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Abstract. The construction of a relativistic interacting local quantum field
is given in two steps: first the classical nonlinear relativistic field theory is
written down in terms of Poisson brackets, with initial conditions as canonical
variables: next a representation of Poisson bracket Lie algebra by means of
linear operators in the topological vector space is given and an explicit form
of a local interacting relativistic quantum field Φ is obtained. The construction
of asymptotic local relativistic fields Φin and Φout associated with Φ is also
given.
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I. Introduction

The construction of an interacting local quantum scalar field is given in two steps.
First in the previous paper [1] (hereafter denoted as I) we have shown that the
classical nonlinear relativistic field theory written down in terms of Poisson
brackets, with initial conditions as canonical variables is a local field theory
with local asymptotic fields: in particular we have

{Φ(x\Φ(y)} = 0 if (x-y)2<0 (1.1)

* This research was supported in part by NSF Grant No. GF-41-958.

** In this work we consider the prequantized level of the theory only. However for the sake of sim-
plicity we use adjective quantum instead of prequantum.
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and

Φin M,Φin (y) =-A(x-y;m). (1.2)
out out

Next in the present paper we give the map Φ(x)-»Φ(x) which provides an
operator representation of the Lie algebra of Poisson brackets in a topological
vector space. Since the map Φ-»Φ conserves Lie brackets relations we obtain a
local relativistic interacting quantum field. We show that the natural carrier
spaces for Φ are topological vector spaces S(^\ JΓ^), and 2(tF\ 3F — the
Banach space of initial conditions. S(^) and @(^) are natural generalization
of the Schwartz's space $(Rn) and &(Rn) respectively. The construction of asymp-
totic fields Φin and Φout associated with Φ is given and it is shown that

Φin (ί, x) ̂ -r=^~ Φ(t, x) -^^ Φout (ί, x)

in the strong topology oϊS(^\ JΓ(^) as well as 9)(βF) space. It is also shown that

P = P" = P°ut M = Min = Mout
1 μ J μ μ ' i v jμv ^ V J μv i κ /μv

The construction of the quantum evolution and ^-operator in this theory
will be considered in Part III of the present series.

This work represents a continuation of Segal's program of the construction
of an interacting quantum field using the properties of the corresponding classical
interacting field [2] (see also Streater [3]). Since this work is addressed to
Quantum Field theorists the most of rather technical details concerning the
convergence of solutions of certain linear and nonlinear partial differential
equations are shifted to Appendix A.

II. Operator Representations of Lie Algebra of Poisson Brackets

Let 3F be the Banach space of initial conditions defined in Appendix A. Let
be a functional over the space 2F . We say that the functional F possesses a Frechet
differential at a point 3 if there exists a linear continuous map DF[j] (31) of the
space 2F into R1 such that

where

The value of DF[$] (3^ on a given 31eJ*r is called the differential of the func-
δF

tional F and defines the Frechet derivative -r-
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Hence the Frechet derivative δF/δ$ is in general an element of the dual space 3F'
to^.

The Poisson bracket {F, G} of two functionals over the space J^ is formally
defined by the formula

δG δF δG (2 2)

If σ, is the Pauli matrk σ , =
0 -1

1 0

δF I δF δFV Λ u
then σ2 T" = ~ τ~ > T" an<^ ̂<>3 \ on δφj

Poisson bracket may be written in the form

{F, G} = DG[3] (3F) = - £>F[5] (3(?) (2.3)
ς -y

where for a functional X we set 3x = σ2 -^-. Hence we see that a Poisson bracket
<?3

of two smooth functionals is well defined if either 3F or 3G is an element of the
carrier Banach space 3F .

It will be evident from the next considerations that in case of nonlinear field
theory the most important role is played by a vector space Ω of functionals over
the space J ,̂ defined in the following manner.

Definition 1. A functional F over J^ belongs to Ω if

ii) DkF[^\ (31? 32? . . ., 3fc) is bounded on bounded subsets of J^fe

O j-i\

tf2(3ι>32, ..,3fc)e^, fc=0,l,2,.... D

If F, Geί2 then {F, G} is well defined and also belongs to Ω: indeed by virtue
of (2.3) one obtains

σ2 A {F> G} = σ2 A DG[3] (3F) = Λ72 A G[3] (3

which is an element of 2? . Similarly for k= 1, 2, . . . we have

which is also an element of &. Therefore {F,G}eί2. Similarly {{F, G},H} is
in Ω if F, G,HεΩ. Consequently the vector space Ω is a Lie algebra under Poisson
brackets.

