

© by Springer-Verlag 1976

## **Dilations of Dynamical Semi-Groups**

D. E. Evans and J. T. Lewis

School of Theoretical Physics, Dublin Institute for Advanced Studies, Dublin 4, Ireland

**Abstract.** We prove the existence of isometric and unitary dilations of a class of semi-groups of completely positive maps on an algebra of operators on a Hilbert space. The result has relevance to the problem of embedding an open quantum mechanical system in a closed one.

## § 1. Introduction

Empirical semi-group laws for the irreversible evolution of the state of a quantum mechanical system have been remarkably successful in a variety of applications [1, 2, 8, 14]. This has encouraged some workers to propose axioms for dynamical semi-groups [10, 12, 7]. From the point of view of fundamental theory such semi-groups are by themselves unsatisfactory: the conventional position is that the laws of quantum theory prescribe the time-reversible evolution of a closed system, and irreversible behaviour enters only when the evolution is restricted to an open sub-system. The time-reversible evolution of a closed system is described by a strongly-continuous one-parameter group of unitary operators on a Hilbert space. The question then arises: is a given irreversible dynamical semi-group the restriction to an open subsystem of a time-reversible evolution of a closed system? The purpose of this paper is to formulate this question mathematically and to answer it in the affirmative for a class of dynamical semi-groups which have interesting applications.

From the mathematical point of view we prove results for semi-groups of completely positive normal maps of  $W^*$ -algebras which are analogues of Szökefalvi-Nagy's dilation theorem [17] for semi-groups of contractions on Hilbert spaces and Stroescu's dilation theorem [16] for semi-groups of contractions on Banach spaces. Some results in this direction were obtained by Davies [5]; his proof was based on his theory [4] of quantum jump processes. We adopt his construction of a semi-group of isometries but our proof uses only the perturbation theory of semi-groups on a Banach space.

## § 2. Dilations of Dynamical Semi-Groups

A dynamical semi-group on a  $W^*$ -algebra M is a semi-group  $\{T_t: t \ge 0\}$  of completely positive normal maps of M into itself such that:

(i) 
$$T_0 = i_M$$
, (ii)  $T_t(1) = 1$  for all  $t \ge 0$ .

A dynamical semi-group is said to be weakly continuous if  $\lim_{t\to 0_+} \langle T_t m, \varphi \rangle =$ 

 $\langle m, \varphi \rangle$  for all m in M and all  $\varphi$  in the pre-dual  $M_*$  of M; if  $T_t$  is weakly continuous then the pre-adjoint semi-group  ${}_*T_t$ , defined on  $M_*$ , is strongly continuous and hence has a densely-defined generator (Yosida [18], p. 233). (Whenever  $A: M \to M$  is  $\sigma(M, M_*)$ -continuous we denote by  ${}_*A: M_* \to M_*$  its pre-adjoint, defined by  $\langle Am, \varphi \rangle = \langle m, {}_*A\varphi \rangle$  for all m in M and  $\varphi$  in  $M_*$ .) A dyanmical semi-group  $T_t$  is said to be norm-continuous if  $\lim_{t \to 0} \|T_t - 1\| = 0$  in which case  $T_t$  itself has a

 $\sigma(M, M_*)$ -continuous bounded generator L so that  $T_t = e^{tL}$ . Lindblad [12] has shown that the generator L of a norm-continuous dynamical semi-group  $T_t$  on the algebra  $\mathcal{B}(\mathcal{K})$  of all bounded operators on a separable Hilbert space  $\mathcal{K}$  can be put in the form

$$L(m) = i[H, m] + V(m) - \frac{1}{2}\{V(1), m\}$$
(2.1)

for all m in  $\mathcal{B}(\mathcal{K})$ . Here H is a bounded self-adjoint operator on  $\mathcal{K}$  and  $V:\mathcal{B}(\mathcal{K}) \to \mathcal{B}(\mathcal{K})$  is a completely positive normal map so that, by Kraus [11], there exist bounded operators  $A_i$ ,  $i=1,2,\ldots$  on  $\mathcal{K}$  such that

$$V(m) = \sum_{i=1}^{\infty} V_i(m), V_i(m) = A_i^* m A_i, \qquad (2.2)$$

for all m in  $\mathcal{B}(\mathcal{K})$ .

