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A Superposition Principle in Quantum Logics
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Abstract. A new definition of the superposition principle in quantum logics
is given, which enables us to define the sectors. It is shown that the super-
position principle holds only in the irreducible quantum logics.

There are several formulations of the superposition principle in physics [1, 2, 3].
In the quantum logic approach to quantum mechanics Gudder [4] postulated
that the superposition principle in quantum logic (L, M) holds, if there is an
isomorphism between the logic L and the set Jί of all "closed" subsets of the set
of states M.

We shall try to find another formulation of the superposition principle, which
will enable us to define the "sectors" analogical to those defined in the C*-algebras
[3].

First we shall give definitions of the basic concepts. We shall use the expression
"quantum logic" in the same sense as in [4].

Let L be a logic, that is an orthocomplemented partially ordered set with the
first and last elements 0 and 1, respectively, which has the following ortho-
modularity property:

a^b, a, beL implies that there is a deL, d^Ld, such that b = aV d; and in which
V a{eL for all sequences {α? } of mutually disjoint elements in L.

The orthocomplementation a-*ά in L has the following properties:
(i) (aj = a; (ii) a^b implies b'^d; (iii) aW d = l, where a, beL.
The elements a, beL are disjoint, written alb, if a^b'.
The elements a, beL are compatible, written α<->ft, if there are aubuc in L,

mutually disjoint and such that a = aί Vc and b = bίV c. We shall assume that if
a, b, c are mutually compatible, then α<->{? V c.

A map m: L->[0,1] which satisfies

(1) m(l)=l,

(2)

if {αj is a sequence of mutually disjoint elements of L, is a state on L. If m is a
state which cannot be written in the form m = cm1+{\—c)m2, where 0 < c < l
and m1,m2 are distinct states, then m is called a pure state. Let M be a set of states
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and P the set of all pure states in M. lϊaeL, raeP, we define Pa={meP: m(a)= 1},
Lm={aeL: m(a)=ί}. As in [4], we call (L, M) a quantum logic if PaCPb implies
a^b, and LmiCLm2 implies mί=m2. If p, qeM, then moeM is a superposition of
the states p, q if p(α) = 0, q(α) = 0 imply mo(α) = 0.

Definition l.A set ScP will be said to be closed under superpositions if it contains
every pure superposition of any pair of its elements.

If S is not closed under superpositions, let A(S) denote the smallest subset of P
closed under superpositions and containing S.

Definition 2. We say that a superposition principle holds in (L, M) if there is an
reΛ({p, q}\ r φ p , r^qfor any pair p, q in P,pφq.

That is, a superposition of every two distinct pure states always produces a
new pure state.

We shall say that the pair p, qeP allows only the classical superpositions if
Λ({p, q})= {p, q}. That is, a superposition of p, q does not produce any new pure
state.

From the foregoing we see that our definition of the superposition principle
is different from Guder's definition.

For SCP Gudder [4] has defined S as the set S={reP:S(a) = 0=>r(a) = 0}9

where he writes S(a)=0 if m(a) = 0 for all meS. It is shown that if S = 0 or S= {p},
then S = S.

Theorem 1. The map S^>Λ{S) has the following properties:
1. IfS={p,q},thenΛ(S) = S.
2. IfSιcS2CP,thenΛ{S1)cΛ(S2).
3. // SaCP, cue A, then f] AfiJ is closed under superpositions and A

Π

4. I/S.CP, oceA, then \J Λ(SJCΛ(\J Sa
α \ α .

Proof 1. If r, se {p, q) and me {r, s}, then if p(α) = 0, q(ά) = 0 there is. also r(a) = 0,
s(a) = 0, which implies m(a) = 0. That is we {p, q] and {r, s}c {p, q}, from which it
follows that {p,g} is closed under superpositions; therefore yl{p, <̂ }C {p, q}. On
the other hand, {p, ̂ }Cτl(p, <?} is evident.

