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Abstract. If α and α' are one-parameter automorphism groups of a von Neu-
mann algebra 9Jί, α' is said to be a bounded perturbation of α if \\odt — αt||->0
as £—>Ό. We give a complete characterization of the bounded perturbations
α' of α. In particular, we show that if α can be implemented by a strongly
continuous one-parameter group with self-adjoint generator (Hamiltonian)
H, then oί can be implemented in the same way and the corresponding Hamil-
tonian H' can be chosen to be of the form H' = VHV~ί + h, where V is a
unitary of SDt and /z =

1. Introduction

The equilibrium states of an infinite system in quantum statistical mechanics
are believed to be characterized by the KMS-condition [1,2]. Recently Haag
et al. [3] and Kastler [4] have taken the important step of deriving this condition
from postulates allowing a direct physical interpretation. The novel ingredient
of their approach is the claim that equilibrium states should be stable under
small local perturbations of the dynamics. Their result has stimulated us to take
a fresh look at the concept of perturbations of dynamics and to ask what is the
natural class of gentle perturbations of dynamics within the framework of the
algebraic approach to quantum theory.

If one thinks in terms of quantum mechanical perturbation theory, one would
perturb dynamics by replacing the total Hamiltonian H of the system by

H' = H + λh (1.1)

where h is a bounded observable and λ a small coupling constant. When dealing
with infinite quantum systems, the total Hamiltonian has a direct physical sig-
nificance only in the case of quantum field theory, so that it is important to rewrite
the Ansatz (1.1) in a form which makes no explicit reference to the total Hamil-
tonian. The dynamics must be thought of as being described instead by a con-
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tinuous 1-parameter group f-xx, of automorphisms of the algebra 21 of local
observables. If ft is a bounded local observable, one can define a perturbed 1-
parameter group ί-»αj of automorphisms by setting

(1.2)

where

*?= Σ A a* ' [ * . - ! ••• )dtΛί{h)at2{h)...atn{h), (1.3)
rt=O 0 0 0

(compare [5; Definition 1] and [6; Section 4]). It is this notion of perturbed
dynamics which was used in deriving the KMS condition in [3]. The connection
between (1.1) and (1.2) is as follows: if 21 is realized on a Hubert space Jf7 where
ott(A) = eιtHAe~ιtH, Ae$l for some self-adjoint operator H on jtf*, then the self-
adjoint operator H' = H + h satisfies odt(A) = eίtH'Ae~ίtH', 4e2l .

Another feature of infinite quantum systems is that, in contrast to elementary
quantum mechanics, it is no longer reasonable to idealize the observables of the
system as all self-adjoint operators on a Hubert space and the physical states as
density matrices. There are two aspects to this: first of all, in quantum field theory
the presence of superselection rules makes it necessary to consider inequivalent
irreducible representations. Secondly, in statistical mechanics the representations
associated with equilibrium states are not irreducible but are typically factorial
representations of type IIIj^. As a consequence, there are restrictions on the
relative Hamiltonian if the perturbed dynamics is again to give a 1-parameter
group of automorphisms of the local observable algebra1. It suffices to suppose
that the relative Hamiltonian is itself observable, but it is less clear whether this
condition is also necessary.

For these reasons we consider it desirable to have a notion of perturbed
dynamics which makes no a priori reference to a relative Hamiltonian, but instead
results naturally from the view that dynamics is described by a continuous 1-
parameter group of automorphisms ί-x^ of the local observable algebra. Such a
notion may serve as a useful starting point for a purely algebraic version of
perturbation theory. We consider another 1-parameter group of automorphisms
£->αJ to be a "bounded perturbation" of the dynamics if

| |α;-αJ->0 as ί->0. (1.4)

It turns out that it is possible to give a rather complete description of bounded
perturbations of dynamics; we find in particular that such a perturbation cor-
responds to a Hamiltonian H' of the form

H'^VHV-'+h (1.5)

where V is a unitary operator and ft a bounded self-adjoint operator both from the
von Neumann algebra of global observables. If the algebra of local observables

1 There may well be cases where this condition is too restrictive. For example, if the electromagnetic

interaction is considered as a perturbation of strong interaction physics, one would expect the ob-

servable algebra to be enlarged by the perturbation so as to include operators measuring the local

electric charge
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is a simple C*-algebra then V and h may even be chosen from the algebra of local
observables. The precise results may be found at various points in the text
(Theorems 4.3, 4.8, and 5.4).

2. Topology

In our discussion of bounded perturbations of dynamics the local structure of
the observable algebra will not play any direct role. In fact, to make things as
simple as possible, we shall begin by analysing bounded perturbations of dynamics
in the case of a von Neumann algebra 9JΪ. In the physical setting SCR should be
thought of as the von Neumann algebra generated by the relevant representation
of the observable algebra. In quantum field theory, this would be the direct sum
over all superselection sectors; in statistical mechanics one might take the cyclic
representation generated by an equilibrium state.

We now consider a 1-parameter automorphism group ί-x^eAutSJϊ which is
weakly continuous in the sense that I R a ί ^ ω o φ l ) is continuous for each Ae^Jl
and each normal state ω of 991 Physically ott should be thought of as describing
the time evolution of the system.

2.1. Definition. A 1-parameter automorphism group £->α|eAut9Jϊ is said to be a
bounded perturbation of ί-»αf if \\oc't — αJ-^0 as ί->0.

