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Global Properties of Radial Wave Functions
in Schwarzschild's Space-Time

II. The Irregular Singular Point

S. Per sides

University of Thessaloniki, Thessaloniki, Greece

Abstract. Two solutions ^5(x, xs) and ^?6(x, xs) related to the irregular singular
point at x = + oo of the radial wave equation in Schwarzschild's space-time
are studied as functions of the independent variable x and the parameter xs.
Analytic continuations of ^5 and &6 are derived and their relation to the
flat-space case solutions is established. Explicit expressions for ^3(x, xs)
and ^?4(x, xs) (the solutions about the regular singular point at x = xs) are
given. From these expressions and the analytic continuations of &5 and ̂ 6

the coefficients relating linearly ̂ 5 and &6 with ̂  (z = 1,2, 3,4) are calculated.

1. Introduction

The behavior of weak fields (scalar, electromagnetic or gravitational) around
a Schwarzschild black hole is governed by a linear partial differential equation
of second order. After separation of the angular variables and the time the resulting
linear ordinary second order differential equation has two regular singular
points at x = 0 and x = xs and one irregular singular point at x = + oo. The solutions
of this differential equation cannot be expressed in terms of any known function
of mathematical physics and very few properties of them are known. Thus numerical
analysis is introduced sooner or later in the study of wave phenomena around
black holes. This situation has been presented in more detail in a previous paper
[1], which hereafter will be refered to as paper I. The objectives set in that paper
can be described briefly as follows:

(a) Find analytic continuations of the six solutions ^?, (i= 1,..., 6) defined by
their expansions at the singular points x = 0, x = xs, and x= +00.

(b) Relate the solutions 0t{ of the curved-space case to the solutions of the
flat-space case (the spherical Bessel functions).

(c) Determine the analytic expressions of the coefficients ^fj (xs) which relate
linearly any three of the solutions ̂ .

In paper I we examined four solutions ^t(i = l92, 3,4) defined by their con-
verging power series expansions about the regular singular points x=Q and x = xs.



230 S. Persides

We gave analytic continuations outside the original circles of convergence, we
proved that xl

sffli(ί=l,2, 3,4) becomes proportional to 7z(xs) when xs-^0 and we
derived explicit expressions for Kij(ίJ=l,2, 3,4). In this paper we examine two
more solutions &5(x, xs) and ^26(x, xs) defined by their asymptotic power series
expansions as x-» + oo. The objectives are the same as for 0t^ &2 > ^3> and ^U
We are interested in analytic continuations of ̂ 5 and ̂ 6 away from x= H-oo,
relations with the flat-space solutions and most important for the coefficients
Ktj{xs). Since we have only asymptotic expansions for &5 and ^?6, we have to
follow a method slightly different from the method followed for ^?15 ^2? ^3>
and ̂ 4 in paper I. Some results are easier to get, some more difficult. In Section 2
we find analytic continuations for &5 and ^6 in the form of power series of xs

and prove that in the limit xs->0 &5 and ̂ 6 reduce to h\1}(x) and fc|2)(x) respectively.
In Section 3 we derive expressions for the functions Xn(y) defined in paper I.
Using these expressions and the expansions of ^5 and &6 in powers of xs we
calculate in Section 4 the quantities Xf/xJ. In Section 5 we present a few general
remarks.

Throughout this paper it is assumed that the reader is familiar with the notation,
the methods and the results of paper I. To avoid repetitions of formulas we
frequently refer to equations of that paper writing the letter I in front of the
number of the equation, e.g. (1.34) means the Equation (34) of paper I. The references
given at the end of this paper should be supplemented by those of paper I, if a
more complete study is sought.

2. The Solutions at x = + oo

To study the solutions of the differential Equation (1. 11) near x= +00 we follow
the F-description. If we set

(1)

and

with ^(x, xs) = «^Γ

5*(x, xs), the function J^5(x, xj satisfies the differential Equation
(1.13). Both (1.11) and (1.13) have an irregular singular point at x= + oo. From (1.13)
we can establish for έF5 the asymptotic expansion

with τ0 = 1 and

(l-n + l}τn_1+(n-l)2xsτn_2=Q. (4)