2. If S^cS^ then ^ i C / l ^ ) , and Λ(S1)CΛ(S2) follows from the minimality

3. 5αC^l(Sα) for every α, this implies (°) Sαc f) -4(Sα). As (°) A{S^) is clearly
a a a

closed under superpositions, we have Aίf] SΛc f] A(Sa).
\ a ) a

4. SaC U Sa imply A(Sa)cAί{J Sα\by the property 3, and from this we have

l)Λ(SJCΛl\JSa).
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Definition 3. The set ScP is a sector if
1. S = Λ(S);
2. If p,qeS, then there is an reΛ({p, q}\ rφp, rφq;
3. If qeP, qφS, then Λ({p, q})= {p, q} for any peS.

Roughly speaking, a sector is the maximal subset of P closed under super-
positions, for which the superposition principle holds.

Theorem 2. // Sl9 S2CP, Stή=S2 are sectors, then S1nS2 = 0.

Proof Let there exist p, qeP such that peSί, peS2 and qeS1, q$S2. Then peSu

qeSί imply the existence of an reΛ({p, q}), r φ p , r + q; while peS2, qφS2 imply

Λ({p,q})={p,q}

It can be seen from [4] and from Theorem 1,1. that in the separable classical
logic there are no sectors.

Let C be the set of all elements of L which are compatible with all the other
elements, that is C= {a : a+-+b for all beL}. C is called the center of L. Varadara-
jan [5] has shown that C is a Boolean sub-σ-algebra of L.

A logic L is called irreducible if its center consists only of 0 and 1.
If p is a pure state and ceC, then p(c)= 1 or p(c) = 0 [6].

Theorem 3. If the superposition principle in the quantum logic (L, M) holds, then L
is irreducible.

Proof Let ceQ cφO, c φ l . Let p,qeP and p(c)=l, q(c) = 0. Let reΛ({p,q}).
Since a^+c if αeL, we can write a = (aΛc)\/(aΛcf). From p(c') = 0 we have
p(aAc') = 0, that is p(a) = p(aΛc). Analogically q(c) = 0 implies q(a) = q(aΛcf)
for all aeL. As reP, we have r(c) = l or r(c) = 0. Let r(c)=l; then r(α) = r(αΛc)
for all a e L. If b e L, p(b) = 0 = p(fe Λ c), then also r(b) = r(fc Λ c) = 0, because q(b Ac) = 0
for all beL and r is the superposition of p and #. Thus we have LpcLr, which
implies p = r.Iϊ r(c) = 0, then r{c') = 1 and we can show in the same way that q = r.
Thus we have found the states p, qeP such that Λ({p, q})={p, q} and the super-
position principle does not hold. The converse statement to Theorem 3 does not
seem to be so easy to prove. Let us prove it for a special case.

Theorem 4. Let (L, M) be a quantum logic. If
1. Lίs irreducible;
2. L satisfies Piroήs axioms [7]
3. p(a) = 1, p(b) = 1 imply p(a Ab)=l for all peP and a, beL,

then the superposition principle holds in (L, M). We note that assumption 3
holds both in the Hilbert space logic and the separable classical logic.

Proof If L is irreducible and satisfies Piron's axioms, then for any pair u, v of
atoms in L there is an atom zeL such that zrgwV v.

If aeL, α=f=O, then there must be at least one state meP with m(a)=l. If it is
not so, then from Pa = 0 we have Pa = P0, from which it follows that α = 0. Let
pePu and qePv. Then p + q, because if p = q, then from assumption 3 it follows
that p(uAυ)=ί, which is impossible for uAv = 0. Let rePz, then rΦp, r φ g for
the same reasons. If aeL, p(a)=l, q(a)=l, then also'p(wΛα)=l, q(vAa)=l.



50 S. Pulmannova

However, uΛa = 0 or u, because u is an atom. Hence uΛa = u, that is wrgα.
Analogously υ^a and z^uWυ^a imply that r(a)=l. Thus we have shown that
reΛ({p,q}).