1 Here — and σ2 — should be written in the form of a column. However for the sake of simplicity
^3 <5δ

of notation we write them in the form of row.
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Moreover it follows from Definition 1 that if F, GeΩ then (F-G)($ is in Ω.
Consequently the space Ω represents also an algebra under point-wise multi-
plication.

We now construct an operator representation of Lie algebra of functionals
from Ω. We begin with a construction of three carrier spaces. The first space will
be a linear space of C°° functionals φ( ) on J^ with the topology defined by the
system of seminorms

\\Ψ\\B.m= sup sup |D«y[3] (3l, ...,3J|, (2.4)
3eβ | | δ i | | F ^ l , i = l , . . . , m

where B is an arbitrary bounded subset of 2F. Since this space resembles Schwartz
space δ(Rn\ we shall denote it by the symbol δ(SF\ The second space 3ί(<F) is
the linear space of all C00 functionals on 3F with a bounded support: the topology
will be defined by the system of seminorms

| | f | | / j m=sup sup /(3)|0mϊ'[δ](δι, ,3JI, (2.5)

where/^O is a continuous functional on the space &.
The third space 3f(3F} is the linear space Ω(^) c $(&) with a topology defined

by seminorms,

δ_

''^'

We now give the representation of Lie algebra Ω in these spaces. We denote
for the sake of simplicity by DF the first order differential operator given by the
formula

δF δ

Theorem 1. Let F be in Ω. Then the operator F associated with a given functional
F by the formula

Fti} = F[ti-$DF[£(t)-iDF (2.7)

defines the continuous map of the spaces $(3F\ ana Q)(^} into itself. If
F,GeΩ then for Ψ in <$, Jf or 3> we have

i[F,G]Ψ={F\G}Ψ. (2.8)

Proof. The operator F by virtue of (2.7) is the differential operator of the first
order: the part of order zero is the multiplication by the functional F— ^ DF
from Ω which is C°° and bounded on bounded subsets: hence it maps the space
$(3?) into itself and defines in it the continuous mapping. It remains therefore
to analyse the first order part of F.

By virtue of (2.3) and Definition 1 DFΨ= {F, Ψ} = DΨ[%\ (fc) is well defined.
Differentiating DFΨ m-times we get the sum of terms of the form

δF \δΰm-kΨ , I δF \δDm~kΨ
-D

δφ(z)] δπ(z) \δπ(z)] δφ(z)
(2.9)



Relativistic Interacting Local Quantum Field 295

By Definition 1, the vector Dkfo = \Dkl-—}9 DM— M i s in the space :̂
\ \ δπj \δφ)l

hence (2.9) is equal to

k f a . . . ) . (2.10)

By virtue of regularity of Ψ this derivative is well defined. Hence DF and conse-
quently also F maps S into S.

The continuity of F in S(^) follows directly from Equation (2.10) and the
assumed regularity of Ψ and F.

By the straightforward but tedious calculations one verifies that, on the
algebraic level, we have

Ϊ[F,G] = {JVG}. (2.11)

If F, G are in Ω then by (2.3) {F, G} is also in Ω and both sides of (2.11) are well
defined on S(^). Consequently, the equality (2.8) holds on δ(&).

It is evident that all above considerations remain true also for the spaces
tf(^} and 2(&). Π

One may introduce a discrete set of canonical variables qhpb 1=1,2, ... by
writing φ(x)= "ΣJhl(x)ql and π(x)= ^hι(x)pt where {/ι/(x)}J° is an orthonormal

/ /
system in L2 (R3) which satisfies regularity conditions imposed on elements
of ̂  space. In this case, using the definition of the variational derivative, one
may write in a more transparent form the formula (2.7)

dF dF ^IdF d dF d+ί"φ; -<?fe;ΦΓΦ;<
One readily verifies using (2.7) that if FeΩ and ρ( ) is C00 then

Q(F) = ρ(F) + ρ'(F)lF-F ]. (2.13)

The formula (2.13) implies that F"Φ(F)" in general. Hence the quantization
formula (2.7) applied for a product Φ" of fields gives some "renormalization"
counter terms.

