ#m_1L

Γ, where the i^'s are identity words which may, in particular,
be the empty word Then the following property holds:

Lemma 2.2. // Jt=UiT1U...Uirm-.1U is a UU-monoblock then the 1T» i =
1,2,..., m— 1 are products of RR-monoblocks only. Similarly\ if Rϋr

1R...Rϋr

n^1R
is a RR-monoblock, then the Ψ], i = 1,..., n — 1 are products of UU-monoblocks only.

Proof It is clear that any identity word is the product of monoblocks. Also, we
have seen there are no UR- or iW-monoblocks. Suppose then that one of the
words inside the l/(7-monoblock, say ifp contains as a factor another UU-
monoblock: Wj = j/(U@1U...U&m-1U)<&, where J / , # and ^ l ^ m - 1 are
identity words. Substituting into Ji we have

where

and

are identity words, contradicting the fact that Ji is a monoblock. Interchanging U
with JR and m with n proves the lemma for KR-monoblocks, completing the proof.

As a consequence of this lemma we have

' )— X -^rRR{Pu Qi)^/rRR(P29 cL2)' ^RR(Pm-i> Qm-i) (2 11)

and

where JfRR(p, q) is the number of .RΛ-identity words which are the product
monoblocks only, and in which R appears p times and U appears q times. If we
call Jfψiφ, q) the corresponding number of ί/17-identity words which are the
product of a number j of (7(7-monoblocks (notice J^1 = N1) we have

qi + ... + qj = q

)= Σ ^V^i^f^^ iVnP )̂. (2-14)

Notice how (2.13) says in particular that there is only one word U3k. In fact,
N%ϋ(p9 q) = 0 except for p = 0, q = 3. In this case, ΛΓ?ϋ(O, 3) = 1, namely U3.
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We also have

We see that (2.11)—(2.14) give recursive formulae for N™ and NRR. Make now
the following definitions:

//x,y)=X^>,ί)xV, (2.17)

/(x,y)= X yr**(p, « ) x γ , (2.19)
p,q

g(x,y)=Σ^uu(p,q)xγ. (2.20)

Then, multiplying (2.11) and (2.12) by xpyq and summing over p and q we get

»i(x,y) = y"/ w " 1 (^3 ' ) 9 (2.21)

/ i ( χ , y ) = χ V " 1 ( ^ y ) (2.22)

Similarly, from (2.15) and (2.16) we get

/(^y)=Σ//^y), (2.23)

g(χ>y)=ΣΦ>y)> (2-24)

and from (2.13) and (2.14):

fjχ,y)=fl(χ,y), (2.25)

ffj(x^) = »ί(x^). (2-26)

Substituting (2.25) into (2.23) and then in (2.21) we have

ffi(x>y) = / l ( l-/ i(x,y)) 1 " M (2-27)

Similarly, from (2.26), (2.24), and (2.22) we get

fί(χ9y)=χn(l-gi(χ,y))ί-\ (2.28)

Expressions (2.27) and (2.28) give the generating functions for UU and RR
monoblocks.

Consider now the total number of identity words with R appearing p times
and U q times N(p9 q) and the corresponding total number of fc-blocks Nk(p, q).
One has

00

)=ΣN,ίp,q) (2.29)
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(2.30)

and

Since

q)=

there

q) = λ

Σ nt
+ ... + Pk-P

are no UR-

ϊfR(p,q) + N\

(Pi

or R(7-monoblocks,

p>q) (2.31)

If we call

Hk(x,y)=ΣNk(p,q)xpy«, (2.32)
PΛ

we see that (2.31) implies

ni{χ>y)=fi{χ>y)+9άχ,y). (2.33)

Also, (2.30) implies

Hk(x,y) = H\(x,y), (2.34)

and (2.29) implies that the generating function (2.9) is then given by

H(x,y) = ΣHk(x,y). (2.35)
k

Substituting (2.33) into (2.34) and into (2.35) we finally get

That is, the generating function for words in .R and U is given in terms of the
solution of two algebraic equations, namely, (2.27) and (2.28).