The terminology2 is intended to suggest that the relative Hamiltonian of α
with respect to α is bounded. In physical language this would mean that a finite
energy transfer is involved in passing from α to α'. If at were the identity auto-
morphism i for each £, a bounded perturbation of α would just be a norm con-
tinuous 1-parameter group oί and this corresponds to a bounded generator
(Hamiltonian) for oί (see, for example, [7; Corollary 4.1.14]).

We set

γ^aζof1, ίeR (2.1)

and see that

7s+t = ys

syt, M e R (2.2)

where if β is an automorphism then sβ = asβa^s. Equation (2.2) is the cocycle
identity; it says that γ is a 1-cocycle over IR with values in AutϊR, where Aut9Jί
is considered as a group carrying an action β^sβ of IR.

2.2. Proposition, α' is a bounded perturbation ofoc if and only ifγ is a norm continuous
1-cocycle with values in InϊR, the group of inner automorphisms of $R.

Proof. ||αj — αr|| = \\yt— z||, so yt is norm continuous at t = 0. However, the cocycle
identity (2.2) then shows that γt is norm continuous at t = s. Now, by a result of
Kadison and Ringrose [8; Theorem 7], any automorphism β with \\β—1\\<2 is
inner. Hence yt is inner for t in some neighbourhood of 0. The cocycle identity
(2.2) now implies that yt is an inner automorphism for all t. Conversely, if yt is a
norm continuous 1-cocycle with values in InSOΐ, then (^ = yμt is easily seen to be a
bounded perturbation of α. •

2 The term norm continuous perturbation is more accurate from a mathematical point of view
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If SCR is a von Neumann algebra, we denote by (̂SDΪ) the unitary group of 3Jί
in the norm topology, and if C/e^SOΐ), we denote by ad U the inner automorphism
generated by U. Let 3 denote the centre of 9JΪ, then In9JΪ as a group is just the
quotient group of <%{W) by the central subgroup %(3). The next step in the analysis
is to see how the norm topology on In9Ji relates to the quotient topology on
^(9JΪ)/^(3) The norm topology on InϊR is defined by a metric δ,

δ(σ,σ ')=| | (7-(7 / | |=sup{ | | (σ-σ / X4) | | :^GaR,M| |^ l} . (2.3)

The topology on In9Jϊ induced by the quotient topology on ^(9JΪ)/^(3) is defined
by a metric δ'

= adί/,(τ/ = adt7 /}. (2.4)

2.3. Proposition. The metrics δ and δ' are equivalent so that InSOΐ and
may be identified as topological groups.

Proof. We shall show that

δ'(σ,σ)^δ(σ, σ)^2δ\σ,σ), σ, σ'eIn9Jί. (2.5)

It suffices to take σ' = ι in (2.5). Now

so

δ(σ, ι)S

However, the inequality the other way round is not so easy and we may deduce it
from [8; Lemma 5]. But for completeness we give a proof with the aid of two
lemmas. •

2.4. Lemma. // σ = ad U then

δ'(σ, ι)= inf sup inf | |A17£-£|| (2.6)
Ce% EeC λeΎ

where <% denotes the set of finite partitions of the identity in 3> i e. the set of finite
sets of mutually orthogonal non-zero projections of 3 of sum /, and T the set of
complex numbers of modulus 1.

Proof Given C e ^ , we may find some E^λEeΎ, EeC with

sup inf | |£-At/£|| = sup||£-A£C/£|| = | | /- X λEEU\\.
EeC λeTΓ EeC EeC

Since ^ λEE is a unitary of 3? we see that
EeC

δ'(σ, ι)^ inf sup inf \\λUE-E\\.
Ce% EeC λeΈ

On the other hand, given ε>0, there exists a Ze°U(^) with
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Now by approximating the spectral resolution of Z, we may pick Ce^ 7 and
E-+λEeΈ for EeC with

UZ-Σ λEE\\<ε.
EeC

\\ZU-I\\+ε^ II X Λ££[/-J|| = supμ££E/--£||^ inf sup inϊ \\E-λUE\\ .
£eC EeC Ce<<ί EeC λeΈ

Since ε is arbitrary, (2.6) follows. •

2.5. Lemma. δ'(σ, ί)^δ(σ, i).

Proof. Pick Ue^U^SR) with σ = a d t / . Given ε > 0 , dissect T into intervals Al9...,Δn

such that

where £(ZJJ)E9JI denotes the spectral projection of U corresponding to Δr Let
F(Δj)e3 denote the central support of E(Aj). We may then pick C e ^ such that
if Ee C and 1 £j^n9 either E^F(Aj) or £F(zl) = 0. Now let λ l 5 λ2 be in the spectrum
of UE in the reduced von Neumann algebra 9JΪ£. Choose j 1 and j 2

 s u c h that
λ^Δjs λ2eAh and £^F(zJ7i)F(zJ72). Then F(Δh)F{Δh)ή=0 so there is a non-
zero partial isometry VeWl with VV*^E(Δh) and F*F^£(zJ j 2 ) . Now

\λ1-λ2\=\\λιV-λ2V\\ S U.V-UVW + IIC/7- FU|| + \\VU-λ2V\\

^2ε+\\σ-ι

Thus

Hence

sup
EeC λeT

Lemma 2.4 now gives δ'(σ, ι)^δ(σ, ή + 2ε, and since ε is arbitrary, we have com-
pleted the proof of the lemma, which in turn completes the proof of Proposition
2.3. •

Remark. If we combine the techniques of Lemma 2.5 with [9; Lemma 2.3.10a],
it is easy to derive a formula for the spectrum of an inner automorphism in the
Banach algebra 5(301) of weakly continuous linear operators from ΪR into 9Jΐ.
Since this formula is nowhere needed here we state it without proof.

