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Abstract. We analyze the space integrals Q= §d3xρ(x) of finitely localized
densities ρ. It turns out that the time translated operators Q{t) are polynomials
in t if Q annihilates the vacuum. In particular, Q(t) = Q in models with short-
range forces and complete particle interpretation. These results are valid
in the Haag-Araki framework of field theory as well as in the Wightman
formalism. Lorentz covariance is not needed in the proofs.

Introduction and Main Results

In a recent paper Gal-Ezer and Reeh have shown that the space-integral of the
zeroth component of a tensor current defines a conserved charge if it annihilates
the vacuum [1]. This work generalizes a result which is known in the literature
as Coleman's theorem [2] and it adds to a series of papers which were stimulated
by Coleman's original article. (See for example [3] and the references therein.)
Although there may be differences in style and rigour the idea of proof in all
these investigations is essentially the same. The argument is based on a detailed
study of the two-point function of the divergence of the current. It follows from
Lorentz-covariance that the intermediate states which contribute to this function
have zero mass if the charge annihilates the vacuum. Thus the two-point function
vanishes in theories with a mass gap and the current is conserved. In the presence
of massless particles one cannot conclude quite as much. There the recent result
of Gal-Ezer and Reeh is the best one to be expected.

Since Lorentz-covariance is very essential for the above argument one may
ask whether Coleman's theorem depends crucially on this assumption and it is
the aim of the present paper to clarify this point. We shall show that locality and
spectrum condition are already sufficient ingredients for a proof and that Lorentz-
covariance is not needed. Moreover, in an appropriate formulation Coleman's
theorem holds also for finitely localized quantities like Haag-Araki fields or
locally smeared polynomials in the basic Wightman-fields. It is in the latter case
in which we can formulate the most easily comprehensible version of our main
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result. To specify the framework let us assume that we are dealing with a Wigthman-
Theory of one real field φ, which satisfies the usual postulates [4] with the possible
exception of Lorentz-covariance. We denote the vacuum vector by Ω and the
unitary representation of translations by (ί, x)-+T(t, x). We then have the

Theorem. If ρ is a locally smeared polynomial in the basic field φ and if

jd3x(Ω,[ρ(xlA~]Ω) = 0 (1)

for all locally smeared polynomials A in φ, then there exists a closable operator Q
defined on D{Q)= {AΩ} by

μ (2)

such that on D{Q)

(3)

for some finite N. If the theory has a mass-gap and is asymptotically complete,
thenN = L

Thus at least in theories with short-range forces and a complete particle
interpretation, Q is a constant of motion. It is hard to believe that there exist
models in which relation (3) does not hold for N = 1. However we want to emphasize,
that the existence of an operator Q which satisfied (3) for some N>ί would not
be a disaster but - on the contrary - most welcome. In the case JV = 2, for example,
Q i = (d/dt) T(t)Q T ( t ) " ι w o u l d b e a c o n s e r v e d q u a n t i t y a n d Q2 = T(t)Q T(t) ~1-tQ1

would not depend on t. Hence Q2 would be the generator of a local symmetry
transformation (similar to the generators of Lorentz-boosts) and we would have
obtained two symmetries from one density ρ. But this is probably too much to
hope.

The first and most important step in the proof of the theorem consists of
showing that

\d3x{Ω,Ά[_ρ{Ux\A-]Ω)=P{t) (4)

where P(t) is some polynomial in t and A, A' are local Wightman-fields. To verify
this equation we have to go through a rather tedious analysis of the analytic
properties of the three-point function generated by A, A\ and ρ. We shall exploit
the fact that the left-hand side of (4) can be calculated from the double discontinuities
of this function and that relation (1) together with the Jacobi identities allow a
considerable enlargement of its domain of regularity. (Positivity of the metric
is nowhere needed in this part of the argument and relation (4) therefore also
holds in models with indefinite metric.) In the remainder of the proof we shall
then infer from (4) the statement of the theorem using arguments from operator
theory.