Going back now to (2.8)-(2.10), we see that our dimer generating function is
given by

21ogZ s = trlog/S~+J ~ G ( O , z= ~*ί~ι, (2.37)

where G(z) = H(z,z% m = n=3 and R = S~T~\ U= -S~Γ. In this case we have
^fRip, 4) = ̂ u(q9 P) and consequently f^z, z^g^z, zH/^z) . Equations (2.27)
and (2.28) carry in this case the same information, namely

(l-/i)2/i^3. (2.38)

Substitution of (2.36) leads then to

G(G + 2)2(G -f 1)" 3 - 8z 3 . (2.39)

The function G defined by this equation has a pole at z 3 = ^ and a branch point at
z3 = ψf. The coefficients an in its power series

(2.40)
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may be found explicitly by substituting (2.39) into Cauchy's formula

to obtain

Making the change of variables ζ = G(G + 2)~2, developing the resulting integrand
in a power series and integrating term by term one finds

Substituting (2.43) in (2.37) we get the series development for the dimer generating
function:

li(fl(3;)-;?:(3;i
where we have used trlog/,S~=log/.

We have found then a series expansion for the dimer generating function per

site on a modular lattice. This series converges for \. Moreover, it has a

singularity at —= —\, where its behavior is found to be from (2.37) and (2.39)

2 l o g Z β z . r £ log(l -2z), z= - I . (2.45)

That is, the free energy F= — β'1 logZ s has a logarithmic singularity, and con-
sequently the specific heat will have a polar singularity with critical exponent
α = l .

III. Ising Model

Now we place spin variables σg which can take the values + 1 at each site of our
lattice. Sites interact with an energy —E1(E1>0) if we can get from one to the
other by operating on the right with 5, and with an energy — E2(E2 >0) if we can
get from one to the other by similarly operating with Tor T " 1 . We have then an
Ising model for a two dimensional lattice described by the Hamiltonian

H= -jEx £ σgσgS-E2 £ σgσgT (3.1)
geΓ geΓ

where the \ in front of E1 comes from the fact that the "g — gS" interaction is
counted twice. Our aim is to compute the free energy per spin for the model
described by this Hamiltonian. Fisher [3] has given a general prescription that
relates the partition function per spin Z for an Ising model on any planar lattice
to the dimer generating function per site Zs on an associated lattice. In our case,
this relation is given by

logZ=log2 siήhiβE1 sinhj8£2 + logZ s (3.2)
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χ-1

Fig. 3. Lattice whose dimer generating function gives the free energy for an Ising model built on the
lattice of Figure 1

and the lattice is drawn on Figure 3. The activities of this lattice are related to the
interaction energies by

(3.3)

The problem now is to compute logZ s. We do this again by applying Kasteleyn's
theorem [1].

First, we see that the construction of the lattice may be described as follows:
take three non-collinear points inside a fundamental region for Γ, call them
α, b, c, and connect them by bonds. Act then on this triangle with geΓ. Finally,
connect by bonds g(b) with gT(c) and g(a) with gS(a). This lattice must now be
oriented and the Pfaffian of the corresponding operator computed.

We follow the same procedure of Section II. We start by orienting the
fundamental decorated hexagon of Figure 4, which defines the action of an
operator O~ on vectors α l 5 6 l5 cΈ:

(3.4)

This induces us to define an operator 0 which acts on <?®IR3, where δ is the
space where the regular representation of SL(2, Z) is realized:

lo ι)

6 i !

/ZGSL(2,Z) (3.5)
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T-U6) X-' c b XH T(c) T(b)

' Y
r1*

#-1

lS(α)

X-1

Fig. 4. Orientation of the fundamental decorated hexagon that induces an orientation of the lattice
of Figure 3

Imposing the constraints

(3.6)

and choosing a particular injection of Γ into SL(2, Z) consistent with (3.4) orients
then the whole lattice by defining an operator 0~ which is the operator induced

by O on S®Έ?lkQΐ{^®l^\ where @ = ̂ L i ) - ^ ( ~ 0 Λ a n d l 3 i s t h e

identity in R3. 01 is the regular representation of SL(2, Z). Expression (3.5) may
then be rewritten as

0 =

Ό - 1

\

1 0

,0 1

0

1 0

,0 1

1 0
0 1

1 0'

0 1
— X

1 1

0 1

+ x- 1 1 - 1

0 1
(3.7)

The dimer generating function is given by

21ogZs=trlogO~.

