On the Hartree-Fock Time-dependent Problem

A. Bove
Istituto di Fisica dell'Università di Bologna and Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, I-40126 Bologna, Italy
G. Da Prato
Istituto Matematico "G.Castelnuovo" dell'Università di Roma, Roma, Italy
G. Fano
Istituto di Fisica dell'Università di Bologna and Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, I-40126 Bologna, Italy

Abstract

A previous result is generalized. An existence and uniqueness theorem is proved for the Hartree-Fock time-dependent problem in the case of a finite Fermi system interacting via a two body potential, which is supposed dominated by the kinetic energy part of the one-particle hamiltonian.

1. Introduction

In this paper we consider the existence problem for the Hartree-Fock timedependent equations of a finite system of fermions. This problem was first solved using fixed point theorems for local contractions in Banach spaces in Ref. [1], for the case of a bounded two body potential, and in Ref. [2] ${ }^{1}$ for the case of the repulsive Coulomb potential.

In the present paper we extend those results to a general potential, bounded from below and "essentially" dominated by the one-particle hamiltonian (for instance the laplacian operator). Our main result is Proposition 5.5., which proves the existence and uniqueness of a global solution, both in the case of the classical and of the mild solution, according to the smoothness of the initial data ${ }^{2}$.

2. Notations and Hypotheses

We denote by:
E a Hilbeæt space with inner product $\langle\cdot, \cdot\rangle$;

[^0]$\mathscr{L}(E)$ the set of all bounded linear operators in E, equipped with the norm topology $\|\cdot\|$;
$\mathscr{L}_{1}(E) \subset \mathscr{L}(E)$ the set of trace-class operators, equipped with the usual norm $\|\cdot\|_{1}=\operatorname{Tr}|\cdot| ;$
\[

$$
\begin{aligned}
H(E) & =\left\{T ; T \in \mathscr{L}(E), T=T^{*}\right\} \\
H_{1}(E) & =\left\{T ; T \in \mathscr{L}_{1}(E), T=T^{*}\right\} .
\end{aligned}
$$
\]

Let $A: \mathscr{D}(A)(C E) \rightarrow E$ be a self-adjoint operator such that
$A \geqq k I \quad$ for a fixed $\quad k \in R$.
Let
$M=(A-k+1)^{\frac{1}{2}}$
and $\forall T \in \mathscr{L}_{1}(E), \varphi_{T}: \mathscr{D}(M) \times \mathscr{D}(M) \rightarrow C$ be defined by
$\varphi_{T}(x, y)=\langle T M x, M y\rangle, \quad x, y \in \mathscr{D}(M)$.
Let γ be the linear mapping defined by

$$
\left\{\begin{array}{l}
\mathscr{D}(\gamma)=\left\{T ; T \in \mathscr{L}_{1}(E), \varphi_{T} \text { is continuous in } E \times E\right\} \\
\langle\gamma(T) x, y\rangle=\bar{\varphi}_{T}(x, y)
\end{array}\right.
$$

where $\bar{\varphi}_{T}$ denotes the (unique) extension of φ_{T} to $E \times E$.
It is easy to show that $T \in \mathscr{D}(\gamma), x \in \mathscr{D}(M) \Rightarrow \gamma(T) x=M T M x$ (see Ref. [4]).
We denote by
$\mathscr{L}_{1}^{A}(E)=\left\{T ; T \in \mathscr{L}_{1}(E)\right.$ such that $\left.M T M \in \mathscr{L}_{1}(E)\right\}$
$H_{1}^{A}(E)=\left\{T ; T \in H_{1}(E)\right.$ such that $\left.M T M \in H_{1}(E)\right\}$
we introduce a norm in $H_{1}^{A}(E)$ by putting
$\|T\|_{1, A}=\operatorname{Tr}(|M T M|)$.
It is easy to see that this is indeed a norm which makes $H_{1}^{A}(E)$ a Banach space; moreover the following inequality holds
$\|T\|_{1, A} \geqq\left\|M^{-1}\right\|^{-2}\|T\|_{1}$.
Let $B: H_{1}^{A}(E) \rightarrow H(E)$ be a continuous linear map such that
i) $B(T) M^{-1} x \in \mathscr{D}(M), \quad \forall x \in E$;
ii) $C(\cdot) \in \mathscr{L}\left(H_{1}^{A}(E), H(E)\right)$, where
$C(T)=M B(T) M^{-1}, \quad T \in H_{1}^{A}(E) ;$
iii) $\forall T, S \in H_{1}^{A}(E)$ the following equality holds:
$\operatorname{Tr}(B(T) S)=\operatorname{Tr}(B(S) T) ;$
iv) $\exists k_{1} \in R$ such that $B(T) T \geqq k_{1}, \forall T \in H_{1}^{A}(E), 0 \leqq T \leqq I$.