The Key Lemma

This section is devoted to the statement that the matrix elements (4) are polynomials
inf.
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We shall use the following notation. Let Aι{x)=T(x)ρT(x)~1 and ^(:x) =
T(x)AiT{x)~1

9 i = 2,3, where Ai are two fixed compactly smeared Wightman
polynomials in the basic fields. The truncated Wightman function

where (1,7, k) is a permutation of (1,2, 3), will be denoted by <XjX7xfc>. It is a C00

function of the coordinate differences polynomially bounded at infinity. Its
Fourier transform will be denoted by δ4{p1 + p2 +p 3 ) <yfc>. <//7c> can be regarded
as a tempered distribution depending on any two of the three 4-vectors px linked by
the relation P i + p 2 + P 3 = 0. I t s support is contained in {p^V^m^ pkeV_(mk)},
where mι are the threshold masses.

We are interested in the integrals j (xίxjxk)d3x1, the Fourier transform of
which are formally given by the restriction of <i/fc> to Pι=0 and we shall use
the following type of notation: <312) = <312>| p i = 0, Pi=(p?,0). This restriction
gives rise to well defined tempered distributions in the case of theories with
strictly positive minimal mass, because locality and spectrum imply that the
momentum space Wightman functions have a C00 dependence on the space
components of the 4-vectors pt. In a 0-mass theory these expressions might be
meaningless. But according to (1) and (4) it suffices for our purposes to consider
the expressions <j[ί, fc]>, <[ί, feJ/> and <[ί,7'fc]>. These are always meaningful.
The in variance condition of the vacuum (1) reads in momentum space

ί 0, (/,*) = (2, 3) or (3,2) (5)

and it is convenient to define in view of (5) and the Jacobi identity

</ΐfc> = </[!, *]> = <[/, l]fe>. (6)

The spectral properties of the Wightman functions imply then

ϊ . (7)

In a massive theory the new definition (6) agrees of course with the old one.
The content of this section is the following.

Lemma 1. The linear properties of the 3-point function and condition (5) imply
supp<3ί2>c{(p?,p2)

:Pi = 0} Because of the spectral condition (7) this tempered
distribution is of the form

N

<312>= £ δ{n)(p°1)fn(p2)

for some finite N where / n e5^(IR 4 ) with suppfneF_(ra), n = 0, 1, ...,iV and

m = max(m l9 m2).

It is clear that this Lemma implies formula (4) of the Introduction. It is also

clear that we may ignore the mass thresholds in the proof, i.e. put all mι =0.

Proof The idea of the proof is to use the fact that the double commutators <[ί, [/, fc]]>
are the double discontinuities of the momentum space Green's function H(k)
analytic in the well-known Kallen-Wightman domain ^ [ 5 ] \ Here fc = (fe1, fc2, fe3),
1 No explicit Lorentz co variance is actually needed in the derivation of this domain. This follows
from the Glaser-Streater Theorem [6]
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k1 + k2 + k3 = 0, where ki = pt + iqb 1=1,2,3. Let us denote by H the restriction
of i ϊ to the 5-dimensional complex linear subspace kx =0. This function is analytic
in the domain ^ = ̂ n{k1 = 0}; its boundary values at the real points of S exist
according to general theorems on functions analytic in tubes (compare e.g. [7]);
its double discontinuities are the commutator vacuum expectation values
(LU [!»/]]> e c t we are interested in. We are therefore faced with a generalized
Edge-of-the-Wedge problem, in which the real region of coincidence is very large
as a consequence of the condition (5). Now, in an E.o.W. problem a given real
region of coincidence can in general be enlarged by the use of the "Double cone"
and "Re-entrant Nose" theorems. This phenomenon was first discovered by
Dyson [8] in a special case; a fairly general treatment can be found e.g. in [9].
In the problem at hand it turns out that an appropriate version of the Re-entrant
Nose Theorem shrinks the support of the matrix elements <jlfc> given a priori
by (7) to that given by the Lemma.