From the recurrence relation (4) we observe that the highest power of xs in the
coefficients of x"1 and x~2 is x£, in the coefficients of x~ 3 and x~4 is xs, and so on.
This is an indication that the following is true: If we expand J^5(x, xs) in powers
of xs, then the coefficient of x° starts with a power x~ 1, the coefficient of xs starts
with a power of x~3 and in general the coefficient of x" starts with a power of
x"2""1. To prove this and other properties rigorously we express ^"5(x, xs) as
a contour integral.
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Let G(w, xs) be the solution of the differential Equation [2]

w(w + 20 d2G/dw2 + (xsw
2 + 2w + 2ΐ) dG/dw + [xsw - /(/ + 1)] G = 0 , (5)

which for |w| <2 is given by the absolutely convergent power series

G(w,x s )=ΣflfX (6)
n

with g0 = l and

l)x s f l f I I _ 2 = 0. (7)

If C is a contour in the complex w-plane surrounding clockwise the negative
real axis, then

^5(x, xs) = ((-i)l/2π) j G(w, x j lnw e^dw (8)
c

for every finite x with Re x > 0.
The series (6) and its derivative with respect to w satisfy the requirements

of Theorem Al of paper I. Consequently they converge uniformly with respect
to xs in some neighborhood of w = 0. Since gn is an entire function of xs, G(w, xs)
and dG(w, xs)/dw are entire functions of xs in some neighborhood of w = 0. This
property combined with the theorem of Section 2.2 of paper I implies that G(w, xs)
is an entire function of xs for every finite w φ — 2L Thus we can set

w)X"s (9)

into (8) and obtain

^5(x,xs)=ΣZn(χ}χ" (10)
n

with

Zn(x) = (( - i)l/2π) J Gn(w) In w e™dw . (11)
c

Expressions (10) and (11) hold for any xs. Hence «^5(x, xs) is an entire function
of xs for every x with Rex>0. Expression (10) is an analytic continuation of
^5(x, xs) away from x= + oo. Adding an asterisk toZπ(x) we obtain an analytic
continuation for έF6(x, xs). If we multiply by the appropriate factor

we have analytic continuations of ̂  and 0^ for all xΦx s with Rex>0.
The asymptotic expansion (3) can be obtained also from (6) and (8). To find

the asymptotic behavior of Zπ(x) as x— > + oo we need to know only the asymptotic
behavior of Gw(w) as w->0. From (5) and (9) we conclude that the sequence GM(w)
(n = 0, 1, ...) satisfies the differential equations

(12)
Furthermore, since from (6) and (7)

G(0,xs)=l , rfG(w,xs)/dwUo= -(ί/2)/(/+l), (13)
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we have from (9)

G0(0)=l, dG0(w)/dw\w=Q=

Gπ(0) = 0, dGn(w)/*v|w=0==0 for

The differential Equation (12) and the conditions (14) determine uniquely the
sequence Gn(w) as given by the formulas

G0(w) - Pz(l - iw) , G ΛW) = i(iw/2 + In 1 1 - iw/2|)Pz(l - iw) (15)

and for rc > 0
w

GΛ(w) - iPz(l - iw) j wβz(l - iw) (d/dw) (wGn_ J dw
0

w

- iβz(l - iw) f wPz(l - iw) (d/dw) (wGn_ Jdw . (16)
o

From (15) and (16) we can prove by induction (as in Theorem B3 of paper I)
that as w— »0 we have for n>0

Gn(w) = ζ'nw
2n + o(w2n+1lnnw) , dGn(w)/dw = 2nζf

nw
2n~ l + o(w2nln"w) (17)

with

Cn = ίn(2n)l/24n(n\)3 . (18)

Thus the integral (11) can be evaluated [3] to give

ZΛ(x) = ζ l fx"2"-1 + o(χ-2"-1) (19)

with

(20)

Hence Zn(x) starts with a power x"2""1 asx^ + oo.
Substituting (10) into (1.13) we find that the sequence Zn(x) satisfies the dif-

ferential equations (n = 0, 1, ...)

x2(d2Zn/dx2) + (2ix2 + 2x) (dZJdx) + [2ix - /(/ + 1)]ZB

= x(d2Zn_ Jdx2) + (dZn, ,/dx) . (21)

For w = 0 we have a homogeneous differential equation with solutions

Z(1\x) = ZQ(x) and Z(2)(x)-β~2ίxZg(x) , (22)

where

\(l-m)\)χ-~m-1 . (23)
m = 0

Combining (1), (2), (10) and (22) we have

liπao«5(x,xs) = Λi1)(x) and Hm*6(x,x s) = Λ}2)(x). (24)