Moreover we put
$f(T)=[B(T), T]_{-}$
(where $[A, B]_{-}=A B-B A$).

We consider the following abstract Hartree-Fock problem: find a function $T(\cdot) \in C\left(R^{+} ; H_{1}^{A}(E)\right)$ such that

$$
\left\{\begin{align*}
i d T / d t & =[A, T]_{-}+[B(T), T]_{-} \tag{2.1}\\
T(0) & =T_{0}
\end{align*}\right.
$$

We give now some general definitions.
Definition 2.1. Let X be a Banach space, $f \in C(X)$ a continuous function on X and $-A$ the infinitesimal generator of a strongly continuous semigroup $G(t)$ such that $\|G(t)\| \leqq e^{\omega t}, \forall t \in R^{+}, \omega \in R$. A function $u:[0, T[\rightarrow X$ continuous on [$0, T[$ is called a mild solution of the problem

$$
\left\{\begin{array}{l}
u^{\prime}+A u+f(u)=v, \quad u^{\prime}=d u / d t, \quad v \in C([0, T[, X) \tag{2.2}\\
u(0)=u_{0}, \quad u_{0} \in X
\end{array}\right.
$$

if the following equality holds:

$$
\begin{equation*}
u(t)=G(t) u_{0}-\int_{0}^{t} G(t-s)(f(u(s))-v(s)) d s \tag{2.3}
\end{equation*}
$$

Definition 2.2. $u:[0, T] \rightarrow X$ is called a classical solution of problem (2.2) if $u \in C^{1}([0, T] ; X) \cap C([0, T] ; \mathscr{D}(A))$ and (2.2) is satisfied. $C^{1}([0, T] ; X)$ is the set of continuously differentiable functions $[0, T] \rightarrow X$ and $C([0, T] ; \mathscr{D}(A))$ is the B-space of the continuous functions $[0, T] \rightarrow \mathscr{D}(A), \mathscr{D}(A)$ being endowed with the graphnorm.

3. General Results

The following lemma is well-known:
Lemma 3.1. u is a mild solution of problem (2.2) if and only if

$$
\exists\left(u_{n}\right)_{n \in N} \text { in } C^{1}([0, T] ; X) \cap C([0, T] ; \mathscr{D}(A))
$$

such that

$$
\left\{\begin{array}{l}
u_{n} \overrightarrow{n \rightarrow \infty} u \tag{3.1}\\
u_{n}^{\prime}+A u_{n}+f\left(u_{n}\right)_{n \rightarrow \infty} v
\end{array} \quad \text { in } \quad C([0, T] ; X)\right.
$$

We say also that u is a mild solution of problem (2.2) if and only if u is a strong solution in the sense of Friedrichs.

Proposition 3.2 (Segal [5]). Suppose f is locally Lipschitz. Then there exists $\tau \in R^{+}$such that in [0, τ [there exists a unique mild solution of problem (2.2). Moreover if $u_{0} \in \mathscr{D}(A)$ then this solution is a classical solution.

We put
$T_{0}=\sup \{T>0 ; T$ such that in $[0, T]$ there exists a mild solution of problem (2.2) \}.
Proposition 3.2. then implies that a unique mild solution u for the problem (2.2) is defined in $\left[0, T_{0}[\right.$; we call such solution a maximal solution of problem (2.2).

For completeness we will prove the following
Proposition 3.3. Let u : $\left[0, T_{0}[\rightarrow X\right.$ be the maximal (mild) solution of problem (2.2). Let us suppose that
i) $\exists M>0$ such that $\|u(t)\| \leqq M, \forall t \in\left[0, T_{0}[\right.$;
ii) $B \subset X$ is a bounded set $\Rightarrow f(B)$ is bounded in X; then $T_{0}=+\infty$. then $T_{0}=+\infty$.