We shall find that only a partial analytic completion of the primitive 3-point
function domain is needed for our purposes. This completion can be obtained
e.g. by the application of the Jost-Lehmann-Dyson formula to the commutator
functions <[x2, (x3, Xi)±]) f° r β χ e d x 3 —Xi Here (x3,x1)± = Θ±(x3 — x^)x
D43(x3), Λ^xJ] are the retarded respectively advanced commutators, (the
multiplication by the step functions is legitimate because the x-space Wightman
functions are C00 in view of the smearing of Λ2i 3). Taking into account the support
properties in configuration and momentum space with respect to x 2 —Xi one gets
by a slight generalization of [10]

<[x 2 ,(x 3 ,x 1 )+]>= J φ ± ( x /

2 - x 1 , x /

2 - x 3 , κ2)Δ{x2-x'2, κ2)d4x'2dκ2 .

Here φ+(x,y, κ2)e&"(JR?) with suppφ+C {xeV±+a,yeVτ ±α, κ2

 = θ}, where
a = (ao,0) is a positive time-like vector with a0 sufficiently large to swallow the
finite localization of the fields. In momentum space this gives

<[2, (3, 1)±]> = φ ±(pl9 p3, p2

2W2) ^G±(p2, p3)ε(p°2), (8)

where φ ± ( p 1 ? p 3 , K:2)G19
C7/(1R9) are the Fourier transforms of φ± with respect to

x and y; they are boundary values of functions φ±(kl9 fc3, κ2) analytic in the tubes
3^± = {lmkίeV±, Imk3eV+} with values in tempered distributions with respect
to κ2. Thus the "simple discontinuities" G±(p2,p3) of the Green's function H
(according to our conventions pγ is defined by the relation Pι+p2+p3 = 0) are
boundary values of functions G±(fe2, ίc3) analytic in ^~f =^~±nJtf?

Q for each fixed
ρ^O, where jfρ is the complex hyperboloid {k2\k\ = q} and fc1 + fe2 + /c3 = 0.
Thus^^are domains on the complex analytic mainfold JίQ = (C£3 x J^ ρ of complex
dimension 7, and it is easily checked that the real points of Jί φ viz.

and R ^ x {p| =

are boundary points of 3/~ + (3Γ~) that can be connected by a "crossing" path
contained in SΓ+iβ"^.

For a different derivation of these results compare [11]. Let us also note
that the fixing of the parameter ρ in the above reasoning is not completely rigorous
in view of the distribution character of the function in question. We mention
as an aside that the analytic functions G+ are actually measures with respect to
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the variable ρ as a consequence of the positivity of the metric of the underlying
Hubert space. However, using e.g. a version of the general regularization procedure
expounded in [12] we may proceed as if the functions in question were continuous.

We restrict now our attention to the 4-dimensional complex manifold

t^Q = J(Qn{k1=0} and denote by G ± and # * the restrictions of G+ a n d ^ " *
to JίQ. Since (6) implies

<[(3,f)+,2]>-<[(3,l)_,2]> = <3ί2> + <2ί3> (9)

we are faced with the Edge-of-the-Wedge problem <#+ u # ~ \JUQ on the manifold
Jip where UQ are the real coincidence points of the pair of analytic functions
G ± given according to (7) by

By writing k2 = ( ± ]/k\ + ρ, —k3) we obtain a parametrization of Jί Q by the
4-vector k3. This parametrization is regular everywhere except at the points of
the critical manifold KQ= {k3e<£4:kl+ρ = 0}. If we denote by π the projection
of M Q on C 4

3, the above parametrization can be regarded as the inverse map

which means that π is two to one. We then put F±(fc3) = G + (π 1fe3), F± being
double valued analytic functions over n(^^)\KQ.

We now check that F+ are analytic in Tτ\Kρ, where 7"* = {fc3e(C4:Im/c3e V±}
are the usual forward respectively backward tubes. To this end it is necessary
to show that π(^Γ^)= 7"τ, an elementary exercise left to the reader. The two
determinations of F± correspond near the real points to the two boundary values
e(pθ) = + 1 in formula (8). Let us denote them by F\, ε = ± . Setting AFε = F\ - Ft
for the discontinuity on the reals, we get from (7), (8), and (9) z1F~ = <312) so
that suppzlF~cF + ; similarly AF+= — <2f3> and suppzlF + cF_. Now, since
Re(/c3 + ρ)>0 in the tubes Tf = 7"±n{(Im/c3)

2<ρ}, the determinations Fε

± are
single-valued in these domains, so that F+ and FZ are restrictions to 7"̂  and
T~ of a function F~ analytic in H~ =H(TρuT~uίV+)= the envelope of holo-
morphy of the E.o.W. problem 7"^"u7"~uCF+. Here CF+ are the real points of
coincidence {p3 < \p3\}; they are interior points of H~ by the local E.o.W. theorem.
A similar statement holds for the pair of analytic functions F+ and Ft.