It should be stressed that in general counter terms are necessary for a proper
product of quantities which have a distributional character. Consequently, the
present quantization of field theory may be more effective than conventional
quantization schemes, since a renormalization is built in the theory from the
beginning.

III. Construction of Interacting Local Quantum Field

Let Φ[_x\φ, π] be a solution of the dynamical equation

(O+m2)Φ(x) = λΦ3(x), λ<0, x = (t,x)eR4 (3.1)

defined by the initial conditions 3 = (φ,π)e^". We showed in I that Φ is a local
relativistic field, with respect to the Poisson bracket Lie algebra, having the
local relativistic asymptotic fields Φ in and Φout. We also showed that the free
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field Φτ(ί, x\φ9π) defined by the initial condition Φτ(τ, x) = Φ(τ, jc) and 77τ(τ, *) =
77(τ, x) is a local relativistic field.

We begin the construction of a quantum field Φ(ί, x) by quantizing first the
free field Φτ(ί, jc). Let Φτ(f, α) denote the operator field obtained from

Φt[ί, <%, π] - J d3Λ;φ)Φτ[f, x\φ, π]

by formula (2.7). Then we have

Theorem 2. The operator field Φτ(ί, α), /or any τe( — 00,00) arcd aeS(JR3) is
the continuous mapping of the spaces S(βF\ 3C{3F\ and 2(^) into itself and satisfies
on each of these spaces the commutation relations:

[Φτ(ί, a) , Φt(r, β] - 1 J d3xd3ya(x) J(ί - r, x - y)β(y) . (3.2)

The field Φτ(ί, a) z's ί/ϊ£ strongly continuous function of τ and t.

Proof. Let 3 = (φ, π) be an element of 3F. Then by Lemma 4 of Appendix A the
smeared out field Φ[£, oc|3] is an element of the space Ω. Consequently also the
functional Φτ[ί,α|3] is in the space Ω. Hence by Theorem 1 the operator field
Φτ(£, α) is a continuous mapping of the spaces $, Jf , and 2 into itself.

By virtue of Equation (2.14) of I we have

{Φτ(ί, α) , Φτ(r, 0)} = - J d*xd3 yκ(x)A(t - r, x - y)β(y)

hence by virtue of Equation (2.8) we obtain Equation (3.2).
We now prove the continuity of Φτ in τ. For the first order part of Φτ we have

Hence we obtain the strong convergence if this expression tends to zero in the
topology of «(&) when |τ2-τ1HO. The last fact directly follows from (A. 16)
and (A. 17) where we proved that

||Dfc«-<)||F^0 when |τ2-τ1HO

where u® is the solution of the free Klein-Gordon equation with the initial con-
ditions at £ = 0 equal to 3φr.

To show the continuity for the zeroth order part of Φτ we note first that

Hence it is sufficient to show that ||Dw(Φτι — Φ^Hjβ-^O when τ1-τ2|-»0. Now
in Part I Equation (2.29) we have given an evaluation of ||D(Φτι — Φτ2)||£, whose
proof can be lifted also to the evaluation of ||Dm(Φτι -Φτ 2)l'^. This implies the
continuity of the zeroth order part of Φτ in (̂̂ ). Hence Φτ is strongly con-
tinuous in δ(<F) in τ. The strong continuity of Φτ(ί, α) in t follows from the fact
that the solution Φτ of free Klein-Gordon equation, generated by the initial
data Φ(τ, •), 77(τ, •) from 2F space is continuous in ί.

The proof of the strong continuity of Φτ(ί, α) in τ and t in the spaces Jf and Q)
is similar. Π

Remark 1. For simplicity of notation in the following we shall write formulae
(3.2) and similar formula in the unsmeared form:

[Φτ(x), Φτ(y)-] = ίA(x-y). (3.3)
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The operator field Φτ plays the basic role in the determination of the quantum
evolution operation U(τ, τ0) and the quantum scattering operator S. These
problems will be considered in Part III.