These equations relate the curved-space solutions ^5 and J>6 to the flat-space
solutions h\1} and h(2} as given by (1.8) and (1.9).
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For n > 0 we can express Zn in terms of the integral recurrence relation

Zn(x)=-(i/2)Z0 J ZgJ
dx }

+ (i/2)e~2ίxZ$ J e2ίXZo~Γ (χd~j}d*> (25)

where the limits of integration have been fixed by the requirement that Zn(x)
behaves according to (19) as x-» + oo. From (25) we can prove by induction
that ZM(x) can be fully expanded into an asymptotic power series of x"1 term
by term differentiable. Furthermore expression (25) can be used to evaluate
(numerically for n>0) the coefficients Zn(x) in (10) in order to obtain an expansion
of J^5(x, xs) in powers of xs at an arbitrary point x. Such a series can be used in
the evaluation of Kij(xs) as in Section 4.

3. Explicit Expressions for J>3 and ̂ 4

To calculate the remaining Ktj as functions of xs we work along the same lines
as in Section 6 of paper I. However, a difficulty arises immediately. To calculate,
e.g., K35(xs) we attempt to use the expansions (1.72) and (10), but the coefficients
Xn(y) and ZΛ(x) depend on different variables and the method does not work.
Thus we have to expand both J^"3(x, xs) and ^5(x, xs) in powers of xs or a more
complicated series of functions of xs with coefficients depending on the same
variable x or y. In this section we will establish such an expansion for J^3(x, xs)
with coefficients depending on x only.

To derive such an expansion for ^(x, xs) the asymptotic properties of Xn(y)
presented in Theorem B5 of paper I are not sufficient. We need a full and explicit
expression for Xn(y). This is given by the following theorem, where p'r and q'r are
defined by the expansions (I.B7) and (I.B8) written as

-', (20)

β,(l-2y)=£ί'rjΓI~ r~1 for y>ί. (27)
r

Theorem. Under the assumptions of Theorem B5 of paper /, we have for πg O and
1 <y < + 00 the absolutely convergent series

My yl+n-r (28)
r s

with

^OrO=(- l )Vr 9 ^Ors = 0 far

(29}
,

ln = 0 for s > l ,
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and for n^.2

Anrs = X 4i(q'r _ βnts -p'r-t CMίs) , (30)

Bnts= Σ Σ ('-' + «+!)?;- A- 1..̂ .-^-^^^"*1, (31)

-ι.BA-1-ί.M-cΛ°^, (32)

-.A-ι..Λl+»-t.,,o, (33)

A-ι.«A-ι- ί,Bo. (34)
Γ(-l) s~ ίs!/(r+l) s" f + 1ί! /or rφ-1

D r s ί=|(s+l)~ 1 /or r=-l and ί = s+l (35)

lθ otherwise . \

Proof. For 77 — 0 and n = l we derive expression (28) with coefficients given by (29)
from the explicit formulas (I.B47) and (I.B48). From (I.B49) we can prove that
as y— »1

**(y) = tf[(y-l)lnb-l|] for n>0, (36)

which is a stronger version of (I.B57). Using (36) we find from (I.B49) after factorial
integration for n§;2

Xn(y) = 4iQι } yXn- May) (yP,) dy-4iP, ] xXn_ .(d/dy) (yQ,) dy . (37)
1 1

(Note that the second integral in (37) diverges when n=l.) Let now (28) be true
for 0, 1, ..., n— 1. Substituting into (37) the expression for Xn-ι(y) from (28) and
Pb Qb (d/dy (yPt\ (d/dy) (yQ^ from (26) and (27) we arrive after some calculations
to expression (28) for Xn(y) with Anrs defined by the relations (30)-(35). The con-
stants Drst have been introduced through the relation

}yr\nsydy= 2>,si/
+1 Wy-Drs0 (38)

1 ί

for r and s integers and 5^0. The absolute convergence of (28) is a consequence
of the fact that the calculations involve only multiplications and integrations
of absolutely convergent series. Note that although for convenience the sums
in (26) to (35) have been taken with infinite number of terms, many of them contain
only a finite number of terms, because the higher order terms are identically zero.
Thus, e.g., it can be proved by induction that

Anrs = 0 for s>n or s>r. (39)