If in the above E.o.W. problem the tubes Tf could be replaced by the forward
and backward tubes 7"± (i.e. if the double valuedness of the functions F± in the
domains T±s\Kβ could be neglected), the Re-entrant Nose Theorem ([8,9])
would immediately yield H+ =(C4, i.e. supp AF± is the empty set. What we shall
actually show is that the region of analyticity of F~ can be extended to the real
points {P3<ypl +ρ}, which means that

suppzlF" C {p 3 eIR 4 :p 3 ^ |/p |- | -ρ} . (10)

By symmetry we shall then also have suppz1F+ C {p%ύ — | / p 3 + ρ } . Since p\=Q
was an arbitrary non-negative number, these support properties are equivalent to

(U)
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Now the whole argument leading from (8) to (11) is valid also with the variables
2 and 3 interchanged. From this follows the statement of the Lemma.

We are therefore left with the proof of (10). To this end we shall first enlarge
the analyticity domain of the double valued functions Fδ, δ=±. We can always
write

where

and

are analytic and single-valued in Tδ\Kρ; they are analytic and single-valued
even in the whole of Tδ because by their very definition they are bounded at the
points of the critical analytic manifold KQ. Besides by our previous discussion
the pair of functions Fs

± as well as the pair of functions Fa

± coincide at the real
points {pl<0}. As it is well known, the envelope of holomorphy of this E.o.W.
problem is the complement of the positive cut D={k3e<£4:klφσ^0}. This
implies that the pair of functions F± are two branches of a single function F
analytic and double valued in the domain D\Kρ.

Let us now concentrate our attention to the determination F~ of F which was
previously shown to be analytic in a complex neighbourhood Λ/+ of the real
points CV+. In order to prove (10) let us first treat the case of a theory with a
strictly positive minimal mass m. In such a theory the sets D, C V+, Λ/+ are replaced
by Dm={kl + σ^m2}, ίV+ and Λ/̂ . Because of rotational symmetry we can
restrict ourselves to the two-dimensional complex plane k3 = (k3, k\, 0,0). We then
cut the domain (Dm\/Cρ)u/V^ by a family of hyperbolae of the form

with the real parameters a and α varying in the intervals 0 ^ α ^ α 0 , 0 < α < ρ , and
apply the disk theorem, noticing that the intersections of the singular sets
Sm = {k3: k\ = σ ^ m2} and Kρ by any hyperbola Ha α remain disjoint when a and α
vary in their intervals; (a branch cut starting from Kρ, which defines the deter-
mination F~ will also remain disjoint from Sm). The situation can be visualized
in the complex plane of the angular variable ψ

Ha,a={k°3 + a = }/a chφ, ί£ = j/α shφ}

or alternatively in the complex A-plane, if we use the parametrization 2chtp =
λ + λ"1, 2shxp = λ — λ~1. When a increases from 0, Ha an(Sm\N"l) is empty at
the beginning (for α = α0 small enough) because of m>0. Now keeping a — a^
fixed and increasing α from α0 to ρ one finds that there appear compact curves
of Ha,αn(Sm\Λ/^) on which F~ was not known to be analytic, and which can
be removed in view of the Disk theorem. In particular one thus obtains analyticity
at all real points of the form

{p3= — αo + |/αchφ,p3 = |/α shφ,ψ real , 0 < α < ρ } .
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Letting then a0 tend to 0, one obtains analyticity at all the real points {p° < ]/pl + Q}.
This proves (10) in the case of a massive theory. It is left to the reader so inclined
to check by explicit calculation the geometrical situation described above.