We now describe the quantum interacting field Φ(ί, α) associated with the
classical field Φ(£, α|φ, π) by formula (2.7). We first recall that the function Δλ[x, y\Φ~\
denotes the Green function of the linear equation

(Π + m2)u(x) = V(x)u(x) , V = 3λΦ2 (3.4)

satisfying for tx = ty = r the initial conditions Δλ[r, x, r, y|Φ] = 0, (dtΔ
λ) [r,jt,r, y\Φ~\ =

— <53(jc — y). This function can be written as the following series, which after
smearing with a test function β(y)ES(R3) is convergent in the energy norm.

+ Σ (3Arfr.M*-*i)*^ -
,= 1 ,0 Λ.χ

Theorem 3. The operator field Φ(£, α) is the continuous mapping of the spaces
^(βF\ and 3&(3F) into itself and satisfies in the distribution sense on each

of these spaces the commutation relations

(3.6)

The map £— »Φ(£, α) is strongly continuous.

Proof By virtue of Lemma 1 and 2 of Appendix A the functional Φ[ί, α|g]
belongs to the space Ω. This, by virtue of the equality

derived in Section 3, of I and Theorem 1 implies the first part of Theorem 3.
The last assertion follows from Theorem 2. Π

Corollary 1. The field Φ(x) is local i.e.

[Φ(x), ΦGO] = 0 if (x-y)2<0 (3.7)

and satisfies on $, JΓ , and 2 the canonical commutation relations

, , ,

[Φ(ί, x) , Φ(ί, y)-] = ίΠ(t, x) , Π(t9 j)] = 0 .

Proo/ If (x-j;)2<0 then by formula (3.5) zJA[x,j;|Φ]-0. Similarly, if ίx = £y

then dtA
λ[x9 y|Φ] - (53(jc - y). Π

The formulae (3.8, 3.6, and 3.5) show that the interacting field has the same
distributional character as the free field. Indeed if the map x->Φ(x)!F, ΨE<$ would

I represent a continuous or smooth map from #4 into $ then the matrix elements
(Ψf, [Φ(x), Φ(y)~]ψy, ΨΈ$' would represent a continuous or smooth function
respectively of the variables x and y. The form (3.5) for the commutator function
shows that matrix elements represent a distribution of S'(R4) type. Consequently
the quantum field Φ(x) represent an operator valued distribution of S' type.
Let us note, however, that by Theorem 3, Φ(ί, a)Ψ, aES(R3) is the continuous
function of ί.
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It follows from Remark 1 to Lemma 5 of Appendix A that the regularity
properties of Φ, Φτ, Φin, and Φout fields will not change if we take initial conditions
δin = (Φin>πin) at to= ~ °°. This implies that all assertions of Theorems 2 and 3
remain true also for this case.

We now find an equation of motion for the quantum field Φ(ί, x). Acting on
the field Φ(ί, jc) by the operator Π+m2 and using Equation (3.1) and (2.7) one
finds that Φ(£, x) satisfies the following dynamical equation

(Ώ+m2)Φ(t,x) = λΦ\t,x). (3.9)

By virtue of Equation (2.13), the interaction term in Equation (3.9) is auto-
matically renormalized: consequently, Equation (3.9) represents a meaningful
equality on the space Jf . It should be stressed, however, that the dynamical
Equation (3.9) losts its primary meaning as a tool for description of a dynamics
of interacting quantum fields: in fact, the quantum interacting field is not obtained
by a solution of Equation (3.9) but is constructed independently from the classical
solution Φ(ί, x) by formula (2.7).

It is instructive to apply the present quantization method in case of the free
field equation (Π + m2)Φ0(;x)=:0. In this case the solution Φ0[x\φ,π'] is given
by the formula

Φ0[ί, x\φ, π] = - J A(t, x - y)π(y)d3 y + J dtA(t, x - y)φ(y)d*y .

Applying the formula (2.7) one obtains the quantum field Φ0(x) which satisfies
the following commutation relations

Calculating in the standard manner the creation and annihilation operators
one easily verifies that the equation αφ0 = 0 is satisfied by the Poincare invariant
functional ψ0(φ, π) = 1 and that the n-particle states are represented by polynomials
in canonical variables. The Fock space H is a subspace of $(^) and the obtained
realization is identical with the conventional Bar gmann- Segal representation.