We are ready now to expand J^3(x, xs) in a series of functions of xs with coef-
ficients depending on x. Combining (1.72) and (28) we have

x^3(x, xs)= Σ (Xn(yW+H) x'+"= Σ Σ Σ A^+'-Wy*, . (40)
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t^ln^xΛ^x, (41)
ί = 0

and (40) becomes

,«x'+<l~rlnί~ί* *;ln'*.. (42)
n r s ί

where

_Mπr,(-l)'s!/ί!(s-ί)! for O^tgsl
" r a~lθ otherwise. j ( '

Finally with A, defined by (1.28) we have

( - l)U,x^3(x, xs) = Σ Σ rrt(*K ln'xs , (44)
r t

where

nr^ I + I I" rln s" ίx. (45)

Expression (44) gives the desired expansion for ^(x, xs) and (45) defines the
coefficients ί^(x). Both (44) and (45) will be used in Section 4 to calculate X//xs).

To find the behavior of Yrt(x) as x-> + oo we substitute (44) into (1.13) and
find for Yrt(x) the differential equation

x2 d2 YJdx2 + (2ίx2 + 2x) dYJdx + [2ix - 1(1 + 1)] Yrt

= xd2Yr_ΐίt/dx2+dY^ίίt/dx. (46)

Because of (39) and (43) we have from (45)

Yrt(x) = Q for r<ί. (47)

Thus Ytt satisfies a homogeneous differential equation, which has Z(l\x) and
Z(2\x) as two linearly independent solutions. Hence for r>t we have

(48)

where the lower limits of integration x'rt and x"f must be determined so that the
values of l f̂ and dYrt/dx at a fixed point are the same if calculated from (45) or
(48). The usefulness of (48) lies in the fact that independently of x'rt and x^ we can
show that for r ̂  ί we have as x-^ + oo

) = 0(x~1ln r

(49)
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For r = t the above relations are obvious since Ytt(x) is a linear combination
of Z(1)(x) and Z(2)(x). If (49) holds for Y r _ l ϊ t (x) then using (23) and (48) we can
prove easily that (49) is true for Yrt(x). The order relations (49) will be used in the
next section to simplify the expressions for K0 (xs).

4. The Quantities Ku(xs)

The main objective of this work is the determination of explicit expressions
for J£i/xs). This is so because the quantities Ktj(x^ relate through (1.18) any three
solutions of the differential Equation (1. 11) and appear in physical problems
concerning the behavior of waves near and far from the black hole.

In flat space-time the constants corresponding to Ktj are simple and can be
easily calculated from relations similar to (1.17). In curved space-time only K12,
X34 as given by (1.90) and K56 = —2ί have simple expressions. The remaining K{j

do not appear to have simple expressions. J£13, K14, K23, and K24 have been
given in paper I in terms of power series of xs [see expressions (1.95), (1.104),
(1.116), and (1.117)]. The expressions which will be given in this section for the
remaining Ktj(x^ are even more complicated, since they contain infinite sums
of combinations of powers of xs and In xs.

To evaluate K36(xs) we use (1.65) and (2). We have

X36(xs) = X(χ - χs) ( 3̂ d^/dx - 3t% d&s/dx)

= x(x - xs}e ~ iXs(^ d^f/dx - ^f d^/dx - 2ix(x -x5Γ
l ^^* . (50)

Substituting the expansions (10) and (44) into (50) we find after a few calculations
that

K36(xs) = (-l)lAΓ V"*' Σ Σ « ln"xs (51)
n m

with

ξnm= Σ (*2Ysm dZ^Jdx - X2(dYJdx)Z*_ s)

dx)Z*_s_1-2/x27smZ^s). (52)

Because of (47) the summation starts essentially from s = m. Hence

ξnm = Q for n<m. (53)

Since K36(xs) is independent of x, each coefficient ξnm is independent of x, namely
a constant number. This can be verified by direct differentiation of (52) with
respect to x and use of (21) and (46). One method to find the numerical value
of ξnm is to calculate each term in (52) at an arbitrary point from (25) and (45).
Another method is based on a simplified expression for ξnm. From the asymptotic
behavior of Zn(x) and Yrt(x) as given by (19) and (49) we find easily that

ξnm = χ lirn^ (x2 Ynm dZ*/dx -x2d Ynm/dx - 2ix2 YnmZ$) . (54)

Using (23) and (47) we can reduce (54) after some calculations to

' (55)