From (3.7) we see that tr logO may be written as (here we put 1 =

(3.8)

I 0'

0 1

tr logO~=trlog

0

0
riT~-i/

where we have interchanged the second and third row and changed the sign of
the first one. Factoring out the first term in the right hand side of (3.9) and develop-
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ing the logarithm we have

t-rιs~ o o
trlogθ~=trlog( 0 - x " 1 ^ 0

0 0 x^Γ""

(3.10)

(3.11)

These matrices satisfy the following multiplication rules:

a2 = be = cb = 0, (3.12a)

b2 = b,c2=c, (3.12b)

(ab)2 = ab, (ba)2 = ba, (ac)2 = - ac, (ca)2 = -ca, (3.12c)

abac = ac, acab— —ab, baca = — feα, caba = ca (3.12d)

and their traces are

tr(αfc)=-tr(αc) = l . (3.13)

From now on, we shall omit the twiddle in S~ T~and T~~\
We are now faced with the problem of finding the trace of an operator of the

form itr

1®if*2i with i^2 being a word in the letters α, b, c and /W1 a word in S,
T and T~1. We see that only words Ψ*x reducible to the identity contribute, so
that counting these words is equivalent to counting closed loops on the modular
lattice. The condition tr#" 2 +O gives different weights to different polygons. In
particular, (3.12a) says that no step can be immediately retreated. That is, in ifγ

the letter <S never appears raised to a power other than one or zero, and T never
appears immediately preceding or following T " 1 . This means in particular that
in the reduction of ΨΊ the identity S2 = — I is not used. Also, if ΊVγ starts with 5,
it cannot end with it, as in this case one would have that iir

1 is of the form iV*2 =
ai^a implying t r ^ = t r # " α 2 = 0 . Similarly, if Wι starts with T (resp. T" 1 ), it
cannot end with T~1 (resp. T). We shall call such a word admissible.

Make now the following definitions:

and we have

R 3 = t / 3 = I . (3.14b)
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Now the fact that we are interested in counting words in S, T, T~ι which
cannot be reduced by using S2= — I or TT~1 = I says that they have to be reduced
using (3.14b) and/or their inverses, and we have then that admissible words are
words in R, U, their inverses, T and T" 1 . The following lemma shows that it is
enough to consider a class of words in R, U and their inverses.

Lemma 3.1. There is a one-to-one correspondence between admissible words in
S, Tand T " 1 and words in R, R~-1, U and U'1 in which R and R~Λ are not contiguous
and neither are U and U~ι. In addition, if R (resp. U) is the first letter, then the
last one cannot be U"1 (resp. R'1). Such a word will also be called admissible.
(In this context, the first and last letters of a word are considered to be contiguous.)

Proof. In two parts. First we start with a word in R, R~ι, U, Ό~ι and get to a
word in 5, T, T~ι. After that we perform the inverse step.

a) Consider an admissible word in R, R~ \ U and (7~1. It is a fortiori a word
in S, T and Γ" 1. The letters T and T~ι are not contiguous since this is possible
only by having either R and R~1 contiguous, or U and U~ι. The letter S, however,
appears squared whenever there appears the combinations R~ίU or ί/"1/̂ .
Notice that S does not appear raised to a power higher than two. We obtain then
the wanted admissible word in S, T and T~1 simply by deleting all S2. Notice
that such deletion gives rise to T " 2 if it is done on R~ι U, and T2 if done on U~ iR
so that no new prohibited combinations appear. An overall minus sign is added
if the number of such deletions is odd.

b) Consider now an admissible word iVγ in S, T, and T" 1 . We distinguish
two cases: (i) The first letter is S. In this case, there follows a power of T±ί, say
T±n(nφ0). If T+", write ^ as ^ 1 =(ST)T I I - 1 . . .=(-Λ)Γ I I ~ 1 . . . . If n odd, write
T"" 1 as (-p" 1 ) (TSST)* ( f I - 1 ) = ( - p " 1 ) ( t / " 1 R ^ ( I I - 1 ) . If n even, write Γ"" 1 ^
(_)i(«-2)(fy-i#)i(n-2)T τ h e n e χ t l e t t e r i s s F o r n o d d ? t h e p r o c e s s i s repeated.

