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Abstract. The axioms for Euclidean Green's functions are extended to hyper-
function fields without being supplemented by any condition like the linear
growth condition of Osterwalder and Schrader.

§1. Introduction

In a previous paper [1], which will be quoted as NM I, we have formulated the
quantum field theory in terms of Fourier hyperfunctions, successfully in showing
that Wightman's axioms for tempered fields can be extended to hyperfunction
fields. In particular we have manifested that the support concept of Fourier
hyperfunctions allows us to state the locality axiom, in spite of the disadvantage
that the test function space for hyperfunctions contains no C00 functions of compact
support.

It is quite natural that questions may arise whether the hyperfunction fields
work effectively in the scattering theory, dispersion relations and other provinces
of the quantum field theory relating to local singularity structure or momentum
space analyticity properties of fields. Another interesting question perhaps
concerns the Euclidean formulation of the hyperfunction quantum field theory.
In order to get a reconstruction theorem for tempered fields satisfying the usual
Wightman axioms, Osterwalder and Schrader [2, 3] were compelled to introduce
a technical axiom, what they called the linear growth condition, in formulating
the axioms for Euclidean Green's functions. When tempered fields are replaced
by hyperfunction fields, which are of a class wider than the former, can the technical
axiom such as the linear growth condition be removed completely? In other
words, one may ask whether we can formulate a set of axioms for Euclidean
Green's functions which contains neither the linear growth condition nor something
else and is equivalent to a set of axioms for Wightman hyperfunctions set up
in NM I.

The last question is answered affirmatively in the present and a subsequent
papers. To this end, however, we find it necessary to make a slight modification
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of the definition of the Fourier hyperfunctions, while preserving all the results
obtained in NM I. This will be done in the following two sections. This modification
is very slight indeed, but will turn out essential for our purpose. The new Fourier
hyperfunction will be called the Fourier hyperfunction of type II in distinction
from the old one, the Fourier hyperfunction of type I, we used in NM I. The
relation between the both types of Fourier hyperfunctions is that the type I is
included in the type II. The presentation is divided into two parts. In the present
paper we will be concerned with the quantum field theory of Fourier hyperfunction
fields of mixed type, a subset of type II fields which contains all of the type I
fields. As for the widest class of Fourier hyperfunction fields, the type II fields,
the equivalence of the relativistic and Euclidean quantum field theories will
again be attained in a subsequent paper to be published elsewhere.

In the fourth section we formulate Euclidean Green's functions for hyper-
function fields by continuing the time variables to the imaginary axis and study
their properties. In the fifth section we set up a set of axioms for Euclidean Green's
functions, which contains no analytic properties other than a distribution property.
This section is also devoted to the proof of the reconstruction theorem from
Euclidean to relativistic theories, thus establishing the equivalence of the two
theories for hyperfunction fields.

§2. Test Functions

Notatins and conventions are the same as in NM I, otherwise specified explicitly.
Let us first define

(2.1)

|)/7W}, (2.2)

and put t/k, l ; m = [C/2. J
k x [C71; J' with l = n-k, namely

2 ; ι l l , l^i^fc and z,.et71 ; m,fc+l^w}. (2.3)

Let further $™(t/M.J be a Banach space of tho_se functions f(z) which are ho-
lomorphic in Uk>l;m, continuous in the closure UkJ;m of Uktl;m and satisfy

(2.4)

II k j Z ; m is the norm of the Banach space &™(Uktl. J. The space of rapidly decreasing
holomorphic functions g?kj is the inductive limit of the Banach spaces {@™(Ukj.m}}:
3?kl = mdm\im(9™(Uk>l.m) ^\/ is a DFS-space. It is seen at once that ^'Ofll is
nothing but ̂  we have defined previously in NM I. We shall sometimes write

^** = ̂ ιι,o II is also found that ^π,0C^ f c > π- f cC^o,n for 0</c<n.
Let ZΓ™ be a Banach space of those entire functions which satisfy the condition

|/|mΞsup|/(z)|exp{|Rez|4/m-m|Imz|4}<oo, (2.5)
zeCn

where
n n

|Rez|4 = £ |Rez/ and |Imz|4 = £ |Imz/.
j=ι j=ι
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|/|m is the norm of the Banach space 3~m. The inductive limit of Banach spaces
{έΓm} is one of the spaces yf of GeΓfand and Shilov having the indices α = l/4
and j8 = 3/4 (see [4], p. 220).

Lemma 2.1. &ΊμC0*kj and the original topology of ^^ is stronger than that
induced by ^fc /.

Proof. If z e U f c ; /.m(raΞ>2) we have a series of inequalities

|Rez|4/ra-m|Imz|4

rri m m

for some constant c. Hence \\f\\k,ι;m^eC\f\m f°r every fe^m. Therefore

and consequently ^?/4C^\/, and the topology of ^Ift induced by 0*ktl is weaker
than its original topology.

Proposition 2.2. ίf^fa is dense in ̂ k>l.

The proof of this proposition is somewhat lengthy, so that we shall leave it
to the appendix. From this proposition follows immediately

Proposition 2.3. 0>^ is dense in 0*kfl, in particular in &^.