Let  $\mathscr{H}$  be a Hilbert space and let  $\overline{M}$  be a von Neumann algebra contained in  $\mathscr{B}(\mathscr{H})$ . Let  $e: M \to \overline{M}$  be an embedding of M in  $\overline{M}$  such that e(M) is a  $W^*$ -algebra on  $\mathscr{H}$  (see Sakai [15], 2.7.5), and let  $N: \overline{M} \to M$  be a conditional expectation such that  $N \circ e = i_M$  (i.e. N is a completely positive normal map of  $\overline{M}$  onto M such that (i)  $\|N\| = 1$ , (ii)  $N(\overline{1}) = 1$ , (iii)  $N(m(e \circ N)(m')) = N((e \circ N)(m)m') = N(m)N(m')$  for all m, m' in  $\overline{M}$ ). Let  $\{G_t: t \geq 0\}$  be a strongly continuous semi-group of isometries on  $\mathscr{H}$  such that  $G_t^*MG_t \subseteq \overline{M}$  for all  $t \geq 0$ . Then  $(G_t, e, \overline{M}, N)$  is said to be an *isometric dilation* of the dynamical semi-group  $(T_t, M)$  if for all  $t \geq 0$  and all a in M

$$(e \circ T_t)(a) = G_t^* e(a)G_t. \tag{2.3}$$

Remark. Equation (2.3) cannot hold for  $G_t$  unitary unless  $T_t$  is a homomorphism of M. Let  $\{U_t:t\in\mathbb{R}\}$  be a strongly continuous group of unitary operators on  $\mathscr{H}$  such that  $U_t^*\overline{M}U_t\subseteq\overline{M}$  for all  $t\geq 0$ . Then  $(U_t,e,\overline{M},N)$  is said to be a unitary dilation of the dynamical semigroup  $(T_t,M)$  if

$$T_t(m) = N(U_t^* e(m)U_t) \tag{2.4}$$

for all  $t \ge 0$  and all m in M. Notice that if a dilation exists then so does a minimal one; in the isometric case take  $\bar{M}$  to be  $\{G_t^*e(M)G_t:t\ge 0\}^n$  and in the unitary case take  $\bar{M}$  to be  $\{U_t^*e(M)U_t:t\ge 0\}^n$ .

First we prove the existence of isometric and unitary dilations of a norm-continuous dynamical semi-group  $T_t$  on the algebra  $\mathcal{B}(\mathcal{K})$  of all bounded operators

on a separable Hilbert space  $\mathcal{K}$ . Then we relax somewhat the conditions on both the semi-group and on the algebra.

**Theorem 1.** Let  $\mathcal{K}$  be a separable Hilbert space. Let  $\{T_t: t \geq 0\}$  be a norm-continuous dynamical semi-group on  $\mathcal{B}(\mathcal{K})$ . Then there exists an isometric dilation  $(G_t, e_1, M^1, N_1)$  of  $(T_t, \mathcal{B}(\mathcal{K}))$ .

*Proof.* We have seen that the generator L of  $T_t$  has the form (2.1) where V is given by (2.2). Define  $Z \in \mathcal{B}(\mathcal{K})$  by

$$Z = -iH - \frac{1}{2}V(1), \tag{2.5}$$

so that  $\{B_t = e^{tZ} : t \ge 0\}$  is a contraction semi-group on  $\mathcal{K}$  and  $\{S_t : t \ge 0\}$ , defined by

$$S_t(m) = B_t^* m B_t \tag{2.6}$$

for all m in  $\mathscr{B}(\mathscr{K})$ , is a contraction semi-group on  $\mathscr{B}(\mathscr{K})$  with generator  $L_0$  given by

$$L_0(m) = Z^*m + mZ \tag{2.7}$$

for all m in  $\mathcal{B}(\mathcal{K})$  so that

$$L = L_0 + V. (2.8)$$

Hence  $T_t$  and  $S_t$  are connected by the perturbation formula (Kato [9], p. 495)

$$T_{t}(m) = S_{t}(m) + \int_{0}^{t} (S_{t-s} \circ V \circ T_{s})(m)ds$$
 (2.9)