For n even, Wx is

After t/" 1, a power of T±ι comes again, and we have a word whose first letter
is not S. This is the second case. Before going into it, notice that if the second
letter of Ί ^ is T~n instead of T+", the process of intercalating (-S2) yields

(ii) The first letter is Tn. If n even, we write Tn = {-γn(U~1R)n. The letter that
follows is S, and we are back in case (i). If n odd, T ^ ί - ) ^ " " 1 ^ " 1 / ? ) ^ 1 1 " 1 ^ ,
a n d # / l = ( - ) i ( " - 1 ) ( l / " 1 K ) T S . . . = ( - p - 1 ) ( L / ~ 1 K p " 1 ) ( - ( 7 ) - 1 . . . and the pro-
cedure is repeated. The case in which the first letter of #^ is T~n is obtained from
this one by interchanging #<-• U. We have then constructed a way of uniquely
getting from one type of word to the other, and the proof is complete.

Go back now to the series of (3.10). It is of the form

Σ - (3-15)
m+n=k κ

It is easy to see that k must be even and that ra^n. Also, from (3.13)-(3.15) one
sees that all words contributing to stfmn do so with the same sign, namely (— \γ{n~m\
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We obtain then

trlogθ~=-log/.x2+
n + m

number of admissible
identity words in S,
T and T~* with S ap-
pearing m times, T and

\ T~* a total of τι times

.(3.16)

Notice that in this context, "identity word" means a word which is reducible to
± 1 . From Lemma 3.1 we have that the number of words referred to in (3.16) is
the same as the number of admissible identity words in R, R" 1 , U, U~ι of length n,
and in which there appear the combinations R~1U and U~1R a total of j(n — m)
times. Consider then the generating function

G(z,λ)=YzkλnN(Kn) (3.17)
k,n

where N(k, n) is the number of admissible identity words of length k in R, R'1,
U and U~ι with the combinations U~1R and R~1U appearing a total of n times
[notice the change in notation for N(k, n) with respect to Sect. II]. The relation
between (3.17) and (3.16) is given by

ldzf

tr log O ~= - log /x2 + J — G(z\ λ) (3.18)

In the following we shall speak of identity words only, it being understood
that they are admissible. We shall also use the nomenclature of Section II, speaking
of monoblocks, multiblocks, l/R-words, etc., with the obvious generalizations to
include the new letters Ό~ι and R'1. The problem now is to keep track of the
number of times the combinations R~1U and U~1R appear in a word of a given
length.

In Section II, we found the generic monoblock by inserting multiblocks of a
certain kind inside a "basic" monoblock. These multiblocks were themselves
formed as products of monoblocks, so that the number of monoblocks of a given
length was expressed in terms of the number of shorter monoblocks. Moreover,
as the generic identity word is a product of monoblocks, the corresponding
generating function could then be expressed in terms of the corresponding mono-
block function. It is this process which we want to follow here again.

The generic identity word will here also be a product of monoblocks. However,
some monoblocks cannot appear side by side, i.e. one ending in R cannot be
followed by one starting with R'1. Also, the power of ( — ff is raised by one
whenever a word ending in R~1 (resp. U~ *) is followed by a word beginning by U
(resp. R). More precisely, a word which is the product of a word ending in R'1

contributing to N(ku nλ) and another starting with U which contributes to
N(k2, n2\ will itself contribute to N(k1+k2, ni+n2 +1).

We now introduce some notation: we associate indexes 1, 2, 3, 4 with K, R" 1 ,
U, Ό~ι respectively. Notice that we don't worry about minus signs as we know
that all words with fixed k, n contribute with the same overall sign which has
already been determined, giving (3.16). The generating function for monoblocks
starting with the letter corresponding to i and ending with the letter corresponding
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t o j ( l ^ i , j ^ 4 ) will be called fi}\

where N γ tj(k, ή) is the number of monoblocks starting with the letter correspond-
ing to ί and ending with the letter corresponding to j [we shall call them (i,j)-mono-
blocks, (i,;)-words and so on] of length k and with n combinations R~1U or U~1R.

Let us call F = (fiJ)1^iJ^4 the 4 x 4 matrix formed by the fijm The following
lemma generalizes Lemma 2.1:

Lemma 3.2.

0

(3.20)

/i

Proof (Sketch. For details see Ref. [6]). In three parts.
a) The vanishing of/13, / 1 4 , etc. is proved with the same method that was used

in Lemma 2.1.
b) By changing R with U one establishes a one-to-one correspondence between

different types of monoblocks that proves flί=fι 3, f22 = / 4 4 , fγ 2 =/34> h i =/43
Taking the inverse of a (1, l)-monoblock gives a (2,2)-monoblock, proving

/ll=/22

c) A one-to-one relation between (1,2)- and (2, l)-monoblocks is established
by reading a word from right to left instead of from left to right. This gives
Nι,ι2(K n) = Nlt2ι(k9n+ϊ) and consequently f2ι = λf12, completing the proof.