Proof. It is enough to prove that $\exists \lim _{t \rightarrow T_{0}-} u(t)$. Indeed we shall prove that

$$
\lim _{t \rightarrow T_{0}-} u(t)=G\left(T_{0}\right) u_{0}-\int_{0}^{T_{0}} G\left(T_{0}-s\right)(f(u(s))-v(s)) d s
$$

We note that the integral on the R.H.S. must be understood in the Bochner's sense; obviously it exists because of hypothesis ii) and of the continuity of the functions involved.

Then we obtain

$$
\begin{aligned}
& \left\|u(t)-G\left(T_{0}\right) u_{0}+\int_{0}^{T_{0}} G\left(T_{0}-s\right)(f(u(s))-v(s)) d s\right\| \\
& \leqq\left\|G(t) u_{0}-G\left(T_{0}\right) u_{0}\right\|+\int_{t}^{T_{0}} e^{\omega\left(T_{0}-s\right)}\|f(u(s))-v(s)\| d s \\
& \quad+\int_{0}^{t}\left\|G\left(T_{0}-s\right)(f(u(s))-v(s))-G(t-s)(f(u(s))-v(s))\right\| d s .
\end{aligned}
$$

The first two terms are easily seen to converge to zero because of the strong continuity property of $G(\cdot)$ and of hypotheses i) and ii). The third term converges to zero because of the dominated convergence theorem. This completes the proof of the Proposition.

4. Preliminary Results

Definition 4.1. $\forall T \in H_{1}^{A}(E)$ let $\psi_{T}: \mathscr{D}(A M) \times \mathscr{D}(A M) \rightarrow C$ be defined by ${ }^{3}$

$$
\begin{equation*}
\psi_{T}(x, y)=-i\langle T M x, A M y\rangle+i\langle T A M x, M y\rangle . \tag{4.1}
\end{equation*}
$$

If ψ_{T} is continuous we denote by ψ_{T} its unique extension to $E \times E$.
Definition 4.2. Let $a: H_{1}^{A}(E) \rightarrow H_{1}^{A}(E)$ be defined by

$$
\begin{cases}\mathscr{D}(a)=\left\{T, T \in H_{1}^{A}(E), \psi_{T}\right. \text { is continuous on } & E \times E\} \tag{4.2}\\ \langle a(T) x, y\rangle=-i<T x, A y\rangle+i\langle A x, T y\rangle, & x, y \in E .\end{cases}
$$

It is easy to see that $T \in \mathscr{D}(a), x \in \mathscr{D}(A) \Rightarrow T x \in \mathscr{D}(A)$ and $a(T) x=[A, T]_{-} x$.
Proposition 4.3. $\forall t \in R^{+} \cup\{0\}$ we put

$$
\begin{equation*}
G_{t}(T)=e^{-i t A} T e^{i t A}, \quad T \in H_{1}^{A}(E) \tag{4.3}
\end{equation*}
$$

then $t \mapsto G_{t}(\cdot)$ is a strongly continuous contraction semigroup on $H_{1}^{A}(E)$. Moreover its infinitesimal generator is the linear map a of Definition 4.2.

[^1]Proof. We have

$$
\begin{equation*}
M G_{t}(T) M=G_{t}(M T M) \quad \forall T \in H_{1}^{A}(E), \tag{4.4}
\end{equation*}
$$

so that

$$
\begin{equation*}
\operatorname{Tr}\left(M G_{t}(T) M\right)=\operatorname{Tr}(M T M) \tag{4.5}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
\operatorname{Tr}\left(\left|M G_{t}(T) M\right|\right) & =\left\|e^{-i t A} M T M e^{i t A}\right\|_{1} \leqq \operatorname{Tr}(|M T M|) \\
& =\|T\|_{1, A}
\end{aligned}
$$

which proves that $G_{t}(\cdot)$ operates on $H_{1}^{A}(E)$ and it is a contraction semigroup. Now

$$
M G_{t}(T) M-M T M=G_{t}(M T M)-M T M
$$

so that

$$
\left\|G_{t}(T)-T\right\|_{1, A}=\left\|G_{t}(M T M)-M T M\right\|_{1}
$$

and the strong continuity follows from Proposition 3.4. of [1]. The last part of the proposition follows from the analogue of Lemma 3.3. of [1] and from [4].