for all m in  $\mathcal{B}(\mathcal{K})$ . The pre-adjoint semi-groups  ${}_*T_t$  and  ${}_*S_t$  on the pre-dual of  $\mathcal{B}(\mathcal{K})$  (which we identify with the Banach space  $\mathcal{I}(\mathcal{K})$  of trace-class operators on  $\mathcal{K}$ ) satisfy

$$*T_{t}(\varrho) = *S_{t}(\varrho) + \int_{0}^{t} (*T_{s} \circ *V \circ *S_{t-s})(\varrho) ds$$
 (2.10)

for all  $\varrho$  in  $\mathscr{I}(\mathscr{K})$ . Because of the particular form (2.2) of the perturbation V we can write the von Neumann series for (2.9) and (2.10) in an unfamiliar but useful way (cf. Davies [4, 5]).

Let  $X_{\infty}$  be the set of all sequences  $\{(x_i,t_i) \in \mathbb{N} \times (0,\infty) : 0 < t_1 < t_2 ...\}$  regarded as a Borel subset of  $\bigcup_{m=0}^{m=\infty} \left\{ \prod_{n=0}^{m} \mathbb{N} \times (0,\infty) \right\}$  in an obvious way, let  $Y_{\infty}$  be the Borel subset of  $X_{\infty}$  consisting of all sequences of finite length and, for each t>0, let  $X_t$  be the Borel subset of  $X_{\infty}$  consisting of all finite sequences  $\{(x_i,t_i):0 < t_1 < t_2 ... t_n \le t\}$ . For each t>0 there is a Borel isomorphism  $\lambda_t: X_t \times Y_{\infty} \to Y_{\infty}$  defined by

$$\{(x_i, t_i)\}_{i=1}^n, \{(y_j, s_j)\}_{j=1}^m \mapsto (x_1, t_1), \dots, (x_n, t_n), (y_1, s_1 + t), \dots, (y_m, s_m + t).$$
 (2.11)

The inverse map is given by

$$\{(y_i, s_i)\}_{i=1}^n \mapsto \{(y_i, s_i)\}_{i=1}^p, \{(y_i, s_i - t)\}_{i=p+1}^n,$$
(2.12)

where p is the unique integer such that  $s_p \le t < s_{p+1}$ . We denote by  $X_0$  the subset consisting of the single sequence z of zero length. We define a measure  $\mu_t$  on  $X_t$  given by the product measure constructed from counting measure on each

component N and Lebesgue measure on each component  $(0, \infty)$ ; we assign Dirac measure to the point  $z \in X_t$ . We define a measure  $\mu_{\infty}$  on  $Y_{\infty}$  in an analogous fashion. For each  $w \in X_t$  define  $\binom{*}{*}S_*V_*S)(w)$  by

$$(*S_*V_*S)(w) = *S_{t_1} \circ *V_{x_1} \circ *S_{t_2-t} \circ *V_{x_2} \dots *V_{x_n} \circ *S_{t-t_n};$$
 (2.13)

where  $w = \{(x_i, t_i): 0 < t_1 < \dots t_n \le t\}$ , then the Neumann series

$${}_{*}T_{t}(\varrho) = {}_{*}S_{t}(\varrho) + \int_{0}^{t} ({}_{*}S_{t_{1}} \circ {}_{*}V \circ {}_{*}S_{t-t_{1}})(\varrho)dt_{1}$$

$$+ \int_{0}^{t} \int_{0}^{t_{2}} ({}_{*}S_{t_{1}} \circ {}_{*}V \circ {}_{*}S_{t_{2}-t_{1}} \circ {}_{*}V \circ {}_{*}S_{t-t_{2}}(\varrho)dt_{1}dt_{2}$$

$$+ \dots$$

$$(2.14)$$

can be written as

$${}_{*}T_{t}(\varrho) = \int_{X_{t}} ({}_{*}S_{*}V_{*}S)(w)(\varrho)d\mu_{t}(w), \qquad (2.15)$$

and the adjoint series can be written as

$$T_{t}(m) = \int_{X_{-}} [(*S_{*}V_{*}S)(w)]^{*}(m)d\mu_{t}(w).$$
(2.16)