In the Euclidean theory we need some classes of distributions, whose test
function spaces are related to the spaces &Ί ,m(R") of C°° functions satisfying
the condition 1

, p = sup \Dlf(x)\eM"» (1 - 1/pM < oo , (2.6)

where p = 2, 3, ... . The topology of &Ί >m(IR") is given by a countable set of norms
I00

m,pSp =,

Let χn = (χ1, ...,xn)elR4π and xj = (x(j, jc7 )elR4. We introduce subspaces of

W(IR4") as follows:

(IR4");/(2cJ = 0 if

Ixf-x^l/m for some i=t=;}, (2.7)

^ = {/ e ̂  χ ^ m(R4π) ; /kn) = o unless x? > 1/m

and x,°+ ! - x 7° > 1/m for 1 ^7 ̂  n- 1 } , (2.8)

m(lR4");/(xn)-0 unless x?>l/w for 1^/^n}. (2.9)

Each of these sets equipped with the induced topology of ̂  1 m is a closed subspace
of ^ ltm. If m<m', then ^C '̂, ^< C«^' and ̂  C^T We denote by «Ό, ^<
and #'+ the inductive limit of spaces {̂ }, {«^} and {^+}, respectively.

1 We write ^1>m instead of &liA, A = m/e, the latter being the notation used in Gel'fand and Shilov
[4] and also in NM I
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§3. Fourier Hyperfunctions of Mixed Type

We let (C^xIR*, k + l = n, be identified with IRn+fe and denote its compactification
by BM, i.e., DM = JR"+/C LJS^"*"1. The topology of DM is given by a way similar
to ET^D0'", the compactification of IR" we have considered in NM I. It is evident
that the closure of IR" in DM is identical with D". We write Qfc' l = Όk> l x 3R',
which is a generalization of Q" = Q°'" we have met in NM I.

Definition 3.1. (The sheaf of slowly increasing holomorphic functions.) Let Ω be
an open set in QM. We denote by &kj the sheaf determined by a presheaf {0M(Ω)},
where 0kjZ(Ω) is the set of all holomorphic functions (e$(Ωn(C")) such that

sup |/(z)|e~ε'z' <oo for any e>0 and any compact set K in Ω.
zeKnC"

Definition 3.2. (The sheaf of rapidly decreasing holomorphic functions.) We denote
by Φkίl the sheaf determined by a presheaf {(9k ?Z(Ω)}, where Ω is an open set in
Qfc'7 and 0M(Ω) is the set of all holomorphic 'functions (e$(Ωn(P)) such that
for any compact set K in Ω there exists some positive constant δκ and the estimate

sup \f(z)\eδM < oo holds.
zeKnC"

Definition 3.3. (Topology of Θkί ^K).) Let K be a compact set in ID". We give βk> t(K)
the inductive limit topology indmlim @™(Vm), where {Vm} is a fundamental system
of neighbourhoods of K in QM, satisfying Fm^>Fm + 1, and $™(FJ is the Banach
space of all holomorphic functions /(z) (e$(Fmn<C")) that are continuous in
J/^nC" and for which |/(z)|£ΞCe~ | z | /m holds for some constant C (depending
on /). The norm of 0™(7J is defined by ||/||m= sup |/(z)|e|z|/m With this

zeFmn<Cn

topology &kj(K) is a DFS-space.

Remark 1. We have used the symbol Vm^Vm+ί to denote that Vm + i has a compact
neighbourhood in Vm with respect to the topology of QM.

Remark 2. For ̂  = Π>" we may construct Vm as given by C/^/^uC^, where C^ is
the point at infinity of Ukj;m. Therefore we have ^k t = &k j(]Dn).

Remark 3. The introduction of the new neighbourhood U2;m, (2.2), and the re-
placement of Q" = DMxιIR" by QM are the only essential alteration we have
made in comparison with NM I.

Definition 3.4. Let Ω be an open set in D". We choose an open set Fin QM which
contains Ω as a relatively closed set and defines ^?fc>/(Ω), the space of Fourier
hyperfunctions of mixed type over Ω, by the cohomology Hn

Ω(V,Θkl). They are
called Fourier hyperfunctions of type I or II according as (fc, /) = (0, w) or (π, 0).

Theorem 3.5. A presheaf {^M(Ω)} with ^kJ(Ω) = Hn

Ω(V,θkίl) is a flabby sheaf.

Theorem 3.6. When K is a compact set in D", we have
in particular ffl

The proof of these theorems is akin to that of similar theorems for Fourier
hyperfunctions of type I and we have no novel remarks to add particularly (see
Kawai [5]). Since the Fourier transformation of &kίl is a topological isomorphism,
its dual defines the Fourier transformation of
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Remark. It follows from Proposition 2.3 that the space of Fourier hyperfunctions
of type I or of mixed type is included in the space of Fourier hyperfunctions
of type II.

Proposition 3.7. ̂ kίjί®^k2j2 is dense in 0>kl + k2th + l2.

Proof. Mityagin [6] has shown that ylftQR?1)®^^2) is dense in
By Lemma 2.1, ^ι//4(IRfcl + /0®^ι//ί(IRfc2 + ί2)C^1,/1®^2,/2 and the topology
of &Ίfc(Rk+l) induced by ̂ M is weaker than its original topology, and ^1

l

/^(]Rk+l)
is dense in 0>ktl by Proposition 2.2. Therefore ̂ >kί,ιl®^>k2,ι2 *

s dense in ^/C1 + /c2j1 + ί2

n

Lemma 3.8. A separately continuous multilinear form M on Y[ ^kvjv is jointly
v = l

continuous, where (/cv, /v) takes on either (1, 0) or (0, 1) for each v.