Proposition 4.4. Let $T \in \mathscr{D}(a)$, then $\operatorname{Tr}\left(M[A, T] _M\right)=0$.
Proof. If $T \in \mathscr{D}(a)$ the Hille-Yosida theorem implies that

$$
a(T)=\lim _{h \rightarrow 0+} h^{-1}\left(G_{h}(T)-T\right)
$$

where the limit is understood in the $H_{1}^{A}(E)$-norm. Then we have

$$
\operatorname{Tr}(M a(T) M)=\lim _{h \rightarrow 0+} h^{-1}\left(\operatorname{Tr}\left(M G_{h}(T) M\right)-\operatorname{Tr}(M T M)\right)=0
$$

which completes the proof.
For what concerns the non-linear part we have the following
Proposition 4.5. $f \in C^{1}\left(H_{1}^{A}(E)\right.$) (i.e. f is continuously Fréchet differentiable in $\left.H_{1}^{A}(E)\right)$ and the following equality holds:

$$
f^{\prime}(T)(S)=[B(S), T]_{-}+[B(T), S]_{-}, \quad T, S \in H_{1}^{A}(E)
$$

Proof. $T \in H_{1}^{A}(E) \Rightarrow f(T) \in H_{1}^{A}(E)$. Indeed we have

$$
\begin{aligned}
\operatorname{Tr}(|M f(T) M|) & \leqq \operatorname{Tr}(|M B(T) T M|)+\operatorname{Tr}(|M T B(T) M|) \\
& =\|M B(T) T M\|_{1}+\|M T B(T) M\|_{1}=2\left\|M B(T) M^{-1} M T M\right\|_{1} \\
& \leqq 2\left\|M B(T) M^{-1}\right\|\|T\|_{1, A}=2\|C(T)\|\|T\|_{1, A} \\
& \leqq 2 C_{1}\|T\|_{1, A}^{2}
\end{aligned}
$$

where C_{1} denotes some positive constant. For the differentiability of f we have:

$$
f(T+S)-f(T)=[B(T), S]_{-}+[B(S), T]_{-}+[B(S), S]_{-}
$$

and

$$
[B(S), S]_{-} /\|S\|_{1, A} \xrightarrow[{s \xrightarrow[A_{1}(E)]{H_{1}^{A}(E)}} 0]{H^{4}} 0
$$

by an argument similar to that given above.

5. A priori Inequalities and Existence Theorems

The results of the preceding section and Proposition 3.2. imply the following
Proposition 5.1. There exists a unique local mild solution for the problem (2.1). Moreover if $T_{0} \in \mathscr{D}(a)$ then the solution is a classical solution.

Lemma 5.2. Let $M_{n}=n M(n+M)^{-1}, n \in N$, be the n-th Yosida approximant for M, so that, as is well-known, $\left\|M_{n} x\right\| \leqq\|M x\|, \lim _{n \rightarrow \infty} M_{n} x=M x, \forall x \in \mathscr{D}(M)$. Then if $T \in H_{1}^{A}(E)$ we have

$$
\begin{equation*}
\operatorname{Tr}(M T M)=\lim _{n \rightarrow \infty} \operatorname{Tr}\left(M_{n} T M_{n}\right) \tag{5.1}
\end{equation*}
$$

Proof. Without loss of generality we can suppose $T \geqq 0$. Otherwise, noting that $T=T^{+}-T^{-}, T^{+}, T^{-} \geqq 0$, we can reason separately on each of them. Let ${ }^{4}$

$$
T x=\sum_{k=1}^{\infty} \lambda_{k}\left\langle x, e_{k}\right\rangle e_{k}, \quad \lambda_{k} \in R^{+} \cup\{0\} \forall k \in N
$$

Then

$$
\begin{aligned}
& \operatorname{Tr}(M T M)=\sum_{k=1}^{\infty} \lambda_{k}\left\|M e_{k}\right\|^{2} \\
& \operatorname{Tr}\left(M_{n} T M_{n}\right)=\sum_{k=1}^{\infty} \lambda_{k}\left\|M_{n} e_{k}\right\|^{2} .
\end{aligned}
$$