In the case m = 0, we first go back to the E.o.W. problem 7"̂  u T~ u C V+ which
had furnished us with the complex neighbourhood Λ/+ of C V+. By an application
of the local Re-entrant Nose Theorem it can be easily seen that the region of
coincidence C V+ gets increased to a strictly larger open real set /? + in particular
a bit of the tip (the "nose") of the cone V+ gets chopped off. If we now feed this
qualitative information into the E.o.W. problem governing the analyticity domain
of the "symmetric" respectively "antisymmetric" functions Fs respectively Fa,
we are led to compute the envelope of holomorphy H of Γ u Γ u ( / ? + n / ? _ ) ,
where /?_ = —/? + . But H contains as a subdomain the domain D, which is in-
variant under complex Lorentz transformations. Hence by a well-known theorem
(cf. e.g. [6]) H is also invariant under the complex Lorentz group; in particular
H contains the real points

(J Λ(/?+n/?_)
Aesel

and these are necessarily of the form {p\<m2}, where m is a strictly positive
constant (depending may be on ρ). We have thus reduced the problem to that
of a massive theory and the proof of Lemma 1 is complete.

Proof of the Theorem

We next turn to the definition of the space-integral of the density ρ2. This is a
standard procedure and we therefore keep it brief. To begin with we define a
derivation δ3 on the *-algebra $I0 of locally smeared polynomials in the basic
field φ

δ(A)= $d3xtρ{x\A] for Ae<Ά0. (12)

This expression is well defined on the common dense domain {AΩ AEWQ} of
the operators in 2I0 because the integration extends only over a finite region of
space. Due to the fact that Ω is cyclic and separating for 9I0 we may then define a
linear operator Q on D(Q)={AΩ:Ae<Ά0} by

Q AΩ = δ{A)Ω. (13)

It follows from relation (1) of the introduction that (Ω, δ(AΆ)Ω) = 0 for all A, A' e 2l0

and therefore

(Ω5 A'QAΩ) = (Ω, A'δ(A)Ω) = - (Ω, δ{A')AΩ). (14)

Thus Q is a closable operator with a densely defined adjoint Q* and D(Q*)DD(Q).
If in particular ρ is a hermitian density then Q is a hermitian operator.

2 We refrain from using the term charge for this quantity because it need not be connected with a
superselection rule in general. If ρ were the energy density for example, we would end up with the
Hamiltonian

3 A derivation δ is a linear mapping which satisfies 8{ΆA) = δ(A')A + A'δ{A) on its domain
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The time-translated operators Q(t)=T(t)QT(t)~1 are also defined on D(Q)
because this domain is stable under the action of T(t)~ *. It is furthermore obvious
that

Q(t)AΩ = δt(A)Ω (15)

where δt is the derivation which one gets from (12) if one replaces ρ(x) by ρ(t, x).
The following statement on δt is a simple consequence of the results in the preceding
chapter and positivity.

Lemma 2. Let v4e2ϊ0. Then the relation

(dN/dtN)δt(A(x)) = 0

holds on the domain D(Q)for some finite N. The number N does not depend on xeIR4.

Proof. Since ρ and A are locally smeared polynomials in the basic field φ it follows
from temperateness and locality that the derivatives

(dN/dtN)δt(A(x))

exist for all N on D(Q) in the strong topology and that they are elements of 9I0

It is therefore sufficient to prove

(dN/dtN)δt(A(x))Ω = 0

because Ω is a separating vector for 9I0. Using temperateness and locality another
time one can show that the norm ||<5f(>4)Ω|| is polynomially bounded in t. (See
e.g. [13].) On the other hand one knows from Lemma 1 that (Ω,A'δt(A)Ω) is a
polynomial in t if A, Άe<H0. But \(Ω, A'δt(A)Ω)\ ^ \\δt(A)Ω\\ \\A'*Ω\\ and therefore
the degree of this polynomial cannot exceed a certain number which depends
only on A. Hence

(dN/dtN)(Ω,Άδt(A)Ω) = O

for some N and arbitrary /4Έ2l0. This proves the lemma for x = 0. For arbitrary
x = (xo,x) the statement is a simple consequence of the fact that δt(A(x))Ω =
T(x)δt_X0(A)Ω.