Proof. Since 0>k>l for every k and / is a DFS-space, it is a strong dual of a reflexive
Frechet space. We have the lemma by the help of a multilinear version of Theorem
41.1 of Treves [7].

n

Proposition 3.9. Let M be a continuous multilinear form on ["] ^fcv> /v. Let further
v = l

for z,te<L and ε>0

hl(t) = [2πi(t-z)Yl coshεz/coshεί (3.1)

and put

...,ή;n). (3.2)

Then φE(z^ ...,zn) is an ε-increasing holomorphic function on (<C — IR)", of type I
or II with respect to zv according as (fcv, /v) = (0, 1) or (1,0). Here by "ε-increasing"
it is meant that the function φε(zi9 ...,zn) has the estimate \φε(zl9 ...,zw)|^

Proof. For type I variables we consider l/ l j m, given by (2.1), and its complement
; |Imz|>l/m}. If zeC/ c

1 ; m /, m>mf>0 and m>l/ε, we have

sup |coshεz/(ί-z)coshεί| eltl

ίel7i;W

for all m. Thus it is found that hε

z(t) belongs to ^0, i A similar estimate holds
for type II variables. Therefore we have

(3.3)
v = l

It is easy to see that φε(zi9 ...,zπ) is separately holomorphic and consequently
holomorphic by Hartogs' theorem on holomorphy [8]. Thus φε(zί9 ...,zj is an
β-increasing holomorphic function on (C — IR)".

Proposition 3.10. Let 0fi(zl9 ...,zw) be as in the preceding proposition. Then for
any set of gve(9™(UkvJv.ml m<l/ε and l^v^n.we have

. . . 9 g n ) 9 (3.4)
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Im z
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Fig. 2

Γv is the path in the zv complex plane given in Figure I or 2 according as
the zv is a variable of type I or II. In the figures δ<l/m and tanθ^l/m.

This proposition is obviously true by Cauchy's integral formula.

n

Proposition 3.11. A separately continuous multilinear form M on J~J ^kv,ιv uniquely
v = l

defines an element F of (^M)', k=^kv and 1= £/v, such that M(gί9 ...,&,) =
V V

F(gιx...xgn) for gve Λv, Jv, 1S v ̂  n.
n

Proof M can be considered as a continuous multilinear form on Y[ ^kvjv-
v = l

By Proposition 3.9, the form M defines an ε-increasing holomorphic function
φε(z1?..., zn). It is clear that the integral

Fε(g)= J ^(zl5 ...,zn)^(z1? ...^^...dz,, (3.5)
Γι X. . . X Γ W

for every geΘ^(UkJ.J with m<l/ε defines an element of (u?(UkJ;m))'. From
Proposition 3.10 follows M(gl9 ...,gn) = Fε(gi x . . . xgn). The family {Fε}ε>0

determines an element F of (0*ki t)', since ε can be taken as small as one likes.
The uniqueness of F is evident from the fact that (X)^fcv,/v is dense in 0>kJ.

V

Remark. It is by this proposition that we can develop the quantum field theory
in terms of hyperfunctions of type II in a way completely parallel to NM I, where
it was formulated by means of hyperfunctions of type I.

Proposition 3.12. If F(z) is an infra-exponential holomorphic function of type II
defined in {zeC"; Imz>0}, then there exists a Fourier hyperfunction μ of type II
with suppμdIR+ such that

ί
yn

(3.6)

where IR+ = {xeIR"; Xy>0 for all j= 1, ..., n}. ̂  stands for the Fourier transform
and y is the upper branch of the integration path Γ of type II sketched in Figure 2.

Proof It is obvious that the integral on the right hand side of (3.6) defines a Fourier
hyperfunction of type II. Since the Fourier transformation is an isomorphism

there exists a Fourier hyperfunction μ of type II satisfying (3.6). We haven
only to show that the support of μ is contained in IR+. Without loss of generality
we may assume n=l. Let h^p) be a function given by (3.1), then it suffices to
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demonstrate that μ(hς(p)) is analytic in (C— R+. We have

= (2π)~1 1 (F(z) \e-^hl(p}dp}dz . (3.7)
y

Now let us define two functions /(z, ζ) and g(z, C) by

-δ

and
-δ

yv 5 s/ \ / j
— oo

respectively. Ifζ belongs to C— [ — δ, oo), the function /(z, ζ)e^ l j0 and is analytic
there with respect to ζ. The function g(z,ζ) is analytic in {Imz>0, ζe<C — R}
and satisfies there the estimate |#(z, £)| 5g Ce~δ(lmz) for some constant C depending
only on ζ. Equation (3.7) then is expressed as

$ F ( z ) f ( z 9 ζ ) d z + $ F ( z ) g ( z 9 ζ ) d z

G(ζ) is analytic in C— [ — δ, oo). By introducing the path yω= {z; z — iωey} we
obtain

#(0= lim f F(z)g(z, ζ)dz = Q ,
ω->oo yω

because F(z) is infra-exponential and g(z, ζ) is restrained by the above estimate.
Since δ can be chosen arbitrarily small, we conclude that μ(hε

ζ(p)) is analytic in
C— [0, oo). This completes the proof of the proposition.

Proposition 3.13. Let F^(z) and F2(z) be two infra-exponential holomorphic functions,
as given in the preceding proposition, and suppose that

\Fί(z)f(z}dz=\F2(z)f(z)dz (3.8)
y" γn

is valid for every /(z)e^, then F1(z) = F2(z) in {zed?; Imz>0}.