The following four lemmas generalize lemma 2.2 and may be proved with the
same technique used there.

Lemma 3.3. If Jί = Ri^γRif2R is a (1, \)-monoblock, then both 1VX and HT2 (which
are identity words) are products of monoblocks which cannot have as factors (1,1)-
or (2,2)-monoblocks. Moreover, Ψ"1 cannot have as factors (2, l)-monoblocks, and
ϋ^2 cannot have as factors (1, 2)-monoblocks.

Lemma 3.4. If Ji = RifrR~1 is a (l,2)-monoblock, the identity word iV cannot
contain as factors either (1,1)-, (2, 2)- or (2, l)-monoblocks.

Lemma 3.5. Let Jί = Rif^Rif^R be a (1, l)-monoblock such that ΊVγ -
where s/9 J*, and %> are identity words. That is, /W1 has a (i,2)-monoblock as a factor.
Then, the word & cannot have another (1,2)-monoblock as a factor.

Lemma 3.6. If Ji = RiTR~ι is a (l,2)-monoblock and Ψ = s#R®RΓX(€, where
stf, $, and <€ are identity words, then & cannot have a (1, 2)-monoblock as a factor.

Let us now go back to the generating function (3.17). Clearly,

N(k,n)=ΣNβ,n), (3.21)
j

where Nj(k, n) is the number of admissible 7-blocks, and therefore

G(z,λ)=ΣGj(z,λ), (3.22)
j
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where G7(z, λ) is the generating function for admissible j~blocks. Consider Gx(z, λ).
At first sight, one would be tempted to write N x(k, n) = ̂ N1Jj{k, ή) and hence

Gί = Σfij. Not all the monoblocks are admissible, however, as they must satisfy

the hypotheses of Lemma 3.1. That is, neither R and R" 1 nor U and U'1 can be
contiguous. Thus, f12, f2ϊ9 / 3 4 , and / 4 3 are not admissible, and Gx =tr(F).

Consider now G2. This time there are two types of restrictions: on the one
hand, the initial letter of the diblock restricts the choice for last letter. On the other
hand, not just any two monoblocks can be put side by side. We tackle the second
problem first. Consider then an (ι,/)-diblock. We want to find N2ij{k,ή). The
number of (ί,/)-diblocks we get is the number of ways we can multiply two mono-
blocks in such a way that the initial letter is /, the final letter j , the total length
comes out fc, and the total number of U~ 1R and R~1U combinations comes out n.
That is:

(3.23)

Certain monoblocks cannot be put side by side. For example, a (1, l)-monoblock
followed by a (2, l)-monoblock would mean a combination of RR'1, which is
forbidden. Notice also that a (i, 2)- [resp. a (ί, 4)-] monoblock followed by a (3,;)-
[resp. a (1, j)-~] monoblock means an additional R ~ί [/(resp. a U ~x R) combination,
a fact which is reflected in JV1>31 and Nlt2l entering (3.23) with n2 — l instead of
n2. If we now call G2iiJ{z, / )= £ zkλnN2Λj(k, n), we have, after multiplying (3.23)

k,n

by zkλn and summing over k and n

+ M
+ Mflj+f2j+ hi )

+ fiMij + f2j +Λj) (3.24)

A compact way of writing this is

G^iFTF^j, (3.25)

where F is defined by (3.20) and

(3.26)

Now for the problem of incompatibility of certain initial and final letters in
the words contributing to G2. If the initial letter is R~x (resp. U~x) the final letter

1

0

1

λ

0

1

1

1

1

λ

1

0

1

1

0

1
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cannot be R (resp. U). If the initial letter is R or U the final letter cannot be either
R1 or U~\ Thus

+ ̂ 2,33

2,44+ ^2,41+^2,42

If we introduce

1 0 1 1

0 1 0 1

1 1 1 0

0 1 0 1

then Equation (3.27) can be written, using (3.25), as

Ω =

(3.27)

(3.28)

Here and in what follows we adopt the convention of summing over
indices.