What remains to be done is to show that the number N in the above lemma
can be fixed independently of A. To verify this we must specify an operator Be%0

which generates (together with its translates) an irreducible set of operators.
A suitable candidate is B= j dArxh(x)φ(x). Here the test function h(x) has compact
support and h(p) has no zeros in momentum space4. It is the second property
of h which makes it possible to construct from each test function/(p) with compact
support in momentum space another test function

) = f(p)/Hp)

such that j dA'xg(x)B(x) = J d4xf(x)φ(x). But the test functions with compact
support are dense in the Schwartz space £f and since φ is tempered and irreducible,
it is obvious that B has the desired properties. Now we can prove

It may be inferred from [1] that such functions exist
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Lemma 3. There exists a number N such that

(dN/dtN)δt(A) = O

on the domain D(Q) for all AE'HQ.

Proof. As a consequence of the properties of δt mentioned earlier the operator Q(t)
defined in relation (15) is arbitrarily often differentiable with respect to t and the
domain D(Q) is stable under the action of the derivatives (dN/dtN) Q(t). Furthermore,
δt(A) = [Q(ή,A] for all ^4e9I0. Bearing in mind Lemma 2 one gets therefore for
some finite N and arbitrary xeIR4

l(dN/dtN) β(ί), JB(x)] = (dN/dtN) δt(B(*)) = 0

where B is the operator specified above. Thus (dN/dtN) Q(t) commutes with an
irreducible set of operators. It must therefore be a multiple of the identity which
can only be zero because Q(t)Ω = δt{l)Ω = 0. But this implies

(dN/dtN)δt(A) = 0

for arbitrary ^4e2I0.

In the course of the above argument we incidentally proved the first part of
our main theorem, viz.

(dN/dtN)Q(t) = O

for some finite N. As was indicated in the introduction we do not know in general
for which values of N this relation holds. (To answer this question one has probably
to take also non-linear properties of the three-point function into consideration
in the analysis of Chapter 2.) However we have a simple argument which shows
that N = ί in all models with short range forces and a complete particle inter-
pretation.

To begin with we have to make a brief excursion to collision theory5. We
consider for simplicity the model of only one neutral particle with mass m. In
such a model one can specify smeared polynomials B in the basic field φ which
create one-particle states from the vacuum Ω. Furthermore, these operators can
be chosen in such a way that B*Ω = 0. We then define

(/ being an arbitrary test function and ωp = ]/p2 + m2) and construct the Haag-
Ruelle approximants

«PΛ.../ n(ί) = B / l(ί)...B /.(ί)β. (17)

These sequences converge strongly in the limit of large t

and the linear span of the vacuum Ω and the limit vectors Ψ0/* fn is dense in
the Hubert space J f if the model is asymptotically complete. Now we are prepared
to prove

5 For detailed explanations and proofs of the statements made in the subsequent paragraph we
refer to the lecture notes of Hepp [13] and the book of Jost [6]
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Lemma 4. In an asymptotically complete theory of a massive, neutral particle the
relation

holds for all ^4e2I0. Consequently

Q(t) = Q

Proof Owing to the mass gap, the Wightman functions of the basic field φ have
strong clustering properties for large space like separations of their arguments.
This makes it possible to extend δt from the algebra 3ί0 of locally smeared poly-
nomials in φ to the algebra 31 of all smeared polynomials in φ. The extension is
defined by

<5t(yl)= s-lim J d3x[ρ(ί,jc),i4], AeM (18)

and the limit exists on the dense set of vectors {AΩ:AeςΆ}6. It follows then from
(1) that (AΏ,δt(A)Ω)=-(δt{A')Ω,AΩ) for arbitrary A.ΆeW where δt is given
by relation (18) if one replaces ρ by ρ*. Since the operators Bf(t) introduced above
are elements of 91 one gets

\(Ψfι,.. /n(t), δt(A)Ω)\ = \(Bfί(t).. .Bfn(t)Ω, δt(A)Ω)\

= \(δt(Bfί(t)...Bfn(t))Ω,AΩ)\

£\\δt(Bfl(t)...BfJt))Ω\\.\\AΩ\\

ύc \\AΩ\\ (19)

and the constant c does not depend on t. The last inequality can be verified using
similar techniques as in the well known proof establishing the existence of collision
states [6,13]. In particular one has to exploit the clustering properties of the
Wightman functions and the asymptotic behaviour of solutions of the Klein-
Gordon equation. Since the argument is straightforward we omit the details.
Consider now the vector valued function t->δt(A)Ω with ,4e9ί0. It follows from
Lemma 2 that this function is a polynomial of a certain degree M in t