Proof. For simplicity we again assume n = 1 as above. Let us take a point C = C*
on the upper half of the complex ζ-plane, then we can describe two paths y ( 1 )

and 7(2) so that y(2) is more distant from the real axis and not less inclined than y(1)

and the point ζ^ is found between the two paths. Consider the integrals

G^C)= J Fr(z)hε

ζ(z)dz, r,s=l and 2,
γ(s)

then G*(C) are holomorphic at ζ = ζ*. It follows from (3.8) that G\(ζ^ = G\(ζ^
and G2(C) = G2(C) if Im(<0. Since G2(0, r= 1, 2, are holomorphic if C is not on y(2),
the equality G2(Q = G^(Q holds. From F^f J = GΓ

1(f1|t)-G?(Q, r = l,2, we get
at once F^(ζ^) = F2(ζ^}. Thus, since Fr(z) are holomorphic in Imz>0, the required
equality holds there.
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Im z

Fig. 3

Rez

Proposition 3.14. Let M be a separately continuous form on $fe?0(IR+) x $0

then there uniquely exists a Fourier hyperfunction F of mixed type whose support is
contained inJSik

+ x ]&, such that M(f, g) = F(f xg\ where fE&ky0

Proof. With the function hε

z(t) given by (3.1) we set φε(z1? ...,zn) = M(hε

Zl, ...,/z ε

n).
It is not difficult to extend the proof of Proposition 3.9 to show that φ\z^ ..., zn)
is an ε-increasing holomorphic function in ((C — R+) f cx((C — IR)*. Then, for

a family of formulas

Fε(f)=
ϊ χfl

ε(z1,...9zn)f(z1,...9zn)dz1...dzn
(3.9)

defines an element of (<C)

fcj(R+ x IRZ))', i.e. a Fourier hyperfunction of mixed type
whose support is contained in 1R+ x ]R*. In (3.9) the path Γ is that shown in Figure 1
and the path Γ+ is given in Figure 3 above. F(f x g) = M(f, g) follows immediately
as in Proposition 3.10.

Proposition 3.15. Suppose F(ζ\g) for gε&Qj be a holomorphic function in ζ be-
longing to {Ce(Cfe; Im(>0} and satisfy

for any m, ε>0 andζ in {Imζ7 >ε(l + |Re^|), 1 gjrgfc}. Then there exists a unique
Fourier hyperfunction μ of mixed type with support IR+ x IR* such that

μ(el(''ζ} x g ) = F(ζ\g). (3.11)

Proof. For / e ̂ fc 0 we have

where the path γ is an analogue of that described in Proposition 3.12. Therefore
(3.11) is obtained by Propositions 3.12-14. Uniqueness follows from the fact
that μ(el(''ζ) xg)=Q for any gε0*0ίl implies μ = 0.

Remark. This proposition becomes crucial when one comes back from the Euclidean
theory to the relativistic theory.

The theory of H-υalued Fourier hyperfunctions of type II (or mixed type) can
be formulated without new difficulties, by starting from the counterpart of Defi-
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nitions 3.1 and 3.2, where \f(z)\ should be replaced by \\f(z)\\H, the norm in a
Hubert space, of an H-valued .holomorphic function /(z), as was done in NMI
for //-valued Fourier hyperfunctions of type I (see also [9]). We will cease to
continue such a translation word for word, but we only mention the following:
Let F0 = QM and Vj= {zeQM; Imz ΦO}. Further we put V= nn

j=l Vp Vj= n ίφ; Vt,
W={Vj}nj=0 and W = { V j } n

j = ί . Then we have the isomorphisms

H^(QM?^M)~HWP^^ j

where Hn(W, W; HSkJ) is the relative cohomology of covering and L(ΘkJ(W\ H)
is the space of all continuous linear operators from 0fc ^D") to the Hubert space H.

In the following we shall state proposition only in the language of scalar-valued
Fourier hyperfunctions, though some of them are applied to //-valued cases.
This is entirely for the sake of convenience, and of course all of them can be
trivially extended to the case of//-valued Fourier hyperfunctions.

§4. Euclidean Green's Functions for Hyperfunction Fields

First of all let us recollect the convention of variables used in NM I and introduce
some new notations. As for the set of four-vectors, the difference vectors are
^o^^i* ζj = xj+ι~xr ^=J = n~^ in coordinate space and correspondingly
qk=pk+ι + ...+pn, O^fc^n —1, in momentum space, so that

n n— 1

Σ Pj-χj= Σ flfc ί*
j=l k=0

holds, where pj>χj = p(}χy — pj Xj is the Lorentz-invariant inner product of two
four-vectors pj = (p?,pj) and χj = (χ^9 xj). For any four-vector x = (x°, x)eIR4 it is
meant that θx = ( — x°, x) and ιx = (ix°, x). This convention also applies to a set
of four-vectors xπ = (xι, ...,xJelR4" by writing θxn and ιxn. On occasion it is
more convenient to rebind xn in the form xn = (x£, x«) Then x^|, |xπ| and |xκ| stand

for Σ \*% Σ Σ W l a n d Σ Σ I^L respectively.
j=l j=lμ=ί j=l μ=0

We begin with stating the axioms for Wightman functions.

Fourier Hyperfunction Property

(RO) 2B0=1, 2Bn(xJe(^4π,oy for n^ί

and there is a Lorentz frame in which 2BΠ is a Fourier hyperfunction of type I
for spatial variables. (The Lorentz frame may be different for different 2Bm see
the remark below.)

Relativistic Coυariance. For each n, 2B^ is Poincare invariant:

(Rl) Wn(xn) = Wn(Λxn + a),

where A is a proper Lorentz transformation and Λxn + a = (Ax1-}-a, ...,Λxn
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Remark. The axiom (RO) states that we are considering a set of those Wightman
Fourier hyperfunctions of type II for which 3Bn(Axn) = %R'n(xn)e(&ni3n)' for some
Lorentz transformation Λ, where (̂  3π)' is the collection of specified Fourier
hyperfunctions of mixed type, namely, type II for n time-variables and type I
for 3rc space-variables. To this set belong all of the Wightman functions that are
constructed from type I Fourier hyperfunction fields considered in NM I. Owing
to the axiom (Rl) we are allowed to replace (RO) by the axiom (RO'): 2B0 = 1
and Ώin(xn)ε(0*ni 3n)', n^.1, for all Lorentz systems.