SpadL/=Π U {λ1λ21:λl9λ2eSpmEUE}. (2.7)
CeV EeC

Our goal in the remainder of this section is to show that we can find a con-
tinuous mapping ί-̂  [7,6^(501) such that yt = &dUt. Of course, if one could find a
continuous cross-section s:In90ΐ^^($Dl), i.e. ad°s is the identity on InϊR, then
we could set Ut = s(γt). However, this is much too optimistic because there is no
such cross-section even when $R is the 2 x 2 matrix algebra. Instead, we shall
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show that we can define s on some neighbourhood of the identity in InStR so that
it is a continuous local cross-section and this will suffice to lift y to %(W). We state
the result in more generality than needed because we feel that the following
proposition is of interest in its own right.

2.6. Proposition. Let 21 be a C*-algebra with identity and 33 a C*'-subalgebra
containing the identity. Let </>:2l-»23 be a conditional expectation from 2ί to 33,
i.e. a positive linear mapping with φ{I) — I satisfying

φ{BA) = Bφ(AlAe%Be%. (2.8)

Let ^(21) and ̂ (23) denote the unitary groups of 21 and 23 in the norm topology so
that ^(33) is a closed subgroup of ^(21). Then the homogeneous space ^(2I)/^(93)
of right cosets admits a local cross-section.

Proof. Let i r = {Ue%((Ά):φ(U) is invertible}. Since the set of invertible elements
of 23 is open in the norm topology and φ is continuous, Y is an open neighbour-
hood of the identity in ^(21). We see from (2.8) that, if UeY9 |0(C7)I0(C7)~ 1C/ is
independent of the choice of U in its right coset. Here \φ(U)\ denotes as usual the
positive square root of φ(U)*φ(U). Also \φ(U)\φ(U)~1 G%(^B\ SO we get a local
cross-section s of the canonical mapping p, say, of ^(2ί) onto ^(2l)/^(23): this
is defined on the open set p(Y) by setting

It remains to show that s is continuous or equivalently that s°p is continuous.
Now U^φ(U) is norm continuous, B-*B~ι and B-*\B\ are norm continuous on
the set of invertible elements of 33 and φ is bounded on the unit ball of 21. Hence,
U->s°p(U) = \φ(U)\φ(U)~1U is norm continuous on V. •

In the case where 21 is ^(Jf) , 23 is the complex numbers (C and φ is a vector
state, this method of finding local cross-sections was used by Wigner [10; Section 5]
in his treatment of representations of the Poincare group. In more learned terms,
the conclusion of Proposition 2.6 is that ^(21) is a locally trivial fibre bundle
with base ^(2I)/^(S3) and fibre ^(33).

Proposition 2.6 may be applied to the case under investigation because, as
follows from the results of Kadison and Singer [11; Lemmas 2 and 3], there is a
conditional expectation from the von Neumann algebra SCR onto its centre 3 In
fact, we may improve this slightly.

2.7. Lemma. If 9JΪ is a von Neumann algebra acted on by a weakly continuous
1-parameter group of automorphisms α and 3 is the centre of 30?, then there is a
conditional expectation from 5CR to 3 such that atφ = φat, ίelR.

Proof. Let Φ denote the set of bounded linear mappings of 9Jί into 3 with the
point-weak-open topology. In this topology the convergence of a net {φβ}CΦ to
φ means that fφa(A) converges to fφ(A) for a l l/6 3 * and v4e$R. In this topology,
the unit ball

Φ1 = {φeΦ:sup(\\φ(A)\\/\\AMί}
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is compact (compare [12]). Now the set of conditional expectations from 9JΪ to 3
is a non-void compact convex set in Φ. Also if φt = atφa_t and φ is a conditional
expectation, then so is φt. Hence, by the Markov-Kakutani theorem (see [13;
V.10.6]), we may find a conditional expectation φ such that φt = φ for all ίeR. •

2.8. Proposition, α' is a bounded perturbation of α if and only if there is a norm
continuous mapping (s, t)-κx,s(Ut) with values in the unitary group of $R such that

oc't{Λ)= Vμt{A)Uf , AeWl. (2.9)

Proof. Let α' be a bounded perturbation of α. By Proposition 2.2, y is continuous
as a mapping from IR to In9JΪ and by Proposition 2.3, y is still continuous as a
mapping from R to ^(9W)/^(3) Now applying Proposition 2.6 with 2l = 2R,
23 = 3 a n d Φ a conditional expectation such that φoct = octφ (Lemma 2.7), we can
find a local cross-section of ̂ (9Jl)^^(9W)/^(3) which commutes with the action
of R Since (s, f ) - ^ is norm continuous, we can find a continuous mapping
(s, ί)->αs(C7t) from IRx [-ε, ε] to (̂SDt) for some ε>0, such that yt = &dUt and
U0=I. Thus we have satisfied (2.9) for te [ —ε, ε]. We now extend Ut to [ — 2ε, 2ε]
by setting