δμ)Ω= Σ f.Φn. (20)
ιi=0

The asymptotic completeness of the model guarantees that {Ψof*
some collision state Ψ0/^ fn if ΦM Φ 0. Therefore

\(ΨTί..fn, δt(A)Ω)\ ̂ cv\t\M, Cl>0

for large enough |ί|. On the other hand it follows from relations (19) and (20)
that for certain constants c2, c 3

.../n, ΦM) + 0 f° r

^ \(ψfι.. . / n ( ί ) , δt(A)Ω)\ + \(ψγ;m ..fn-Ψfl... fn{t\ δt(A)Ω)\

It should be noticed that δt does not map 21 into itself in general
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But this is impossible if MΦO because \\Ψ°/^../n—
 ι^//1.../n(

ί)ll approaches zero
for large positive t. Therefore δt(Λ)Ω = δ(Λ)Ω for all t and since Ω is separating
for 210 the statement is proved.

Concluding Remarks

We conclude this paper with a list of generalizations of the main theorem which
are more or less obvious:

a) It was of no relevance in our discussion that space has dimension d=3.
The analysis can be carried through for any d^.1 and the theorem holds in a
model world with an arbitrary number of spatial dimensions.

b) The assumption that ρ is a polynomial in the basic field φ can be relaxed.
It is only needed in the proofs that ρ is a local polynomial in temperate fields
which are elements of the Borchers class of φ. Therefore our theorem covers also
the physically relevant examples of tensor currents treated in Ref. [3] and in
the articles quoted there.

c) Wightman theories with an arbitrary (but finite) number of fundamental
Bose and Fermi fields do not cause any additional difficulties and the theorem
holds equally well in these models. For infinitely many basic fields the proof of
Lemma 3 is no longer applicable. (It was crucial there that one can specify a
finite number of fields which generate an irreducible set of operators.) However,
Lemmas 1, 2 and 4 remain true with obvious modifications.

d) For Haag-Araki fields [14] (although they are bounded operators) the
argument in Chapter 2 cannot be simplified because it is based on linear properties
of the vacuum expectation values, only. However, the proofs of Lemmas 2 and 3
(where positivity played an important role) can be reduced to some few lines:
if ρ is a localized, bounded operator and A a localized Haag-Araki field it follows
simply from locality that

and c depends only on the localization regions of ρ and A. Thus N^A in Lemma 3.
Therefore a slightly improved version of the main theorem holds in this framework
of field theory.

e) Lemmas 1, 2 and 3 remain also valid for densities ρ[x] which are finite
sums of localized operators ρ(m) multiplied with monomials x{m) = x™°x™ιx™2x™™3:

That our arguments also apply to such densities illustrates the fact that we did
not fully exploit translational covariance in the proofs. However, translational
covariance was essential for Lemma 4 and in particular for the proof of relation
(19). This estimate has to be modified by

where M is the highest degree of the monomials x{m) in ρ[x]. Then

(dJV/dίJV)β[ί] = 0

for some N^M+1 and this result fits completely with intuitive expectations.



22 J. Bros et al.

Finally we want to point out that there exist densities ρ which are not ex-
pressible as finite sums of smeared tensor fields but which generate nontrivial
constants of motion Q, nevertheless. A simple example is

ρ = f d*xd*yf(x, y): φ(x)φ(y): with f{x,y) = \ £ / - / - + m2} g(x, y)

where φ is a scalar, free field with mass m and g an arbitrary test function with
compact support. It is easy to verify that the corresponding β's are conserved
and in general non-trivial. This is clearly due to the fact that there are infinitely
many conservation laws in a free field theory. It is unlikely that similar multiply
localized densities generate non-trivial ζ)'s in the presence of interaction (see
e.g. [15]). There the only genuine sources of constants of motion seem to be
smeared tensor-currents.
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