Positίvίty. For any finite sequence /0, /15 ...,/# of test functions such that /0eC,
, there holds

(R2) £ffl8B +J#x
n,m

where ( f * x /J (χπ, ym) = f*(xn}fm(ym] and /π*(xn) - fn(nx\

Local Commutativίty

(R3) SBπ(xl5 . . ., Xj, xj+ 1? . . ., xπ) = 2BΛ(xι, . . ., X;+ 1, x,, . . ., xn) if (x;- x j+ 1)2 <0 .

Cluster Property. For any space-like vector α and x fce IR4fc, yn _ ke IR4(" ~k\ l^k^n— 1

(R4) Urn 2Bπ(xfc, j;n_ f c
- —

Spectral Condition. By the translation invariance there exist Fourier hyperfunctions
Wn. le^-u.so.-i))' such that 2Cn(xn) = W ^^.J holds. Then

(R5)

where V+ 1 is the closure of the forward light cone in D4(" 1} and Wn_ί is the
Fourier transform of Wn_ l t

Suppose 3P be a vector space of sequences/ = (/0, /1? . . .\ where /0eC,/ne^Πj 3n

for l^n^JV and /π = 0 if n>N for some finite N. Let (/,£/)= X 2βn+m(/n* x^J
n,m

with f,ge&. Owing to (R2) this serves as a semi-definite inner product and the
completion of P/JΓ, where JT = {fe&\(£f) = Q}, defines a Hubert space 3F.
Let Φ be the natural map of & into tf. We~set Φ0 = Φ(1,0,0, ...)• If /has only
one non vanishing component / = /ne^n 3π, we write formally

n(Xn)fn(Xn)dXn (4.1)

π is a continuous linear operator from ^K>3|I to J .̂ Upon setting Φn(χn) =

^ - w e h a v e

-ι). (4.2)

Theorem 4.1. For n = l,2,..., ίte support of Ψn(qo9qn-ι), the Fourier transform
of Ψn9 is contained in V™, namely, Ψn

Proof. Since \\Ψn(fn)\\ is written in terms of the Fourier hyperfunction W2n-ί,
it follows from the spectral condition (R5) that Ψn is a continuous linear operator
from Θn^ 3n(V«) to 2tf . Thus the support of Ψn is contained in V*.
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Proposition 4.2. If μe(&n 3/K?))', then F(ζn) = μ(eί(('>ζ)}) is holomorphic in the tube
£^=]R4wχi7Λ:={£πe(C4"; lmζneV^}9 and in Euclidean points it satisfies the
condition that

^ (4.3)

is valid for <f?>2ε, j== 1, ..., n, and every ε>0. Here ((z9ζ)) is the abbreviation of
n

Σ ( zj 'C/) and Imζne V+ means that Im^e V+ for each j.
J = l

Proof. It is readily seen that ei(('>®} for ζneZn

+ belongs to Qnt3n(Vΐ). Hence μ(ei(('^}]
is defined well and holomorphic there. Let z = x + iy and consider

then U" is a neighbourhood of V". If ξ° >2ε for each j, we have

£ C'ε sup exp { - ((y, ξ)) - ((x°, ξ°)) + ε|xj + e\ya\ + ε\y°n \ }
zeUε

£C; sup exp {ε|ϊB|-((x°, ξ°)) + ε\xn +ε2(l + |xκ°|)}
zeUg

^
which completes the proof. Here we have written ((37, jc)) for ]Γ (j/ Jt,-) and

j=ι

((x°,ξ0)) for Σ^°-
j=ι

This proposition can easily be extended to the case of Jf -valued Fourier
hyperfunctions, particularly yielding

Theorem 4.3.

"
π 0 , _n-1=n exp

fc=o

is α?7 2? -valued infra- exponential analytic function in £+ and /zas Ψn(ξ0,ξn_1) as
its boundary value.

Theorem 4.4. Let

"Σ ζk q , (4.5)
f c = ι J /

then it is invariant under proper Lorentz transformations and we have

W;_ 1(Cn_ 1) = (Φ0,fn(z,Cπ_1)), (4.6)

-ι) = (ϊ/

π(z,Cn-1), Ψm(z',Cm-ι)) (4-7)
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Proof. Since ^^(g^J is Lorentz invariant, so is Wn^ί(ζn^i\ too. It follows
from (4.2) that

(yn(p,2n-!),ym^

and hence the theorem can be obtained by using (4.4).

By the relativistic covariance (Theorem 4.4) and the Bargmann-Hall-Wightman
theorem [10], we obtain a single-valued analytic extension of the Wightman

function W^^^J into the extended tube ϊn

+-ίxt=ίίB-ιe<C4('I"1);4ίn-ιe2n

+"1

for some /LeL+(C)}, where L+(C) is the set of all complex proper Lorentz trans-
formations and ζj = zj+ i-Zp 1 ̂ j^n—ί. The function SBn(zn), defined by 9EBπ(zII) =
W^-!^-!), is analytic in σext={znE€4nιζn_ίEΪn

+~lxi} and has the Fourier
hyperfunction 2Cn(xn) as its boundary value. Finally using the locality (R3) we
obtain a single-valued analytic extension of Ώ$n(zn) into the set

σext,Perm=feneC4^zπ ( l l )eσ;!x t for some permutation π},

where zπ(w) = (zπ(1), ...,zπ ( Πj) and (π(l), ...,π(n)) is a permutation of (!,...,«). We
denote this extension again by 2Bn(zM). It is invariant under the complex Poincare
group and also under permutations of the arguments z l 5 ...,zn. The set σext,perm
contains the set of Euclidean points (of noncoinciding arguments) Ew={zwe<C4 w;
Rez£=0, Imz^O/or αH k and zi^zj ifίή=j}.