Ut+ε= UΆ(Utl U_t^= U_εa_ε(U_t\ te [0, c] . (2.10)

It is clear that Ut so extended is continuous and satisfies (2.9) for ί e [ — 2ε, 2ε].
Using this process iteratively, we can define a norm continuous mapping (s, t)—>
oίs(Ut) satisfying (2.9). The converse statement is trivial. •

In the above proof we have used the fact that y is a cocycle when extending
t-+Ut with the help of (2.10). However, using methods from the theory of fibre
bundles, sharper results can be proved; for example, any continuous mapping
from a contractible space into InϊR may be lifted to a continuous mapping into

3. Cohomology

This section is devoted to some rather standard cohomological considerations3.
We begin by giving the formal definition of the cohomology we shall be using.
Since we have been working in the norm topology but t^>at is only assumed to
be weakly continuous, it is convenient to introduce the weakly dense C*-algebra
aR0 = {;4eSR: ||oφl)-v4||-^O as ί^O} consisting of those elements of SCR which
have norm continuous orbits under α. We let 3 o = ^ o n 3 ; &t a n d &>[ induce
automorphisms of $Jl0 and 3o

A 1'Cocycle ΓeZ^IR, <%(3Jl0)) is a continuous mapping Γ :IR->^(S01o) such
that Γ0 = I and

Γs+t. (3.1)

A 1-cocycle Γ of the form Γt = Uat(U)~γ with Ue^/(Wίi0) is called a 1-coboundary.
Two 1-cocycles Γ, Γ are said to be equivalent or to differ by a 1-coboundary if

3 The reader with no appetite for these questions may omit this section and proceed by assuming
that the mapping U of Proposition 2.8 satisfies the identity (3.1)
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there exists a Ue°i/{W0) such that

i > l / - 1 Γ ί α ί ( l / ) . (3.2)

The equivalence class of Γ is called the cohomology class of Γ and the set of
cohomology classes is denoted by #*(IR, ^(9JΪO)). We can of course replace ^($R0)
in these definitions by another topological group on which IR acts continuously
by automorphisms. In particular, replacing ^(9JΪ0) by In9Jί0 with the norm
topology, the 1-cocycle y of (2.1) is an element of Z*(IR, In9JΪ0).

We also need the definition of the second cohomology of IR with coefficients
in the Abelian group Φ(3o) A 2-cocycle zeZl(lR, ^(3o)) *s a continuous mapping
z :Rx IR^^(3 0 ) such that z(0, s) = z(s, 0) = J, S G R and

z(s, t)z(s +1, u) = φ(t, u))z(s, t + u). (3.3)

A 2-cocycle z of the form z(s, t) = λs + tλ~1tχs(λ^1) for some continuous mapping
Λ,:R-»^(3o) i s called a 2-coboundary. Two 2-cocycles are said to be equivalent
or to differ by a 2-coboundary if there is a continuous mapping λ:R->^(3o)
such that

z'(s,t) = λ;+\z(s,t)λsφt). (3.4)

The equivalence class of z is called the cohomology class of z and the set of co-
homology classes is denoted by H (̂1R, ̂ (3o))

We have seen in Proposition 2.8 that if α' is a bounded perturbation of α then
there is a continuous mapping i7:R->^(5Olo) such that

αί = adC/tαt. (3.5)

In this section we show that we may choose U in such a way that it satisfies the
cocycle identity (3.1). To this end we introduce a function z of two variables which
measures the deviation of U from a 1-cocycle

z(s,ί)=[7A(C/t)C/;+

1

f, (3.6)

and whose properties are summed up in

3.1. Proposition, z is a 2-cocycle with values in ^(3 0 ) , Z G Z ^ ( R , ^ ( 3 0 ) ) . The co-
homology class of z depends only on the cohomology class ofyeZl(lR, In30ϊo). Hence
there is a 1-cocycle Γe Z^(R, ̂ (9W0)) satisfying (3.5) if and only if z is a 2-coboundary.

Proof. The proof is a routine computation. The unitary z(s, t) defined in (3.6) must
lie in 3o sin ce it induces the trivial automorphism and has a norm continuous
orbit under α. It is clear that z:]RxIR->^(3o) is continuous. Now

z(s, ' s + t+u

where we have used the fact that αs(z(ί, u))e3 and thus commutes with Us. This
proves (3.3), so zeZ^(R, ^(3 0)) Now if Uf :R^^(50to) is continuous and satisfies
(3.5), then the cocycle z derived from U' is related to z by

z'(s,t) = λsas(λt)z(s,t)λ;+\

where /IS = ^ L / S ~ 1 G ^ ( 3 O ) Thus z and z differ by a 2-coboundary and the co-
homology class of z depends only on yeZ^(R, In9Jί0). However, if Fe^(9Jί0) and
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y's = adVyscidois{V)~\ then y ^ a d C F l / ^ F ) " 1 ) and the zf computed from (3.6)
with U's=VUstts(V)~ι in place of Us equals z. Hence the cohomology class of z
depends only on the cohomology class of y. •

Another way of looking at this proposition is to say that we have an exact
sequence of cohomology

induced by the exact sequence of topological groups

Hence to show that there is a ΓeZ*(IR,^(9Jt0)) with αί = adΓ fα ί ? it is enough to
know that if^IR, ^(3o)) *s trivial, i.e. that every 2-cocycle is a 2-coboundary.