This equation suggests another method for evaluating ξnm.
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For K45(xs) we follow the same procedure. Since ^4 = ̂ f and &$=#£ we
have K45 = K%6 and from (51)

where £*m are the complex conjugates of ξnm. K45(xs) is the most important of Kip

since it appears in the definition of the interior solution [4].
To calculate K35(xs] we use (1.65), (1), (10), and (44). We find

• Σ Σ Σ (γsm dZn_Jdx-Zn_s dYJdx)xl lnmxs . (57)
n m s

To expand the factor exp [2ί(x + xs In \x — xs|] in powers of xs we use the relation [5]

lnm(l - xjx) - m ! Σ (( ~ l)nS!Γ% }χn) x« , (58)

where S(™} are the Stirling numbers of the first kind (by definition S(™} = Q for
n<m). We have

e2ixs in\x-Xs\ = e2ίXsinX ^ (2z)m(m !)' ̂  lnw(l - xs/x) (59)
m

and after a few calculations

x(x-xs)e2ί<*+*sln I* -**!>= Σ Vn(x)xn

s , (60)

where
r — i^-ί-sπ/V4"5

7 V ; ΓC(5) i _ f _ c W ( s ) -I.2ΪΛ; ί + s-n+2
X .

(61)
Substituting into (57) we obtain

K35(x} = (- l)Uf ^Γ'e''*' Σ Σ ^«m^ lnraxs (62)
n m

with

&»= ΣΣ K-,(^^_s/^-zr_srfysm/dχ) . (63)
r s

Because of (47) the summation starts with the s = m term. Since T^_ r=0 for π<r
and Z r_ s = 0 for r<s, we conclude that

£M = 0 for ^7<m. (64)

The coefficients ξ'nm are independent of x and can be obtained from (63) with
the functions Ysm(x), Zr_s(x), Vn_r(x) and their derivatives evaluated at an arbitrary
point x.

To determine the behavior of K35, K36, X45, and K46 near xs = 0 we observe
that, since ξnm = ξ'nm = Q for n<m we have from (51) and (62) that as xs->0

(65)

and

" " " (66)
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From (43) and (45) we find after some calculations that

r00M = e-^M, (67)

which could also be obtained by taking the limit of (44) as xs-+ΰ. From (61) we
find

V0(x) = x2e2ix (68)

The sums (52) and (63) have only the r = s = Q terms which give

£00= -ΐ and <foo = i (69)

Thus we obtain from (65) and (66) as xs-»0

K35(xs) = KUχ

s) = ((- WM [l + o(l)] (70)

and

K36(xs) = K*45(
χ

s} = (( - iy + 1 i/Aώ) [1 + o(l)] . (71)

Following the same procedure we can determine analytically ξίί and ξ'ίί namely
the coefficients of xs lnxs in the expansions (51) and (62). For higher order terms,
however, the coefficients ξnm and ξ'nm can be calculated only numerically through
a computer.

The remaining Kij9 namely K15, K16, K25, K26 can be calculated using the
methods followed up to now for K35, K36, K45, and K46. This procedure requires
the expansion of ^(x, x<) and έF2(x, χ

s} in forms similar to (44). To avoid the
complicated calculations and results associated with this method and since
Ki5, K16, K25, and K26 are not of much interest in physical problems, we will
content ourselves with indirect expressions. Since the quantities Ktj satisfy the
relations [2]

j^Q (72)

we have using K34(xs) from (1.90)

Ktj=(i/2^K3iK4J^K4iK3j) . (73)

This relation for i=l ,2 andj = 5, 6 expresses Kίs, K16,K25, and K26 in terms
of Ktj already calculated. Obviously Kί5, K16, K25, and K26 as functions of xs

are of the same form as K35, K36, K45, and K46, namely infinite sums of terms
oftheformx^ln m x s .

5. General Remarks

With the results presented in this paper we complete a step towards a better
understanding of the solutions of the radial wave equation in Schwarzschild's
space-time. Since the questions set in the introduction arise in the studies of
weak fields around black holes, it is expected that the answers given will be useful
in establishing rigorously certain properties in black hole physics which up to
now have been supported by numerical calculations only. In a future paper we
will examine the effect of our results on the physically interesting solutions of the
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radial wave equation, namely the interior and exterior solutions. Applications
on the "baldness" property and the stability problem of a Kerr black hole can
also be considered.

It seems that the analytic continuations given for St{, the relations of &t{ to
the spherical Bessel or Hankel functions and the expressions derived for Ktj are
all the informations we can get by analytical methods. Further progress is quite
probably possible only through numerical analysis.
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