Define the operator  $G_t$  on  $L^2(Y_\infty; \mathcal{K})$  for  $t \ge 0$  by

$$(G_t \psi)(w) = (BAB)(w_{\bar{t}})\psi(w_t), \qquad (2.17)$$

where

$$(w_{\bar{t}}, w_t) = \lambda_t^{-1}(w)$$
 (2.18)

for  $w \in Y_{\infty}$ , and  $(BAB)(w') \in \mathcal{B}(\mathcal{K})$  is defined by

$$(BAB)(w') = B_{t_1} A_{x_1} B_{t_2 - t_1} A_{x_2} \dots A_{x_n} B_{t - t_n}$$
(2.19)

for any  $w' = \{(x_i, t_i) : 0 < t_1 < t_2 ... < t_n \le t\} \in X_t$ .

We prove next that  $\{G_t:t\geq 0\}$  is a strongly continuous group of isometries on  $L^2(Y_\infty;\mathcal{K})$ . We have

$$(G_{t_1}(G_{t_2}\psi))(w) = (BAB)(w_{\bar{t}_1})(G_{t_2}\psi)(w_{t_1})$$

$$= (BAB)(w_{\bar{t}_1})(BAB)(w_{t_1,\bar{t}_2})\psi(w_{t_1,t_2})$$

$$= (BAB)(w_{\bar{t}_1+t_2})\psi(w_{t_1+t_2})$$

$$= (G_{t_1+t_2}\psi)(w)$$
(2.20)

where we have used the following immediate consequences of the definitions:

$$(BAB)(w_{\bar{t}_1})(BAB)(w_{t_1,\bar{t}_2}) = (BAB)(w_{\bar{t}_1+\bar{t}_2}), \qquad (2.21)$$

$$W_{t_1,t_2} = W_{t_1+t_2} \,. \tag{2.22}$$

We check that  $G_t$  is an isometry using (2.15) and the observation that the measure  $\mu_{\infty}$  is the product of the measures  $\mu_t$  and  $\mu_{\infty}$  under the Borel isomorphism  $\lambda_t$  of  $X_t \times Y_{\infty}$  with  $Y_{\infty}$ :

$$\langle G_{t}\psi, G_{t}\psi \rangle = \int_{Y_{\infty}} \langle (BAB)(w_{\overline{t}})\psi(w_{t}), (BAB)(w_{\overline{t}})\psi(w_{t}) \rangle d\mu_{\infty}(w)$$

$$= \int_{Y_{\infty}} \int_{X_{t}} \operatorname{trace}\left(\left[(BAB)(w_{t})\right]\psi(w_{t}) \otimes \overline{\psi(w_{t})}\left[(BAB)(w_{\overline{t}})\right]\right)^{*}$$

$$\cdot d\mu_{t}(w_{\overline{t}})d\mu_{\infty}(w_{t})$$

$$= \int_{Y_{\infty}} \operatorname{trace}\left(\int_{X_{t}} (_{*}S_{*}V_{*}S)(w_{\overline{t}})(\psi(w_{t}) \otimes \overline{\psi(w_{t})})d\mu_{t}(w_{\overline{t}})d\mu_{\infty}(w_{t})$$

$$= \int_{Y_{\infty}} \operatorname{trace}\left(_{*}T_{t}(\psi(w_{t}) \otimes \psi(w_{t}))d\mu_{\infty}(w_{t})\right) d\mu_{\infty}(w_{t}) \qquad (2.23)$$

where we have used the positivity of the integrand to interchange the trace and integration operations.

But  $T_t(1) = 1$  implies trace  $\binom{*}{t}T_t(\varrho) = \text{trace}(\varrho)$  so

$$\langle G_t \psi, G_t \psi \rangle = \int_{Y_{\infty}} \langle \psi(w_t), \psi(w_t) \rangle d\mu_{\infty}(w_t) = \langle \psi, \psi \rangle. \tag{2.24}$$

Since we have shown that  $\{G_t:t\geq 0\}$  is a semi-group of isometries it is enough to check that it is weakly continuous at the origin on elements of the form  $f(\cdot)k$  where  $f(\cdot)\in L^2(Y_\infty)$  and  $k\in \mathcal{K}$ . This follows using the observation that  $\mu_t\{X_t\setminus\{z\}\}=te^t$ .