For completeness we shall give a proof of this result which does not seem to be
in the literature. For the often quoted case where ^(3o) *s t n e circle group T,
the triviality of H2(IR, T) apparently goes back to Iwasawa who proves [14;
Lemma 3.4] that every extension of T by R splits. We make no use of the concept
of group extension and begin with a lemma which is purely algebraic in nature
and holds for any coefficient group.

3.2. Lemma, a) // z is a 2-cocycle such that

z{n,t) = I for Ogtt^UneZ

then for each ίeIR, s->α_s(z(s, ή) is periodic with period 1.

b) If z{s,t) = I for O ^ f ^ l then

z(s9t) = I for s, ίelR.

Proof. From the cocycle identity in the form

z(n, l)z(n+ 1, t) = ocn(z(U t))z(n, 1 + ί )

we deduce in case b) by iteration that z(n, t) =1 for t^0 and neTL. From the cocycle
identity in the form

z( -n,n) = (X-n(z(n> - 0M -n,n-t) (*)

we deduce that z(n, —t) = I for t^neTL. From the cocycle identity in the form

z(n, - ί)z(n - 1 , ί) = Φi-1 t))z{n91 -1)

since z(n, ~1) = I for neΈ, n^.0 we deduce by iteration that z(n,t) = I for neΈ,
n^O. However (*) now tells us that z( — nin — t) = IϊorneΈ,n^0. Hence z(n, t) = I
for neTL, ί e R At this stage, if we replace TL by IR everywhere, we have proved (b).
To complete the proof of (a), we simply use the cocycle identity again in the form

z(n, s)z(n + s,t) = ocn(z(s, t))z(n, s + t)

which shows that z(n + s,t) = an(z(s, ή) as required. •

The utility of Lemma 3.2 lies in the fact that every cohomology class contains
a cocycle satisfying the hypothesis of part (a).
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3.3. Lemma. Let z be a 2-cocycle and define λ0 = J,

then t-+λt is continuous and the 2-cocycle z' defined by

satisfies z'(n,t)=I for O g ί ^ l and neΈ. If \\z(s, t)-I\\ ^δ for 0^s,ί<;l then
\\zf(s, ή-I\\^2δt for O^s, t^ 1.

Proof. Let neZ, then since t-+z(n, t) is continuous and z(n,0) = I, it is clear that
t-+λt is continuous. Now z'(n, t) = λnoίn(λt)λ~λ, but λt = I for O^ί^l , so z'(n5 t) = I

then λs+t = z(l,s + t-ϊ) and z'(s,t) = z(s,t)z(ί9s + t-l)~1. Hence \\z(s,t)-I\\<δ
forO^s, ί^l implies ||z'(s, ί ) - / | | <2δ for O^s, ί^l. Q

3.4. Corollary. A 2-cocycle z with z(s, t) = I for O^s,t^ί is a 2-coboundary.

Proof. By Lemma 3.3 we may suppose further that z(n, ί) =/ for 0 ^ ί ^ 1 and neΈ,
and hence by Lemma 3.2a s->a_s(z(s, t)) is periodic with period 1. But then z(s, t) = I
for O^ίrgl, SGIR and the result follows from Lemma 3.2b. •

Remark. If z is a 2-cocycle and //εlR, then z'(s, t) = z(μs, μt) is a 2-cocycle for the
action t->aμt. This allows us to scale the results in Lemmas 3.2 and 3.3 and Corol-
lary 3.4 and we shall make free use of this in proving the next result.

3.5. Proposition. // $1 is an Abelian C*-algebra and ί-^oς is a strongly continuous
1-parameter group of automorphisms of 21, then //^(R, ^(2Ϊ)) is trivial.

Proof. Let zeZ^QR,<%(%)) and 0<fc<l/]/5, then we may pick ε>0 such that
||z(s, ί) —1\\ ̂ kϊoτO^s, t^ε. By Lemma 3.3 we may find an equivalent 2-cocycle z
such that ||z'(s, ί)-/||^2fc for O^s, ί^ε and z'{m,t) = I for O^ί^ε and ΠGZ.
By Lemma 3.2a, s->α_s(V(s, ί)) is periodic with period e. In particular, ||z'(5, ί ) -
/1| ^ 2fe for selRand 0 ̂  ί ̂  ε. Now let log denote the principal value of the logarithm
defined for operators Ae% with spectrum in the complex plane cut along the
negative real axis. The spectrum of z'(s, t) for 0 ^ t^ε is contained in {λe<£: \λ\ = 1,
Rei>0}. Hence putting y(s,t) = logz'(s,t) for O^ί^ε, the cocycle identity gives

y{s, t) + y(s + ί, M) = φ(t, u)) + y(s91 + M) (3.7)

if O^ί, u, t + u^ε. Furthermore, y(s,t) is jointly continuous in both variables.
Define

J
o

then t->ct is continuous. Also, since s—>α_Xy(s, ί)) has period ε,

ct=-ε~ί J dsct_s(y(s,t))
u

for all ueR Direct computation using (3.7) now shows that

cs+t-<xs(
ct)-cs = Λs,t), if O^s, ί,5 + ί ^ ε .
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Exponentiating and setting λs = exp cs we get

Λs + tα s(λ ί"
1μ 5" 1 = z/(s,ί) if 0^s,ί,

Since s->As, which is defined in [0, ε], may be extended to a continuous function
on all of IR, we see from Corollary 3.4 that z' is a 2-coboundary. This completes
the proof. Π

4. Smoothing

The results of the previous two sections may be summed up in the following
proposition.