The center C of a logic L is discrete if there exists an at most countable set
{cn}neD °f mutually disjoint elements of C such that (i) \ / c w = l , (ii) C consists

precisely of all the lattice sums \J cn, where Z is an arbitrary subset of D. The
neZ

cn — s are called the atoms of C.

Let L be a logic with the discrete center C. Then given any aeL we can write
α = α 1 V α 2 V . . . , where α,- ^ Cy and the α,. are uniquely determined (in fact a~a/\ Cj).
If we define Lj = L[OtCj]={b :beL, b^Cj}, then Lj are irreducible logics (cj is the
first element of Lj). The logic L may thus be thought as a direct sum of the irreduc-
ible logics Lj. Varadarajan [6] proved the following statement:

Theorem 5 (Varadarajan). Let L be any logic and C its center. Let P be the set of
pure states of L. Suppose that C is discrete and that {cn;neD} is the family of
atoms of C. Then for each neD, L[OiCn] = Ln is an irreducible logic. If p is a pure
state of Ln and we define p~ on L by

) = p(aΛcn) (aeL),

then p~ is a pure state of L. If

Pn={p~\p a pure state of Ln} ,

then the Pn:neD are disjoint subsets of P and P= (J Pn.
neD

Let the assumptions of Theorem 5 be satisfied. Let p~, qePn for some neD
and reΛ({p,q}). Then p~{cn) = 1, q{cn) = l imply r(cn)= 1, while /Γ(cJ = 0, g~(cm) = 0
imply r(cm) = 0 for every mή=n. Then for any aeL we have r(a) = rl\f aΛc\ =

\ j i
Σr(aΛCj) = r(aΛcn). From this we see that rePn and therefore Λ(Pn) = Pn for

j

all neD.

O n the other hand if p~ePn and qePm,mή=n, then p~(cn) = 1, q~(cn) = 0 and from
the proof of Theorem 3 it follows that Λ({p~9 q}) = {p~, q). Thus we have proved the
following statement.

Theorem 6. Let (L, M) be a quantum logic, where L is a logic with the discrete
center and let P = u P π . Then

1. Λ(Pn) = Pn;
2. pePn,qePm,mή=n imply Λ{{p,q})={p,q}.

Let L be a logic with the discrete center C; the L can be written as the direct
sum of the logics L i = L[0, c j . Let M be a set of states on L. Then, analogously
as in [8], we can find to each meM the states mi on Lt such that

m(b)= X m&AcMCi) (beL).
{i:m(Ci)Φ0}
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It is sufficient to set

mβAc^mφAc^miCi) if /w^φO.

If m(Ci) = 0, then we can set mί( ) = 0. Let Mt be the sets of all such mf. It is evident
that if p~ePi, then p is a pure state in Mt.

Theorem 7. // (L, M) is α quantum logic, it follows that (Lt, M,-), leD are quantum
logics as well.

Proof. lϊaeLi9 m is a pure state on L{, then let Pι

a={ma pure state on Li: m(a)= 1},
Z4 = {αeL ί? m(fl)=l}. We have to show that Pj;CFb implies a^b and UmicDm2

implies mί=m2. Let me?, then me (J P f . If fhePp jφi, then m(α) = 0 for αeL^.

Therefore mePa if and only if mePι

ai that is i^CP^ implies PaCPb, a, beL{.
If aeLln, m is a pure state on L i? then m(fl) = m(αΛc i)=l 5 that is aeL^. On the

other hand, if αeL, aeL^ than m(α) = m(αΛc ί)=l, that is aAc^L^. Thus
UmiCUm2 implies L^CL^, that is m1 = m2.

From Theorems 6 and 7 it follows that if the irreducible quantum logics
(Li9Mi) are such that the superposition principle holds in them, then P f are
exactly the sectors in P.
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