Now take  $M^1$  to be  $L^\infty(Y_\infty; \mathcal{B}(\mathcal{K}))$  which is a  $W^*$ -algebra with pre-dual  $M^1_* = L^1(Y_\infty; \mathcal{I}(\mathcal{K}))$  (Sakai [15], 1.22.13); the mapping  $f \otimes a \to f(\cdot)a$  can be extended uniquely to a  $W^*$ -isomorphism of  $L^\infty(Y_\infty) \overline{\otimes} \mathcal{B}(\mathcal{K})$  onto  $L^\infty(Y_\infty; \mathcal{B}(\mathcal{K}))$ . The predual of  $L^\infty(Y_\infty) \overline{\otimes} \mathcal{B}(\mathcal{K})$  is  $L^1(Y_\infty) \otimes_\gamma \mathcal{I}(\mathcal{K})$ , the projective tensor product, which we identify with  $L^1(Y_\infty; \mathcal{I}(\mathcal{K}))$ . We make use of the embedding with  $e_1: \mathcal{B}(\mathcal{K}) \to M^1$  defined by

$$e_1(a) = 1 \otimes a \,, \tag{2.25}$$

where 1 is the constant function in  $L^{\infty}(Y_{\infty})$ ; we use the conditional expectation  $N_1:M^1\to \mathcal{B}(\mathcal{K})$  defined by

$$N_1(m) = m(z)$$
. (2.26)

We note that

$$(_*e_1)(\phi) = \int_{Y_\infty} \phi(w)d\mu_\infty(w) ,$$

$$(_*N_1)(\varrho) = \delta_z \otimes \varrho .$$

$$(2.27)$$

Next we check that  $G_t^*M^1G_t\subseteq M^1$  for all  $t\geq 0$ . For this we require the explicit form of the action of  $G_t^*$  on a vector  $\psi$ ; we get this by inspecting  $\langle G_t\psi,\phi\rangle$  for arbitrary  $\phi$ :

$$\begin{split} \langle G_t \psi, \phi \rangle &= \int\limits_{Y_{\infty}} \int\limits_{X_t} (\text{BAB})(w_{\bar{t}}) \psi(w_t), \, \phi(\lambda_t(w_{\bar{t}}), w_t)) d\mu_t(w_{\bar{t}}) d\mu_{\infty}(w_t) \\ &= \int\limits_{Y_{\infty}} \int\limits_{X_t} \psi(w_t), \, \left[ (\text{BAB})(w_{\bar{t}}) \right]^* \phi(\lambda_t(w_{\bar{t}}, w_t)) d\mu_t(w_{\bar{t}}) d\mu_{\infty}(w_t) \, . \end{split}$$

Hence  $G_t^*$  is given by

$$(G_t^*\phi)(w) = \int_{X_t} [(BAB)(w')]^*\phi(\lambda_t(w', w))d\mu_t(w').$$
 (2.28)

In what follows we use the notation  $w^t$  to denote  $\lambda_t(w', w)$  where  $w' \in X_t$  is a running variable of integration and remark that  $w^t_{\bar{t}} = w'$ , and  $w^t_{t} = w$ . Now we take  $a(\cdot) \in L^{\infty}(Y_{\infty}; \mathcal{B}(\mathcal{K}))$  and compute  $G_t^*a(\cdot)G_t$  as an element of  $\mathcal{B}(L^2(Y_{\infty}; \mathcal{K}))$  and show that it lies in  $L^{\infty}(Y_{\infty}; \mathcal{B}(\mathcal{K}))$ :

$$(G_{t}^{*}aG_{t}\psi)(w) = \int_{X_{t}} [(BAB)(w')]^{*}(aG_{t}\psi)(w^{t})d\mu_{t}(w')$$

$$= \int_{X_{t}} [(BAB)(w')]^{*}a(w^{t})(BAB)(w_{\overline{t}}^{t})\psi(w_{t}^{t})d\mu_{t}(w')$$

$$= \int_{X_{t}} [(BAB)(w')]^{*}a(w^{t})(BAB)(w')\psi(w)d\mu_{t}(w')$$

$$= \int_{X_{t}} [({}_{*}S_{*}V_{*}S)(w')]^{*}a(w^{t})d\mu_{t}(w')\psi(w) . \qquad (2.29)$$

But

$$(G_t^* a G_t)(w) = \int_{X_t} [(*S_* V_* S)(w')]^* a(\lambda_t(w', w)) d\mu_t(w')$$
(2.30)

lies in  $L^{\infty}(Y_{\infty}; \mathcal{B}(\mathcal{K}))$  and so  $G_t^*M^1G_t \subseteq M^1$ .