4.1. Proposition, oί is a bounded perturbation of α if and only if there is a norm
continuous ί-cocycle Γ with values in ^(50i0)

 suc^

. (4.1)

Our next task is to gain some insight into the set of 1-cocycles Z*(R, %($Jl0)).
It turns out that differentiable cocycles can be characterized in terms of their
derivatives at ί = 0 and we begin with a smoothing procedure4 which allows us
to approximate continuous cocycles by differentiable ones. It is convenient to
formulate things in terms of a general C*-algebra 51.

Let 51 be a C*-algebra with identity and α a strongly continuous 1-parameter
group of automorphisms of 51. If feL^JS) and ΓeZj(IR,^(2I)), then we set

(4.2)

whereas the cocycle identity (3.1) gives

where fs(t)=f(t-s). (4.3)

It follows that s->Γsαs(Γ (/)) is norm differentiable if s->/s is norm differentiable
in LX(IR). Clearly by taking / to be a smooth approximation to the δ-function, we
get an operator Ωe5I as close in norm to the identity as we wish, such that
s->Γsocs(Ω) is as smooth as we wish. For our purpose, it even suffices to proceed
as follows: pick 0<fc<l and τ > 0 such that \\Γt — I\\^k for O ^ ί ^ τ and set

Ω^τ'1 jΓ tdt. Then t-+Γtoct(Ω) is differentiable in norm and ||Ω — / | | ^ fe<l so
o

that Ω is invertible.

4.2. Lemma. There is a unitary Ve^(51) such that t->Γt(xt(V) is differentiable in
norm.

Proof. Let Ω be as above, then t^Γtoct(Ω) is differentiable in norm. Hence so is
t->oct(Ω*Ω) = (χt(Ω)*Γ*Γtat(Ωl and Ω*Ω is invertible. Since, by the resolvent
functional calculus, £-> |JE? | - 1 is differentiable (even analytic) on an open set
containing Ω*ί2, ί^α ί ( |Ω |" 1 )=|α t ( ί2)Γ 1 is also differentiable. If V = Ω\Ω\~1 then V
is unitary and ί->Γf

ίαί(F) = Γfαί(Ω)αί(|Ω|~1) is differentiable in norm. •

4 Smoothing procedures for cocycles are well known in other contexts (see e.g. [14]). The reader
may find the analogy between a 1-cocycle and a 1-parameter unitary group helpful here
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At this point we are very close to our main result and, for the sake of the
reader who would prefer to be spared some of the more detailed information, we
interrupt our discussion of Z*(1R, ̂ /(Wj) to provide the most easily comprehensible
version of this result. We suppose, as we may, that 9JΪ is realized in some faithful
normal representation in which α is implemented by a strongly continuous
1-parameter group of unitary transformations. We then have the situation
described in

4.3. Theorem. Let Wbe a von Neumann algebra on a Hίlbert space ffi and H a self-
adjoint operator on J f inducing a 1-parameter group a of automorphisms of 9JΪ:

Then od is a bounded perturbation of α if and only if there is a Fe^(9JΪ0)
 an& a n

h = h*eyjlo such that ocf

t(A) = eiH>tAe~iH'\ AeWl, where H' is the self-adjoint operator
defined on D(Hf)=VD(H) by

H'Φ=VHV-1Φ + hΦ,ΦeD{H'). (4.4)

Proof. If α' is a bounded perturbation of α, then, by Proposition 4.1, there is a
1-cocycle ΓeZ^JR, W(WK0)) with α[ = adΓ ία t. By Lemma 4.2 there is a
such that t-^Γtoct(V) is differentiable in norm. Let

h=-i~

so that /z = /z*e$R0. We now define H' to be the self-adjoint generator of Γte
itH.

Then eiH>tAe'iH>t = oζ(Ay If ΦeVD(H), eiHtΦ = Γμt{V)eitHV-γΦ so that ΦeD(H')
and differentiating this expression we get

H'Φ=VHV ~1

The symmetry between H and H' shows that D(H') = VD(H). Conversely, given V
and h, define Hf by (4.4). It is easy to see that Hf is self-adjoint. If ft = 0, eiH>t =
VeimV~ι, so Hf induces â  = ad(Fa f(F~1))a i 5 which is a bounded perturbation
of α. Hence we may take V = I. Now let Γt be the solution of the differential equation

1 = iΓμt(h) such that Γ0 = I, then ΓEZ1^ ^(9Ji0)) [6; Section 4] and one sees

easily that Γte
iHt = eiHt. Thus H' generates a bounded perturbation of α. Π

In what follows, we revert to a space-free description, i.e. one making no
reference to an underlying Hubert space. The reader may, however, find it helpful
occasionally to think in terms of a Hamiltonian H.