Definition 4.5. The restriction of the Wightman function 2Bn(zJ to En is called
the n-point Euclidean Green' s function or the Schwinger function.

We set Q0 = %β0 = l and

Sn(xJ = 2BΠfe), (4-8)

sn_1(^ i_1)=»;_1oi l l_1)=® I I(Sj, (4.9)
where xneΩn= {xneIR4n; - X i Φ X j if i=¥j}> Then we have

Theorem 4.6. (Distribution property)

S0 = l am/ S.e^oCIR4"))' far each n^l .

Proof. Let

Since sup |SΠ_ i(ξn_ J| e"8!!"-1! < oo for all ε>0 by Proposition 4.2, it is evident
ξn-ιεQε

that S'M_1e(^+(IR4("~1)))'. With the aid of a geometrical argument as made by
Osterwalder and Schrader [2] we have the theorem.

From the invariance properties of Wightman functions immediately follows

Theorem 4.7. (Covariance and symmetry.) The Schwinger functions Sn(xn) are
invariant under the inhomogeneous Euclidean group iS04 and under the permutation
of the arguments x l 5 . . ., xn.
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We define real analytic 3P -valued functions Ψ^(x1,ξn_ί) by Ψ^ix^iξ^ ^)
for x?>0 and ξg>0, l^fc^n-1, and put Φf(xn)=ϊίJ(x1"ξII_1). Then by virtue
of Theorem 4.4 it is easy to see the following lemma:

Lemma 4.8. Suppose xj, £°, xi°, <^ ° fee αΰ positive, then

This lemma yields the positivity property of the Schwinger functions.

Proposition 4.9. (Positivity property.) For all finite sequences /0, /1? ..., /N, w/zere
/0e(C and /ne^<(!R4'1), l^rc^N, ίfcere ΛoWs £ ®π+m(®/π* x /J^O, m

Proo/ For /Be ^<(IR4") the integral

ΦEn(fn)= ^n(^

is well defined and

)= ί ®n+M(θ(nχ), x^/ife^Jx^fe^;
= I &a+m(xn,x'm)fn(θ(^))gm(x'Jdxndx'm

Thus we obtain

Proposition 4.10. ///e^pR4"), 6f£'?<(lR4m) α«rf α = (0, α)εIR4, we have

lim<3n+m(Θf*xgλa)=&n(Θf*)&m(g) ,
Λ~~+ oo

where gλa is defined by gλa(xn) = g(xn - λa\

Proof. Let U(a, 1) be a unitary operator defined by U(a,ϊ)Φn(f) = Φn(fa)
for αelR4 and fe^n>3n, where fa(xn) = f(xn — a). If a is a space vector, as in the
proposition, it is clear that C/(α, l)Φ^(xM) = Φf(xπ + 0) and hence l/'(α, l)Φ^(gf) =
Φf(0fl) for ^e^<(lR4"). The cluster property (R4) implies that for any two vectors Φ
and Ψmjjf, and a space vector α, there holds lim (Φ, U(λa, Ϊ)Ψ) = (Φ, Φ0) (Φ0ϊ )̂

λ->00

Upon substituting Φ = Φ%(f) and Ψ=Φξl(g) we obtain the proposition.

Proposition 4.11. Tfe correspondence from Wightman functions (Fourier hyper-
functions) to Schwinger functions (distributions) is one to one.

Proof. Suppose that

Jdίn-^Q for all

then »ς_1(ϊί l l_1) = 0for ^>0, fc=l, ...,n-l. Since Wn.^n^) is a real analytic
function, W;_1(^π_1) = 0 if lmζn.ieV+~ί. Byjthe uniqueness of Fourier trans-
formation of Fourier hyperfunctions we have Wn- ± = 0.
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§ 5. Axioms for Euclidean Field Theory and the Reconstruction
of Relativistic Fields

In the preceding section, from a given set of Wightman Fourier hyperfunctions
satisfying the axioms (RO)-{R5), we have constructed a set of Sch winger functions
having the following properties :

Distribution Property

(EO) S 0=l and S^xJe^IR4"))' for each n ^ l .

Euclidean Covariance

(El) <Sn(xJ=<Sn(Rxn + a)

for each n ̂  1 and all (α, R)eiS04.

Positivity

(E2) Σ® „+„,(©/„* x/JS O
n,m

for all finite sequences /0, /1? ..., fN of test functions /0eC and
Here 6>/n(x J - /n(θxn) and θx = ( - x°, x).

Symmetry

(E3) SΛ(xJ = Sn(xπ(π))

for all permutations π:(l, ..., w)->(π(l), ..., π(n)).

Cluster Property

(E4) lim Sn+m(0/* x g J= <5a(Θf*)<5Jg) .
-> o

As for (EO) it is worthy to remark that ^0(1R4") is stα&fe against iS04 in contrast
t° ^«,3« which is noί sίαbfe under Lorentz transformations.

Conversely we can prove the following theorem.

Theorem 5.1. (Reconstruction of the relativistic theory.) To a given sequence of
Euclidean Green's functions satisfying (EO)-(E4) there corresponds uniquely a
sequence of Wightman Fourier hyperfunctions having the properties (RO)-(R5)
and whose Schwinger functions coincide with the Euclidean Green's functions
given initially.