The reasoning leading to (3.29) leads also to

and

giving finally

(3.29)

repeated

(3.30)

(3.31)

(3.32)

This expresses then the generating function (3.17) in terms of the generating
functions for monoblocks. We now turn our attention to them.

Let us call flx=f and fi2 = g. Consider / first. It is the generating function
for (1, l)-monoblocks, whose general form is Ji= RΨγRΨ2R, where ϋr

1 and 1V2

are identity words subject to the restrictions imposed by Lemmas 3.3 and 3.5.
Notice now the following: suppose ifx=^R^R~ 1(<ί and H^2=Q) where si, ^ , #,
and 2 are identity words. Then, Ji= RsiR^R~ic£RQ>R. This same monoblock
can be formed by taking Wx=si and Uf2=$R~lc€R3). Since we need a unique
way of forming a monoblock, we shall exclude words 1V2 which have a (2,1)-
monoblock as a factor. In view of Lemma 3.3, this means that only (ΐ,^-mono-
blocks with ij= 3,4 are allowed as factors of iV2. The number of (1, l)-monoblocks
Nltίl(k, ή) is then the product of the number of /Wι and W2 words which satisfy the
restrictions imposed by compatibility, the Lemmas 3.3 and 3.5 and the one just
imposed on #~2, and such that the total length is k and the number of U'^^R and
R~ιU combinations is n. Let us call Jf\j{ku n^ the number of (ϊ,/(-identity words
of length /q and with nγ U~ιR and R~iU combinations which satisfy the restric-
tions imposed in 1VX, and ̂ Vfj(k2,n2) the corresponding number of (ί,j)-identity
words satisfying the restrictions imposed on W2. We have then

N (k,ή)= Y Jίγ(k ,n )j\r2{k — 3, n ) (3.33)
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where

K nx -1), (3.34)

^ 2 ( / c 2 , n2) = Λi 3 (k 2 , n2) + Λi 4 (*2, n2 - 1 )

+ Λ l 3 (* 2 , n2) + Λ ^ f e w2 - 1 ) (3.35)

We see that Jί\{ and Jί\2 do not contribute to Jf1, since ^ cannot begin or end
with R'1. Neither does Jf\x contribute, as ΊV^ cannot have as factors monoblocks
ending with R (more precisely, it cannot have (1,1)- or (2, l)-monoblocks as factors.
But we have already seen in Lemma 3.2 that there are no (3,1)- or (4,l)-monoblocks).
The structure of (3.35) reflects the fact that only (f/)-monoblocks with ij=3,4
contribute in if2.

Let us take jVjj{k, n). It is the number of admissible identity (i,/)-words satisfy-
ing the restriction imposed on iΓx. If we call Jf)Λβί, n) the corresponding number
of /-blocks, we have

J^lβ,n) = Σ^liβ>n)' (3-36)
e

The multiblocks contributing to Jf)Vj are formed by multiplying (ι/)-monoblocks
with ij= 3,4 and also (1,2)-monoblocks. Not all the (1,2)-monoblocks contribute,
however. They are restricted by Lemma 3.5. We have then

^\,ij = Nuij for iJ=3A (3.37)

but

^ l , i 2 + ̂ Vi,i2, (3-38)

and

^ i f 0 = 0 otherwise. (3.39)

Let us call h the generating function for (1,2)-monoblocks contributing to iVγ:

h(z,λ)=Σzkλn^\Λ2(Kn). (3.40)
k,n

At this point we need some more notation, so we make the following definitions:

Aa(z, λ)=Σ Jf\k, n)zkλn, a = 1, 2, (3.41)
k,n

,4f/U)=E^'»)A"' ( 3 4 2 )
k,n

Ali& λ)= Σ ^hβ> n)zkλ" • (3-43)
k,n

In particular, A\ Λ2 = h and A\ , i j =/ i i / for ij=3,4. All other A\ ^vanish. Consider
now Jί\Λj{k, n). From what has been said before we have

, n2 -\) + Jί\Aβ2, «2)] . (3.44)
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Notice the similarity with (3.23). In fact, it is that same equation plus the restrictions
imposed on the monoblocks making up iVv Multiplying by zkλn and summing
over k and n we get

+ A\.i3( A\ΛJ+ A\t3J )