Lemma 4.2 may be rephrased as a statement about cohomology.

4.4. Corollary. Every cohomology class of 1-cocycles in Z^(IR,Φ(2I)) contains a
representative which is differ entiable in norm.

The next step is to parametrize Z (̂1R, Φ(2I)) as a homogeneous space.

4.5. Definition. The inhomogeneous unitary group of a C*-algebra 21 with identity
is defined to be the group, f <%{<&), of pairs (h, V) where h = h*eSΆ and
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with the following composition law:

{h, V)(h\ Vf) = (h+VhΎ'\V V). (4.5)

We now define an action of J^(2I) on ZjflR, Φ(2I)). If ΓeZtfJR, Φ(SΪ)) and

= (O, V)eJ <%{<&), we set

we proceed as follows: let α; = adΓ ία f and define ΓeZ^IR,
to be the solution of the differential equation

(4.7)

with the initial condition Γ'0 = L This does define a unique element of Z*,
[6; Section 3]. Then one sets

(gΓ)t = ΓtΓt (4.8)

and one verifies immediately that gΓe Z*(IR, ̂ (21)). For g = (h9 V) we use the group
law g = {h, /)(0, V) to define gΓ. A routine computation shows that if g,g' eJ%{$X)
then g(gT) = (ggf)Γ, so that (4.6) to (4.8) do define an action of J ^ ( 2 I ) on

The action of </^(2I) on Zj(IR, ^(21)) induces an action of J^(2I) on the set of
strongly continuous 1-parameter groups of automorphisms of 21. If ΓeZ^(IR,<^p(2I))
denotes the trivial cocycle5, ft = I, ί eR, we define

teα)f = adteΓ)Λ^6^Φ(Sl) (4.9)

and omit the computation which verifies that this is an action.
We may also express this action in terms of infinitesimal generators in the

sense of semigroup theory on Banach spaces (see, for example, [15]). The in-
finitesimal generator δ of α is a norm closed derivation with domain D(δ) =
{AeM:t-+act{A) is norm differentiable}; if AeD(δ) then δ(A) = \imΓ\at(Ά)-Ά).

ί->0

If g = (h, F ) e J ^ ( 2 I ) and 8 is the infinitesimal generator of go, then

D(δ')=VD(δ)V-1, (4.10)

X + [ih, A\ AeD(δ'). (4.11)

4.6. Proposition. «/^(9I) acts transitively 6WoZ*(IR, ^(21)) and the stability subgroup
(isotropy subgroup) of the trivial cocycle f is the set of pairs (h, V) with VeD(δ)
and δ(V)V~1 = ih, where δ is the infinitesimal generator of a.

Proof Given ΓeZ^JR, ^(21)), pick V as in Lemma 4.2, let

We have preferred not to burden the text with the more precise notation Γα
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so that h = h* and set g = (h,V). We show that </^(9I) acts transitively on
Z£(IR,^(Sl)) by showing that Γ = gf. Now by (4.6) to (4.8) f
where Γ't is the solution of the differential equation

in/

with 7^ = 7. On the other hand, if ft= V'^^V) then f eZ^lR, ^(91)) satisfies

Hence Γt=VTtV~γ and Γ = gfΓ. Now suppose # / = /, then α ^ F " 1 is the
solution of the differential equation

with Γ'o = /. Hence FeD(5) and <5(F)F"* = /ft as required. Π

The result above implies that the set of cohomology classes can be charac-
terized as a quotient space of the Hermitian elements, 9Ϊ,, of 91. We let [Γ] denote
the cohomology class of ΓeZ*(IR,

4.7. Proposition. The mapping ft^[(ft,7)Γ] maps 9Ift onto iίJ(]R,^(2l)) and [(ft,7)Γ] =
[(ft',7)Γ] if ami on/y Ϊ/ ί/zβrβ is a unitary VeD(δ) such that δ{V) = i{Vh-h'V).

Proof. If ΓGZ^(IR,^(2ί)) then Γ = (h,V)f by Proposition 4.6. But (ft, F)Γ =
(0, W ^ F /JΓ SO [Γ| = [(K-1ft7,/)Γ]. Thus ft->[(ft,7)Γ] maps 9ίh onto
tf^IR, ̂ (9T)). Now [(ft, /)Γ] = [(ft', /)/] if, and only if, there is a Fe^(9I) such that
(0, vih,I)Γ = (h',I)Γ. Thus {Vhy-γ-h\ V)f = f, so by Proposition 4.6 FeD(δ)
and δ(V)V-ί = i(VhV~1-h') as required. Π

Returning now to bounded perturbations of dynamics, we note that (4.9) may
be used to define an action of J^(9JΪ 0) on the set of weakly continuous 1-parameter
subgroups of automorphisms of W which restrict to give a strongly continuous
1-parameter group of automorphisms of 9Jl0. By Proposition 4.1, every bounded
perturbation a' of a is of the form α ^ a d Γ ^ for some ΓeZ^(IR,^(9Jt0)) so we
obtain the space-free version of our main result.