For the proof of this theorem we need some preparatory propositions. First
let ^< be a vector space of sequences / = (/0, /1? ...), where /0eC, /ne^<(lR4") for
l^n^N and fn = 0 if n>N for some finite N. Let <£g>= Σ ®n+m(®f* X9m)

with /, ^e^<. Owing to (E2) this serves as a semi-definite inner product and
the completion of f </^Γ, where Jf={£e% <; </,/> = 0}, defines a Hubert
space Jί. Let Φ£ be the natural map of f < into Jf . We obtain (Φ£(/), ΦE(g)} =
</, jgf>. We set Φ0 - Φ£(l, 0, 0, . . .). For /ef < and α = (0, α)elR4 we define Us(a)f by
(Us(a)f)n(xn) = fn(xn — ά). We can extend it to a unitary operator Us(a) in JΓ by
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(El) (see Osterwalder-Schrader [2]). If/ has only one non vanishing component
/Ξ/ne^<(IR4"), we write formally

ΦE(f) = ΦE

n(fn)= ί ΦϊfeJΛfeJdx,, . (5-1)

Let us define ΨE(xl,ξn-l) = Φ%(xn\ then it is a vector-valued distribution over
^+(IR4") and we have by (E2)

(yft*!,̂ -!),̂ ^

Lemma 5.2.For t^O we define t:^_<-^^_< by ( t f ) n ( x n ) = fn(xn-t)9 where ί = (ί,0).
Then Tt induces a continuous one-parameter semigroup of self-adjoint contraction
operators on Jf\

Proof. By (El) we have </,ft<gf> = <?;/,#> for £ge(β< and obviously fsft=fs+t.
Since in virtue of (2.6)

= sup \D\Θf*(xn)gm(ym - 1)\ expίε (l - -} (\xn\ + \ym\)\
χ,y,\ι\zp ( \ Pi I

m)\ e x p ε l - (|xn|

(5-3)

where (5 = εm(l — 1/p), we get K/, ij/)|^Cae
a|t| for any positive £ and some

constant Cδ. We can improve this estimate by a repeated application of the
Schwarz inequality :

F 2 - f c C f - V l ' l , (5.4)

where we have written </, /> 1/2 as ||/ 1|. Since the right hand side of (5.4) converges
to l l / l l 2 eδ^ as π^oo, and ^ can be taken arbitrarily small, we obtain

Thus Tt is a contraction operator, and it induces a continuous one-parameter
semigroup of self-adjoint contraction operators {TJ. This completes the proof.

Let — H be the infinitesimal generator of Tt, then

) . (5.5)

We define for/e^0 ) 3 n and ge^0^m

ψE

n(x°,en^\f)= j ^(x,JΛ-!)/(x, «„-!)«„-! (5.6)

and

°, JJ_ J/), f ̂ (χ'°,_C-
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where Ψ^(x,ξn_ ^ has already been given next to (5.1). Let C+ = {ze(C;Rez>0}
and write <Cfc+=(C+)k

Remark. If one starts from Fourier hyperfunction fields of type II, the spatial
integrals (5.6) and (5.7) cannot exist, because then one has to take the functions /
and g from ^3n,o instead of ^0;3« This technical difficulty in the reconstruction
of the relativistic theory for type II fields will be resolved in another paper.

Proposition 5.3. For fixed f, g, the distribution Sn + m_ 1(ξ°+ m_ 1 |/gf) is the restriction
to the product of positive real half-axes, R"+

+m~1, of a function analytic in <CM++'"~1.
There exists a vector-valued function !Pf(z0,^-il/) analytic in C+ such that

Furthermore ίS
r

M + m_1(g+ m_1 |/^f) satisfies for ε>0 and C^+^eΓ

|^||χ^'»-1l (5.9)

for all p, where the norm \\ - \\p on Θp

c is given by (2.2) and Γ is a closed convex cone
which is strictly -contained in C++m-1.

Proof. We use the holomorphic semigroup e~τH, Reτ>0, to construct the analytic
continuation in the time variable of Schwinger functions. Following Osterwalder
and Schrader [3, 11], Sk(ξ%\h) and ^(x?, £°_ιl/) can be analytically continued
to C+. In order to get the estimate (5.9), we first derive it for the imaginary time,
namely we show that if ξ° > ε > 0, j= 1, . . ., fc, then

for any p and ε>0 and some constant C£)P. This task can be carried out in the
same way as Osterwalder-Schrader [3] with an obvious modification due to
the difference of the seminorm of test function spaces. Then, by the use of the
maximum principle, we obtain the following estimate :

for any p and ε>0 and some constant Cĵ , where C(^} is the envelope of holo-
morphy of

= U {0-1Z°.x0+x'0+z,&0_/); (Λtf

and

Since ε + C[N) is a cone contained in <C+ and tends increasingly to <C+ as N^oo
and ε->0, the estimate (5.9) follows. For more details see Osterwalder-Schrader
[3,11].
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By this proposition and Proposition 3.15, we conclude that there exist Fourier
hyperfunctions Wn-1 with support in IR+"1 xIR3 ("~1 } such that

j w;_1(^_1)/j(|n-1)d|n-1=sn_1(|°-1l/ι), (5.10)
where FKn_ x is the Fourier transform of Wn_ 1 and fte^0 3^_ 1}. From the Euclidean
co variance (El) follows the relativistic in variance of Wn-^ and the support of
Wn-ι contained in Vn

+~l.