+ A\M(λA\ΛJ +A\Aj) (3.45)

which is similar to (3.24). A relation analogous to (3.25) can be obtained if we
introduce

ίθ h 0 0\
0 0 0 0 ,

(3.46)
0 0 / 3 3 / 3 4 '
0 0 / 4 3

FOy ί̂,;,,
In this case,

Alu=(FTF)ij, (3-47)

with T given by (3.26). Clearly now, A)Λj=Aι

eip(T)pqA)qj and consequently

χ . (3.48)

Notice that A}til = Ajt2i=0, l ^ i ^ 4 .
If we multiply (3.34) by zklλ"' and sum, we shall have

Aι

43 + Λ4 4 (3.49)

Using (3.36) we have A1

pq = ^ A)v(ί> where A\pq = \ is the contribution of the

empty word, which is not forbidden by the restrictions imposed on iVv Introducing
here (3.48) and then the result into (3.49) we get

F'T)-1)^. (3.50)

We have now A1. Next, we get A2. From (3.35) we have

A2 = Ai3 + λAl4 + Al3 + λAl4. (3.51)

Since (3.36) also holds for Jί2, we again have A2

i}f = £ A]Λj, Computing A] i}F is
e

now simpler, as i,j=3,4 and the only rule to be remembered is that U and U~ι

cannot be neighbors. In fact, since A2 is obtained from A1 just by forbidding the
(l,2)-monoblocks, it is enough to put h = 0 in (3.50) to get A2. Explicitly,

X2 = (Γ(1-F"Γ)- 1 ) 1 1 , (3.52)

where

(3.53)

/°
0

F" =

ΓV

0

0

0

0

0

0

f33

°\
0

/34

fj
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Note that also here there is a contribution from the empty word.
Finally, from (3.33) we have

f(z9λ) = z3A\z9λ)A2(z,λ). (3.54)

This gives an equation for/in terms of g and ft. We now look for similar equations
for g and for ft.

Now, g is the generating function for (1, 2)-monoblocks, whose general form
is Jt — RiΓR ~ \ where W is an identity word subject to the restriction of Lemmas
3.4 and 3.6. Notice that these are the same restrictions that were imposed on ΨΊ
when finding the generating function /. The only difference is that this time
there is no additional U~1R combination when ΊV ends with Ϊ/~Λ Formula (3.34)
holds then with the difference that instead of the terms Jf\Jfc n — 1) there are
terms jVj^k, w). The reasoning that led to (3.49) now leads to

) (3.55)

which may be written as

2 (3.56)

Notice that here there is no contribution from the empty word as (Γ) 1 2 = 0.
# " = 1 would mean J% = RR~1, which is forbidden.

Finally, we find ft. It is the generating function for monoblocks RWR~l

where iV has all the restrictions that applied when finding g plus the additional
one of not having (1,2)-monoblocks as factors. We see that ft is related to g in the
same way as A2 was related to A1. We got from A1 to A2 by letting F'-*F". It is
very easy to see that this is also the step that must be taken to go from g to ft.
Consequently,

ft = z 2 ( Γ ( i - F " Γ ) - 1 ) 1 2 . (3.57)

As was the case for g, the empty word does not contribute.
Since F" is essentially a 2 x 2 matrix, it is easy to compute ft as well as A2. The

results are

z ( 1 5 8 )
(l-f)2-λg2

Λ2_ - J ' λf-λf +2λa , - g
— /1 /"\2 i 2 * \->.*jy)

The computation of g and .41 is much more tedious as it involves the inversion
of a 4 x 4 matrix. The procedure, however, is straightforward and one obtains

2^2 f , 2 /• ̂ 2\2

~ J }

 Σ , (3.60)
((l-/)2-V)2-22^2/-2/:

^2

((l-f)2-λg2)2-z2λ(2f-2f2

(3.61)

To obtain the last two expressions we have made use of (3.58) and (3.59).
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This expression for g can be considerably simplified. This is achieved by
noticing that, if we define the determinant

= det

1-/ h λh h

1 O i l

f+λg f+g ί-f g

Kf + 9) f + λg λg 1-/

(3.62)

then

^

(3.63)

(3.64)

(3.65)
12,12

where Dab denotes the minor obtained by deleting the αth row and the bih column,
and Dabcd denotes the minor obtained by deleting rows a, b, and columns c, d.
Using now the identity