4.8. Theorem. If a and a' are weakly continuous 1-parameter groups of automorphisms
of 9JI, od is a bounded perturbation of a if and only if od and a lie on the same orbit
under J^^UIQ). The infinitesimal generators δ and δ' of the restrictions of a and
α' to 9JΪ0 are then related by (4.10) and (4.11) for some Fe^(9Jt 0) and ft = ft*e9Jlo

Actually, the only penalty for dropping the hypothesis that α and oί are weakly
continuous in the above theorem is that the C*-algebra 9Jl0 need no longer be
weakly dense in 9JΪ.
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5. Simple C*-Algebras

One can reasonably argue that a perturbed dynamics should be considered as a
1-parameter group of automorphisms of a C*-algebra 21, the algebra of local
observables, rather than of the global von Neumann algebra 9JΪ. From a
mathematical point of view, it would be most natural to consider a strongly
continuous 1-parameter group of automorphisms of 9ί. In the situations
considered in physics this is not necessarily true unless one takes special care in
the choice of 91. We shall thus suppose that 91 is a weakly dense C*-subalgebra
of a von Neumann algebra SOί and that α extends by continuity to a weakly
continuous 1-parameter group ΰ of automorphisms of 9Jί. This is equivalent to
assuming that {91, α} admits a faithful covariant representation and this is always
the case when α is a strongly continuous 1-parameter group of automorphisms
of 91.

We define a bounded perturbation oί of α as in Definition 2.1 but replacing
SUΪ by 91. Setting yί = α;α~1 as before, we deduce from [8; Theorem 7] that yt

may be implemented by a unitary (7^^(901). It follows that oί extends by con-
tinuity to give a weakly continuous 1-parameter group & of automorphisms of 9Jί.
Furthermore, by applying the Kaplansky density theorem, we deduce that
l|όζ~octll = llαί~αίll a n d hence that $ is a bounded perturbation of ά. We have
now shown

5.1. Proposition. The bounded perturbations a! of a are in 1 — 1 correspondence with
those bounded perturbations όc' of όt which leave 91 invariant.

This reduction of the C*-algebra case to the von Neumann algebra case is not
entirely satisfactory because, although we know that the infinitesimal generators
δ and δ' of α and oί are related by (4.10) and (4.11) for some (Λ, V)eSW(Wlo)9

we have no explicit characterization of those elements of J^^Q) which give
perturbations leaving the subalgebra 91 invariant.

If 91 is a simple C*-algebra with identity we may get a more precise result.
This is an important case for physics because both the CCR algebra and the CAR
algebra are simple. Furthermore, Borchers has shown [16] that a local net obeying
certain standard assumptions of quantum field theory automatically gives rise
to a simple C*-algebra. In all these cases we may assert that yt = ad Ut with £7^91
[7; Theorem 4.1.19]. Ut is unique up to an element of the centre of 91, i.e. since 91
is simple, up to a phase factor. We then have an exact sequence of groups

and the cocycle γ is a norm continuous cocycle with values in In 91 (compare
Proposition 2.2).

5.2. Lemma. Let 91 be a simple C*-algebra with identity. Then ^(9I)/T may be
identified with In 91 as topological groups in the norm topology..

Proof. Pick an irreducible representation of 91; this is faithful so we may suppose
that 91 is a weakly dense subalgebra of a type I factor SDΐ. Arguing as before, In 91
may be regarded as a closed subgroup of In 9ft. The result now follows from
Proposition 2.3. •
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We may now prove the analogue of Proposition 4.1 and characterize bounded
perturbations in terms of 1-cocycles with values in ^(2I0) where 2I0 is the C*-
subalgebra of elements with norm continuous orbits

2lo = {AeSΆ . \\o>t(A)-A\\-+0 as ί->0}.

5.3. Proposition. Let 21 be a simple C*-algebra with identity then a' is a bounded
perturbation of a if and only if there exists a ΓeZ*(IR, ̂ (2ί0)) s u c n t n a t αί =

Proof. Applying Proposition 2.6 with 93=(C and ω an α-invariant state of 91, we
get a continuous local cross-section for ^ ( 9 ! ) ^ In 21 which commutes with the
action of JR. Arguing as in Proposition 2.8, we get a norm continuous mapping
(s, ί)->αs(f/f) with values in ^(2I0)

 s u c n t n a t αί = adl/ίαί, ί e R Defining z(s, i)J =
Usaιs{Ut)U~+t we may verify as in Proposition 3.1 that z is a 2-cocycle with values
in ΊΓ. Since H2(IR, TΓ) is trivial, there is a continuous function λ:IR-> T such that
z(s, ή = λs+tλ~ίλ~1 and setting Γs = λsUs. Γ is a norm continuous 1-cocycle with
values in ^(2I 0) s u c n t n a t oc't = adΓtocp ί e R Π

The analogues of Theorems 4.3 and 4.8 hold without modification since the
smoothing process leading to Lemma 4.2 does not take us outside 2I0. It suffices
to state the analogue of Theorem 4.8.

5.4. Theorem6. Let a be a ί-parameter automorphism group of a simple C*-algebra
21 with identity which may be implemented in some representation by a continuous
ί-parameter unitary group. Then od is a bounded perturbation of α if, and only if,
a and a' lie on the same orbit under J ^ ( 2 ί 0 ) . Their infinitesimal generators δ and δ'
are then related by Dψ)=VD(δ)V~1

δ\A) = Vδ(V~ιAV)V1 + [ih, A\ AeD(δf)

for some Fe^(2 ί 0 ) and /Ϊ = /Z*E2I 0 .
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