Now put  $a(\cdot) = 1(\cdot) \otimes m$  where  $m \in \mathcal{B}(\mathcal{K})$ ; we have

$$(G_t^* e_1(m)G_t)(w) = 1(w) \otimes \left( \int_{X_t} \left[ (_*S_* V_* S)(w') \right]^* d\mu_t(w') \right) m$$
  
= 1(w) \otimes T\_t(m) (2.31)

by (2.16). Thus we have proved

$$e_1(T_t(m)) = G_t^* e_1(m)G_t$$
 (2.32)

**Theorem 2.** Let  $\mathcal{K}$  be a separable Hilbert space. Let  $\{T_t: t \geq 0\}$  be a norm-continuous dynamical semi-group on  $\mathcal{B}(\mathcal{K})$ . Then there exists a unitary dilation  $(U_t, e, \overline{M}, N)$  of  $(T_t, \mathcal{B}(\mathcal{K}))$ .

*Proof.* Let  $(G_t, e_1, M^1)$  be the isometric dilation of  $(T_t, \mathcal{B}(\mathcal{K}))$  of Theorem 1. Then by Cooper [3] (see also Masani [13]) there exists a Hilbert space  $\mathcal{H}$ , an isometric embedding  $W: L^2(Y_\infty, \mathcal{K}) \to \mathcal{H}$  and a strongly continuous group  $\{U_t: t \in \mathbb{R}\}$  of unitary operators on  $\mathcal{H}$  such that for  $t \ge 0$  we have for all  $\psi$  in  $L^2(Y_\infty; \mathcal{K})$ 

$$WG_t \psi = U_t W \psi . \tag{2.33}$$

It follows that for  $t \ge 0$  we have

$$G_t = W^* U_t W , (2.34)$$

and

$$G_t^* = W^* U_t^* W \,. \tag{2.35}$$

Put  $\overline{M} = \{U_t^* e_2(M^1)U_t : t \ge 0\}^n$  where  $e_2 : M^1 \to \mathcal{B}(\mathcal{H})$  is defined by

$$e_2(a) = WaW^* \tag{2.36}$$

and  $N_2: \overline{M} \to \mathcal{B}(L^2(Y_{\infty}; \mathcal{K}))$  be the conditional expectation given by

$$N_2(m) = W^*mW$$
. (2.37)

Then we have to show that  $N_2(\overline{1})=1$  and that  $N_2(\overline{M})\subseteq M^1$ . By (2.34) and (2.35) we have for  $t \ge 0$  and x in  $M^1$ 

$$N_2(U_t^* e_2(x) U_t) = W^* U_t^* W x W^* U_t W$$
  
=  $G_t^* x G_t$ , (2.38)

which we saw is in  $M^1$ . For n>1 and  $t_i \ge 0$ , i=1,2,...,n, we define  $a_n$  by

$$a_n = N_2(U_{t_1}^* e_2(x_1) U_{t_1} U_{t_2}^* e_2(x_2) U_{t_2} \dots U_{t_n}^* e_2(x_n) U_{t_n}). \tag{2.39}$$

We have

$$a_n = G_{t_1}^* X_1 G_{t_2}^* G_{t_1} X_2 G_{t_3}^* G_{t_2} \dots G_{t_{n-1}} X_n G_{t_n}.$$
(2.40)

where we have used the observation that for all s, t > 0

$$W^*U_tU_s^*W = G_s^*G_t. (2.41)$$

(For t>s we have  $W^*U_tU_s^*W=G_{t-s}$  but  $G_sG_{t-s}=G_t$  so that  $G_{t-s}=G_s^*G_t$  since  $G_s$  is an isometry; an analogous calculation works for s>t.) We have to show that  $a_n$  lies in  $M^1$ . In order to be able to use induction we define  $b_n$  for  $n \ge 1$  by