Now $\forall \varepsilon \in R^{+}$we can choose $m_{\varepsilon} \in N$ such that

$$
\sum_{k=m_{\varepsilon}+1}^{\infty} \lambda_{k}\left\|M e_{k}\right\|^{2}<\varepsilon / 3
$$

so that

$$
\begin{aligned}
\left|\operatorname{Tr}(M T M)-\operatorname{Tr}\left(M_{n} T M_{n}\right)\right| \leqq & \sum_{k=1}^{m_{\varepsilon}} \lambda_{k}\left|\left\|M e_{k}\right\|^{2}-\left\|M_{n} e_{k}\right\|^{2}\right| \\
& +2 \sum_{k=m_{\varepsilon}+1}^{\infty} \lambda_{k}\left\|M e_{k}\right\|^{2}<\varepsilon / 3+2 \varepsilon / 3=\varepsilon
\end{aligned}
$$

if $n>n_{\varepsilon}$, where $n_{\varepsilon} \in N$ is suitably chosen. This completes the proof of the lemma.
Proposition 5.3. Let T be a local solution of problem (2.1) with $T_{0} \in \mathscr{D}(a)$, so that T is a classical solution. Then

$$
\begin{equation*}
\operatorname{Tr}(M T M)+\frac{1}{2} \operatorname{Tr}(T B(T))=\operatorname{Tr}\left(M T_{0} M\right)+\frac{1}{2} \operatorname{Tr}\left(T_{0} B\left(T_{0}\right)\right) \tag{5.2}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
(i d / d T) \operatorname{Tr}(M T(t) M) & =\operatorname{Tr}\left(M[A, T]_{-} M\right)+\operatorname{Tr}\left(M[B(T), T]_{-} M\right) \\
& =\operatorname{Tr}\left(M[B(T), T]_{-} M\right)
\end{aligned}
$$

by Proposition 4.4.

[^2]\[

$$
\begin{aligned}
& \text { Because of hypothesis iii) on } B \text { we obtain } \\
& \begin{aligned}
\frac{1}{2}(i d / d T) \operatorname{Tr}(B(T) T) & =i \operatorname{Tr}(B(T(t)) \dot{T}(t)) \\
& =\operatorname{Tr}\left(B(T)[A, T]_{-}\right)+\operatorname{Tr}\left(B(T)[B(T), T]_{-}\right) \\
& =\operatorname{Tr}\left(B(T)[A, T]_{-}\right) .
\end{aligned}
\end{aligned}
$$
\]

Recalling the definition of M, by Lemma 5.2. we can conclude

$$
\begin{aligned}
i d / d t\left(\operatorname{Tr}(M T M)+\frac{1}{2} \operatorname{Tr}(T B(T))\right)= & \operatorname{Tr}\left(M[B(T), T]_{-} M\right) \\
& +\operatorname{Tr}\left(B(T)[A, T]_{-}\right)=0
\end{aligned}
$$

so that the desired conclusion easily follows.
Proposition 5.4. Let $T_{0} \in H_{1}^{A}(E)$ and T be the mild solution of the problem (2.1), then (5.2) still holds.

Proof. By Lemma 3.1 there exists $\left(T_{n}\right)_{n \in N}$ such that T_{n} is a classical solution of problem (2.1), i.e.

$$
\left\{\begin{array}{l}
T_{n} \xrightarrow[n \rightarrow \infty]{H_{1}^{A}(E)} T \\
i T_{n}^{\prime}-\left[A, T_{n}\right]_{-}-\left[B\left(T_{n}\right), T_{n}\right]_{-}=S_{n} \xrightarrow[n \rightarrow \infty]{H_{1}^{A}(E)} 0 .
\end{array}\right.
$$

Then we have, as in Proposition 5.3.,

$$
(i d / d T)\left[\operatorname{Tr}\left(M T_{n} M+\frac{1}{2} T_{n} B\left(T_{n}\right)\right)\right]=\operatorname{Tr}\left(M S_{n} M\right)+\operatorname{Tr}\left(B\left(T_{n}\right) S_{n}\right) \xrightarrow[n \rightarrow \infty]{ } 0
$$

and this proves the assertion.
Proposition 5.5. If $0 \leqq T_{0} \leqq I$ then T can be extended to all the positive real axis. Moreover if $T_{0} \in \mathscr{D}(a)$ then T is the unique global classical solution.

Proof. It is enough to verify hypothesis i) of Proposition 3.3. From (5.2) it is easily seen that

$$
\operatorname{Tr}(M T(t) M) \leqq C^{\prime}, \quad C^{\prime} \in R^{+}
$$

Now $0 \leqq T_{0} \leqq I$ implies (see [1], Proposition 4.3.) that

$$
\operatorname{Tr}(|M T M|)=\operatorname{Tr}(M T M)
$$

and this proves the assertion.