Remark. In Equation (5.10) h can be taken from £e1(\R3(n~1)) instead of ^Q^-D
by virtue of the distribution property of £„-1(^-1). This corresponds to (R5).
In fact the Fourier transform / x g o f f x g , fe^>

n_1 0 and gε&Ί(Sl?(n~^\ is an
element of (9n-ι^^-^(V"'1), and hence W ^ _ i ( / x # ) is well defined.

Proof of Theorem 5.1. Define Ώ$n(xn)=Wn_1(ξn_1). The hyperfunction property
(RO) is obvious. The positivity condition (R2) follows from Proposition 5.3 and
the fact that the Wightman function Wn-ι(ζn-^ can be obtained as a boundary
value of the analytic continuation of the Sch winger function Sn_1. (E4) shows
that for any vector Φ, <FeJf we have lim <Φ, Us(λa)ψy = (Φ, Φ0> <Φ0? Ό>

λ-* oo

which implies the cluster property (R4). The relativistic covariance (Rl) and the
local commutativity (R3) are proved by the same arguments as used by Oster-
walder and Schrader [2]. (R5) has already been mentioned after the proof of
Proposition 5.3. Equation (5.10) implies that the corresponding Schwinger
functions coincide with the Euclidean Green's functions given initially. Uniqueness
follows from Proposition 4.11. The proof of Theorem 5.1 is thus completed.

Appendix. Proof of Proposition 2.2

Let $ be a set of those entire functions /(z) which satisfy

J |/(z)|2exp{|Rez|4/3-8|Imz4}dF<oo, (A.I)
<CΠ n n

where dV = dxdy with z = x + iy, and dx= Y[ dXjanddy = J~] dyj9 then it is
.7=1 / = !

clear that <f C^ίμ. Next, for positive ε and an open set ΩcQM we define three
sets #f^-\Ω\ <&(Ω) and L^~ε(Ω) in succession. ^2

0~
ε(Ω) is the set of all those

holomorphic functions in C"nΩ which satisfy

J |/(z)|Vz|dF<oo for every JC. (A.2)
C"nX

is the set of all those holomorphic functions in <C"nΩ which satisfy

j \f(z)\2e2^4dV<αo for every K. (A3)

is the set of all those measurable functions in <C"nΩ which satisfy

J \f(z)\2eε^dV<oo for every K. (A.4)
C»nK

In (A.2HA.4), K stands for a compact set such that KζΩ. We denote by &~ε(Ω)
the closure of <&Ω in L~εΩ.
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If we choose ε so as to satisfy ε<δ, then £/2

0~
δ(Ω) is contained in 2£~ε(Ω\

To prove this it is sufficient to verify that &(Ω] is dense in stf^~δ(Ω\ Suppose μ
belong to (s/^~δ(Ω))f and be orthogonal to &(Ω). We are going to prove that
such a μ vanishes. We use the Hahn-Banach theorem to find a certain u whose
support is compact in Ω and for which J \u\2 e~δ^ dV<ao and

C"

(μ,v)= $ ύvdV for every υe^~δ(Ω). (A.5)
c"

If φ(z) belongs to ^~\Ω\ then φ(z)e~zβ/n for any n>Q belongs to <&(Ω) when
the condition sup |Imz7 |

2/(l + |Rez7 |
2) < 1/2 is satisfied. Therefore we have

zeβnC"

Q = (μ,φ(z)e-z6/n)= f ύφ(z)e-z6lndV-+ f ΰφ(z)dV as n^oo
Cn <£n

by Lebesgue's theorem. Thus we have proved that £/^~δ(Ω) is contained in ^~\Ω).
Because of ̂ M= indlimj/fjc~^(t/ f c ί.J, in order to prove the denseness of

ε,m '

5^4 in ̂ M it suffices to ascertain the validity of the following statement: If an
element μ of (2£~ε(Uktl.m))' is orthogonal to $, then μ is zero. From here on we
fix ε and m^2. By the Hahn-Banach theorem there exists some u whose support is
contained in UkJ.m+ε and for which J \u\2 e~δ\z\ dV<oo and

Cn

(μ, u)= J ΰvdV for every vε2£~ε(Uk>l.m).
<cn

We define

λ>0

where φ and ψ are strictly plurisubharmonic functions defined by

φ(z)=

and

where

and ρε is a mollifier in IR2n. Further tp+(z) = max{0,φ(z)}, and K and ε>0 are
so chosen that Uk / ; m +^3{z;t/;(z)^0}3suppt/ holds for some <5>0. Since

which is not less than some constant depending on λ, @ is contained in <f . Since μ
is zero on S and suppwC Uk ι;m+ε,u belongs to L2((C", — φ) and (μ, !;) = 0 for any v
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in 2. Moreover u = 0 wherever ψ>0. By the Proposition 2.3.2 of Hδrmander [12]
we have some / which satisfies the following conditions:

(i) 9f = u,

(ii) supp/Ct/ M ; m + a ,

(iii) /eL(

2

θ!l)(C",-0),

where 5 is the dual of the Cauchy-Riemann operator d. With this / we can easily
verify a sequence of equalities

0= J (dv)fdV= f v(9j)dV= f vΰdV = (μ,v)
<cn <c" c«

valid for any vε&(Uktl.m). Thus we have proved that μ is zero on a dense subset
of 3F~ε(UkJ.m). Hence we conclude that μ is vanishing.

Acknowledgements. The authors wish to thank Professor M. Sato for suggesting the possibility of
Fourier hyperfunctions of type II and for helpful discussions.

Note Added in Proof. Results of the quantum field theory in terms of pure second type Fourier hyper-
functions are summarized in our short note which will soon appear in Lett. math. Phys.; a full paper
will be published in Publ. RIMS Kyoto Univ. 12 Suppl.
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