$$b_n = G_{t_1}^* X_1 G_{t_2}^* G_{t_1} X_2 G_{t_3}^* G_{t_2} \dots X_n G_{t_{n+1}}^* G_{t_n}$$
(2.42)

and notice that  $b_n|_{t_{n+1}=0}=a_n$ . We have by direct calculation of the kind used in the proof of Theorem 1

$$(b_1\phi)(w) = \int_{X_{t_1}} \int_{X_{t_2}} \bar{b}_1(w', w''; w)\phi(w^{t_1t_2}_{t_1})d\mu_{t_1}(w')d\mu_{t_2}(w'')$$
(2.43)

where

$$\bar{b}_1(w', w''; w) = [(BAB)(w')] * x_1(w^{t_1})[(BAB)(w'')] * (BAB)(w^{t_1 t_2}_{\bar{t}_1}).$$
(2.44)

Suppose that for  $n \ge 1$  we have

$$(b_n\phi)(w) = \int_{X_{t_1}} \dots \int_{X_{t_{n+1}}} \bar{b}_n(w', w'', \dots, w^{(n+1)}; w) \phi(w^{t_1t_2}_{t_1} \dots^{t_{n+1}}_{t_n}) d\mu_{t_1}(w') \\ \dots d\mu_{t_{n+1}}(w^{(n+1)});$$
(2.45)

then

$$(b_{n+1}\phi)(w) = \int_{X_{t_1}} \dots \int_{X_{t_{n+1}}} \overline{b}_n(w', \dots, w^{(n+1)}; w)(x_{n+1}G_{t_{n+2}}^*G_{t_{n+1}}\phi)(w^{t_1t_2}_{t_1} \dots^{t_{n-1}}_{t_{n-1}}^{t_{n+1}}_{t_n})$$

$$d\mu_{t_1}(w') \dots d\mu_{t_{n+1}}(w^{(n+1)})$$

$$= \int_{X_{t_1}} \int_{X_{t_{n+2}}} \overline{b}_{n+1}(w', w'', \dots, w^{(n+2)}; w)\phi(w^{t_1t_2}_{t_1} \dots^{t_{n+1}}_{t_n}^{t_{n+2}}_{t_{n+1}})$$

$$d\mu_{t_1}(w') \dots d\mu_{t_{n+2}}(w^{(n+2)})$$

$$(2.46)$$

where

$$\overline{b_{n+1}}(w', ..., w^{(n+2)}; w) = \overline{b_n}(w', ..., w^{(n+1)}; w) x_{n+1}(w^{t_1 t_2}_{t_1} ...^{t_{n+1}}_{t_n}) \times [(BAB)(w^{(n+2)})]^* [(BAB)(w^{t_1 t_2}_{t_1} ...^{t_{n+2}}_{\tilde{t}_{n+1}})].$$
(2.47)

But (2.45) holds for n=1 and hence by (2.46) for all  $n \ge 1$ ; evaluating  $(b_n \phi)(w)$  at  $t_{n+1} = 0$  we have

$$(a_n\phi)(w) = \int_{X_{t_1}} \dots \int_{X_{t_n}} b_n(w', \dots, w^{(n)}, z; w) \phi(w^{t_1t_2}{}_{t_1} \dots {}^{t_n}{}_{t_{n-1}t_n}) d\mu_{t_1}(w') \dots d\mu_{t_n}(w^{(n)}) . (2.48)$$

But it follows directly from the definitions that

$$w^{t_1 t_2} \dots^{t_n} t_{n-1} t_n = w (2.49)$$

so that

$$(a_n\phi)(w) = \bar{a}_n(w)\phi(w) \tag{2.50}$$

where

$$\bar{a}_n(w) = \int_{X_{t_1}} \dots \int_{X_{t_n}} b_n(w', \dots, w^{(n)}, z; w) d\mu_{t_1}(w') \dots d\mu_{t_n}(w^{(n)})$$
(2.51)

which lies in  $M^1$ , and by continuity we have  $N(\overline{M}) \subseteq M^1$ . We complete the proof by putting  $e = e_2 \circ e_1$ ,  $N = N_1 \circ N_2$ ; then  $N(\overline{1}) = 1$  and

$$N(U_t^* e(m)U_t) = T_t(m), (2.52)$$

and it is easily checked that N is a conditional expectation.