6. The Hartree-Fock Time-dependent Problem

Let

$$
E=L^{2}\left(R^{3}\right) .
$$

The operator A of problem (2.1) can be interpreted as the kinetic energy operator (i.e. $-\Delta$) in the case of nuclear or molecular physics and as the kinetic energy plus an attractive central Coulomb potential in the case of atomic physics.

The operator B is defined as follows:
$B(T) \varphi=B_{D}(T) \varphi-B_{E X}(T) \varphi, \quad \varphi \in L^{2}\left(R^{3}\right)$,
(the so-called "direct" and "exchange" potentials) where, if $T(x, y)$ denotes the kernel of T, we have

$$
\begin{aligned}
& \left(B_{D}(T) \varphi\right)(x)=\left(\int_{R^{3}} v(x-y) T(y, y) d y\right) \varphi(x) \\
& \left(B_{E X}(T) \varphi\right)(x)=\int_{R^{3}} v(x-y) T(x, y) \varphi(y) d y .
\end{aligned}
$$

Here $v: R^{3} \rightarrow R$ is the two body interaction potential, which we suppose to be differentiable almost everywhere.

Then

$$
\begin{aligned}
& M=\left(-\Delta+\frac{z}{\|x\|}+k\right)^{\frac{1}{2}} \quad \text { in the case of atomic physics } \\
& M=(-\Delta+1)^{\frac{1}{2}} \quad \text { in the case of nuclear or molecular physics. }
\end{aligned}
$$

It is easy to see that $\mathscr{D}(M)=H^{1}\left(R^{3}\right)$.
Let $\left\{\varphi_{k} ; k \in N\right\}$ be an orthonormal complete system in $L^{2}\left(R^{3}\right)$ such that $\varphi_{k} \in \mathscr{D}(M)$. We write the one-particle density matrix in the form*

$$
\begin{align*}
& T(x, y)=\sum_{k=1}^{\infty} \lambda_{k} \varphi_{k}(x) \overline{\varphi_{k}(y)} \tag{6.1}\\
& 0 \leqq \lambda_{k} \leqq 1, \quad \forall k \in N . \tag{6.2}
\end{align*}
$$

Since we consider only systems with finite total number of particles we have

$$
\sum_{k=1}^{\infty} \lambda_{k}<+\infty .
$$

$T \in H_{1}^{A}(E)$ implies that

$$
\begin{equation*}
\operatorname{Tr}(|M T M|)=\operatorname{Tr}(M T M)=\sum_{k=1}^{\infty} \lambda_{k}\left\|M \varphi_{k}\right\|_{2}^{2}<+\infty \tag{6.3}
\end{equation*}
$$

If we denote by v the linear operator defined by

$$
(v \varphi)(x)=v(x) \varphi(x)
$$

we suppose that

$$
\|v \varphi\|_{2} \leqq C\|M \varphi\|_{2}, \quad \forall \varphi \in \mathscr{D}(v) \cap \mathscr{D}(M) .
$$

Now the conditions on the linear part A are easily verified. Let us show that B verifies conditions i), ..., iv).
iii) and iv) are trivial.
i) Let us consider B_{D} :

$$
\left(B_{D}(T) M^{-1} \varphi\right)(x)=\alpha_{T}(x)\left(M^{-1} \varphi\right)(x)
$$

where

$$
\alpha_{T}(x)=\int v(x-y) T(y, y) d y .
$$

[^3]Now $\alpha_{T} \in L^{\infty}\left(R^{3}\right)$ and

$$
\begin{align*}
\left\|\alpha_{T}\right\|_{\infty} & \leqq \sum_{k=1}^{\infty} \lambda_{k}\left\|\int v(x-y)\left|\varphi_{k}(y)\right|^{2} d y\right\|_{\infty} \\
& \leqq C \sum_{k=1}^{\infty} \lambda_{k}\left\|M \varphi_{k}\right\|_{2}^{2}=C \operatorname{Tr}(M T M)=C\|T\|_{1, A}{ }^{5} \tag{6.4}
\end{align*}
$$