DlίD22-Dί2D12 =

we obtain

fh + zh = zg

which, upon substitution of (3.58) and (3.59) leads to

(3.66)

(3.67)

(3.68)

We have then two algebraic equations, (3.60) and (3.68), in two unknowns,
/ a n d g, the monoblock generating functions. Insertion of the solution to this set
of equations in (3.32) gives the generating function in terms of which the partition
function is given by (3.18). The equations, however, are complicated enough so
that an explicit solution to them has not yet been found. The expression for G
in terms of / and g can be given, after the matrix inverse to (1 — TF) has been
found. The result is

G=NA~\

where

(3.69)

+ 2λ2(λ2 -2λ+13)g3 -4λ\λ-4)g\

A = [_(!+ λg)2 - λf2~\ [{2f+λg -1)2 - λ(f + 2#)2

(3.70)

(3.71)
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It is also possible to find the first several terms of the series expansions for /
and g by solving (3.60) and (3.68) iteratively. This gives

...}, (3.71)

g = z5 {2 + 2z2(2 + λ) + z3(6 + 4λ) + z4(6 + U + 2λ2)

+ z5(20 + 382 + 4A2) + ...}. (3.72)

In (3.71) the coefficient of z9 does not vanish, but we have not computed it. The
coefficients of z, z2, z4, and z7 do vanish however. Substitution of (3.71) and (3.72)
into (3.69) then gives

+ z12(392 + 1056Λ + ΊΊOλ2 +156/13)

+ .. . . (3.73)

The coefficients in (3.73) have been checked by computing directly the trace
of the relevant power of ( - fS ® a + x T ~1 (x) b + x T <g) c).

IV. Concluding Remarks

We have constructed a lattice which is homogeneous under the modular group
of fractional linear transformations Γ. This was done by taking a point on the
upper half of the complex plane, acting on it with Γ to obtain an infinite set of
points, and drawing bonds between every point and its nearest neighbors. The
result was a cactus lattice with hexagonal leaves joined along bonds (not by the
vertices).

The generating function for close-packed dimer configurations on this lattice
was computed by the Pfaffian method. For this it was necessary to orient the
lattice, thus breaking its symmetry. Invariance under a group was restored by
considering SL(2, Z), which is related to Γ through ΓπSL(2, Z)/{± !}. This idea
may be used also to recover the generating function for dimers on a finite toroidal
lattice [6] first found by Kasteleyn [9]. There, one has to orient the toroidal
lattice, which is invariant under Z/NZxΈ/MΈ. The orientation breaks the
symmetry but one recovers it by going to a larger group like Έ/2NZxZ/MΈ.
The advantage of having symmetry under a group lies in the fact that it is then
possible to express the operator whose determinant gives the generating function
in terms of the regular representation of certain elements of the group. A renormali-
zation of the trace allowed then to compute the generating function directly in
the thermodynamic limit, without the intermediate step of computing it first for a
finite lattice and taking the limit afterwards. The logarithm of the generating
function was then developed in a power series whose coefficients were the number
of a certain class of words reucible to the identity. They were found by solving the
problem of counting the number of words of a fixed length in the generators of a
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group which is the free product of two cyclic groups. The series converges for

- < j , and for - = — \ there is a singularity.

One may envisage two further problems that may be attacked with the ap-
proach given here. One is the dimer problem on lattices homogeneous under the
triangle groups, whose presentation is [5] (A, B;An, Bm, (AB)P}. The question
of counting the number of words reducible to the identity, however, is likely to
become extremely involved. The other is the dimer problem on finite lattices
homogeneous under the finite group Γ/Γp, where Γp is the principal congruence
subgroup of level p. These lattices however are embedded on surfaces whose
genus g grows as the lattice grows. Since we need 4β Pfaffians for the calculation
of the dimer generating function of such a lattice, this will be a serious difficulty.

Finally, an Ising model was constructed on the original lattice. Evaluation
of the partition function was reduced to a dimer problem on an associated lattice
following the general prescription of Fisher. The procedure was the same as for
the simpler lattice of Section II, although the details were considerably more
involved, especially the evaluation of the coefficients of the series development
for the free energy. This function was then given as a rational function of the
solutions of a system of two algebraic equations. A preliminary study of the
series expansion (3.73) seems to indicate that this free energy is analytic for \z\<?.
We hope to come back to this point in a future paper.
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