Remark. The map  $t \to U_t^* \cdot U_t$  is weakly continuous. It cannot be norm-continuous even though  $t \to T_t$  is unless  $T_t$  is a homomorphism of M. Indeed, suppose  $t \to T_t$  is strongly continuous with generator L, suppose  $t \to U_t^* \cdot U_t$  is strongly continuous with generator  $\delta$ , and  $Z = \mathcal{D}(\delta) \cap M$  is a core for L (that is,  $L = (L|_Z)^-$ ); then for  $x \in \mathcal{D}(\delta) \cap M$  we have

$$L(x) = (N \circ \delta \circ e)(x) \tag{2.53}$$

so that L is a derivation and hence  $T_t$  is a homomorphism (Evans [6]).

Inspecting the proofs of Theorems 2 and 3 we see that they still work if we relax somewhat the hypotheses on the continuity of  $t \rightarrow T_t$  and on the algebra M. We have in fact proved the following

**Theorem 3.** Let  $T_t$  be a weakly continuous dynamical semi-group on  $\mathcal{B}(\mathcal{K})$  where  $\mathcal{K}$  is a separable Hilbert space. Suppose that

(i) there exists a strongly continuous contraction semi-group  $B_t = e^{Zt}$  on  $\mathcal{K}$  whose generator Z is a bounded perturbation of a self-adjoint operator, and a completely positive normal map  $V: \mathcal{B}(\mathcal{K}) \to \mathcal{B}(\mathcal{K})$  such that

$$T_t(m) = S_t(m) + \int_0^t (T_{t-s} \circ V \circ S_s)(m) ds$$

for all m in  $\mathcal{B}(\mathcal{K})$ ,

(ii) V has a decomposition  $V(m) = \int\limits_X A_x^* m A_x dv(x)$  where (X, v) is a  $\sigma$ -finite measure space and  $x \to A_x$  is weakly measurable.

Then if M is a von Neumann algebra on  $\mathcal{K}$  such that  $A_x$  lies in M for v a.e. x in X and if  $B_t^*MB_t \subseteq M$  for all  $t \ge 0$  the conclusions of Theorems 1 and 2 hold.

Remark. The unitary dilation theorem for a family of completely positive maps indexed by the elements of a group which was recently proved by Evans [6] does not overlap with the above results.

## References

- 1. Abragam, A.: The principles of nuclear magnetism. Oxford: Clarendon Press 1961
- 2. Atherton, N. M.: Electron spin resonance. New York: Wiley 1973
- 3. Cooper, J. L. B.: Ann. Math. 48, 827—842 (1947)
- 4. Davies, E. B.: Commun. math. Phys. 15, 277—304 (1969)
- 5. Davies, E. B.: Z. Wahrscheinlichkeitstheorie verw. Gebiete 23, 261—273 (1972)
- 6. Evans, D. E.: Commun. math. Phys. 48, 15—22 (1976)
- 7. Gorini, V., Kossokowski, A., Sudarshan, E.C.G.: University of Texas at Austin preprint CPT 244 (1975)
- 8. Haken, H.: Laser theory. Handb. Phys. Vol. 25/2c. Berlin-Heidelberg-New York: Springer 1970
- 9. Kato, T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966
- 10. Kossokowski, A.: Rep. Math. Phys. 3, 247—274 (1972)
- 11. Kraus, K.: Ann. Phys. (N. Y.) 64, 311—335 (1971)
- 12. Lindblad, G.: Commun. math. Phys. 48, 119-130 (1976)
- 13. Masani, P.: Bull. Amer. Math. Soc. 68, 624—632 (1962)
- 14. Primas, H.: Helv. Phys. Acta 34, 36-57 (1961)
- 15. Sakai, S.: C\*-algebras and W\*-algebras. Berlin-Heidelberg-New York: Springer 1971
- 16. Stroescu, E.: Pacific J. Math. 47, 257—262 (1973)
- 17. Szökefalvi-Nagy, B.: Acta Scientiarum Math. Szeged 15, 104—114 (1954)
- 18. Yosida, K.: Functional analysis. Berlin-Heidelberg-New York: Springer 1965

Communicated by H. Araki

Received February 23, 1976