Moreover we have

$$
\begin{align*}
\left\|D_{i} \alpha_{T}\right\|_{\infty} & \leqq C \sum_{k=1}^{\infty} \lambda_{k}\left\|\int v(x-y) D_{i}\left|\varphi_{k}(y)\right|^{2} d y\right\|_{\infty} \\
& \leqq C \sum_{k=1}^{\infty} \lambda_{k}\left\|M \varphi_{k}\right\|_{2}^{2}=C\|T\|_{1, A} . \tag{6.5}
\end{align*}
$$

This proves that $B_{D}(T) M^{-1} \varphi \in \mathscr{D}(M)=H^{1}\left(R^{3}\right)$.
For what concerns $B_{E X}$ it is enough to note that

$$
\begin{equation*}
\left|D_{i} \int v(x-y) \overline{\varphi_{k}(y)} \varphi(y) d y\right| \leqq C\left\|M \varphi_{k}\right\|_{2}\|M \varphi\|_{2} \tag{6.6}
\end{equation*}
$$

hence condition i) is completely verified by analogous calculations.
Let us now verify condition ii).
Let $\varphi \in C_{0}^{\infty}\left(R^{3}\right)$; we consider

$$
\left\langle M B(T) M^{-1} \varphi, \varphi\right\rangle=\left\langle B(T) M^{-1} \varphi, M \varphi\right\rangle
$$

we have

$$
\begin{aligned}
\left\|B(T) M^{-1} \varphi\right\|_{H^{1}\left(R^{3}\right)}^{2} & =\left\|B(T) M^{-1} \varphi\right\|_{2}^{2}+\sum_{i=1}^{3}\left\|D_{i}\left(B(T) M^{-1} \varphi\right)\right\|_{2}^{2} \\
& \leqq C\|T\|_{1, A}^{2}\left\|M^{-1} \varphi\right\|_{H^{1}\left(R^{3}\right)}^{2}
\end{aligned}
$$

as it can be seen by relations (6.4), (6.5), (6.6); hence

$$
\begin{aligned}
\left|\left\langle M B(T) M^{-1} \varphi, \varphi\right\rangle\right| & \leqq\left\|B(T) M^{-1} \varphi\right\|_{H^{1}\left(R^{3}\right)}\|M \varphi\|_{H^{-1}\left(R^{3}\right)} \\
& \leqq C\|T\|_{1, A}\left\|M^{-1} \varphi\right\|_{H^{1}\left(R^{3}\right)}\|M \varphi\|_{H^{-1}\left(R^{3}\right)} \\
& \leqq C\|T\|_{1, A}\|\varphi\|_{2}^{2}
\end{aligned}
$$

so that condition ii) is proved by use of a density argument.

References

1. Bove, A., Da Prato, G., Fano, G.: Commun. math. Phys. 37, 183 (1974)
2. Chadam, J. M., Glassey, R. T. : J. Math. Phys. 16, 1122 (1975)
3. Chadam, J. M., Glassey, R.T.: Marseille preprint, June 1975
4. Da Prato, G.: J. Math. Pures Appl. 52, 353 (1973)
5. Segal, I.: Ann. Math. 78, 339 (1963)

Communicated by W. Hunziker

Received October 6, 1975

[^4]
[^0]: 1 The paper [1] considers the case of arbitrary N and not only the case $N=2$ like erroneously stated in Ref. [2].
 2 While this work was in preparation, we received a preprint by Chadam and Glassey [3], where formal proofs have been obtained for the case of the Coulomb potential. Furthermore Definition 2.1. of [3] must be revised since the expression $\|K\|_{1,1}=\operatorname{Tr}(A|K| A)$ does not satisfy the triangle inequality.

[^1]: 3 We suppose $\mathscr{D}(A M)$ to be dense in E.

[^2]: 4 We suppose $\left\{e_{k} ; k \in N\right\}$ to be a complete orthonornal system in E.

[^3]: * Note Added in Proof. It is enough to consider $T \geqq 0$; indeed for any T we can write $T=T_{1}-T_{2}, T_{1} \geqq 0$, $T_{2} \geqq 0, \quad T_{1}=M^{-1}(M T M)^{+} M^{-1}, \quad T_{2}=M^{-1}(M T M)^{-} M^{-1}, \quad$ so that $\|T\|_{1, A}=\left\|T_{1}\right\|_{1, A}+\left\|T_{2}\right\|_{1, A}$ and $B(T)$ is continuous on $H_{1}^{A}(E)$. We thank Prof. Chadam for a comment on this point.

[^4]: 5 Here and in the following C denotes a suitable positive constant.