IV. Asymptotic Condition

Let Φin(ί, α) and Φout(£, α) be the operator fields obtained from classical solutions
Φin[ί, α|φ;π] and Φout[ί, α|φ;π] respectively by formula (2.7). Then we have

Theorem 4. The operator fields Φin(ί, α) and Φout(ί, α), αeS(R3) represent the
continuous mappings of the spaces $(&*\ $C(βF\ and 2(^) into itself and satisfy
on each of these spaces the commutation relations

out out

Proof. The field Φout [£, α|φ, π] belongs to the space Ω by Lemma 4 of Ap-
pendix A. Consequently, by virtue of Theorem 1 and the equality {Φout(x), Φoui(y)}=

— A(x — y) the operator Φout satisfies all assertions of Theorem 4. The same con-
siderations hold also for Φ in field. Π
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We now show that the fields Φin(ί, α) and Φout(£, oc) are asymptotic to the
interacting field Φ(f, α). Because Φτ(£, α) coincides for t — τ with Φ(£, α) it is in fact
sufficient to show the asymptotic condition for Φτ(ί, α) field.

Theorem 5. For every Ψ in δ(&), tf(&) or ^(^] in the topology of these
spaces we have

lim Φ t(ί,α)y=Φ i n(ί,α)y. (4.2)
T-» + oo out

Proof. It follows from the formula (2.7) and formulae (2.33 and 2.34) of I and
regularity of Φτ, Φin and Φout fields that we have convergence of (4.2) in δ, Jf ,
and 2 for the zeroth order part of the operator Φr Now, the first order part

of Φτ, by virtue of (2.3) and the equality -- r-^, -̂ — M = (wτ, δfwτ) = 3Φ we have
on oφ i

(4.3)

For higher order derivatives we have the analogous formula [cf. Eqs. (2.9) and
(2.10)]: hence for the convergence of first order part of operator Φt it is sufficient
to show the convergence

CDXO, ), 3^mi^O,OMOmwin (0, ), StD
muin (0,-)) (4.4)

out out

in the F-norm : more precisely, we need to show the convergence of (4.4) as the
multilinear operations with values in 2F . This convergence is shown in Appendix A
Equation (A. 18). Π

V. Relativistic Covariance

Let φin(x) = Φin(0, x) and πin(x) = 77in(0, x) be initial conditions for classical free
field Φin(;c). Let Φίn(x) represent initial conditions at t= — GO for the interacting
field Φ(x) which satisfies Equation (3.1). The map (a,Λ)-+U(asΛ) in the Banach
space 2F given by the formula

U(a,Λ}Φίa(x) = Φίn(Λ-l(X-a)) (5.0)

defines the continuous representation of the Poincare group in the space ^.
The elements

(^,A)(0,*) and (E/(e^ff in)(0,x) (5.1)

define the element 3in = (<Pin>πin) after the transformation. We shall denote the
transformed element (5.1) by the symbol ί/(α>yl)3in.

The map (a, Λ)->U(atA) in the space δ(&) given by the formula

(U(a,Λ}Ψ)(^)=Ψ(U^Λ^n) (5.2)

defines the continuous representation of the Poincare group in δ(3F). Similarly,
by formula (5.2) one defines the action of the Poincare group in the spaces JΓ(J^)
and 2ψ\

Remark ϊ. The global action of the Poincare group in case when the canonical
variables φ and π are taken at a finite time ί0 can be also easily calculated with the
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help of Trotter product formula: (cf. Part III, Appendix). We shall not need
however this formula in the present work.

We now show the covariance property of the quantum field Φ(x).

Proposition 6. The field Φ(x) has the following transformation properties relative
to the representation (u,Λ)-+U(atΛ) of the Poincare group

(5.3)

Proof. The classical solution Φ[ x|3in] of Equation (3.1), by virtue of formula
(5.2) of I satisfies the identity: Φ[x|[/,~ι

1

/1)3in] = Φ[ylx+α|3in]. This implies by
virtue of the quantization formula (2.7), the equality

Hence by virtue of Equation (4.3) for every "F(3in) in §(^\ Jf (̂ ) or 2(^) we have

n . D

It is noteworthy that generators Pμ and Mμv, μ,v = 0, 1,2, 3 can be defined
only on J>f(έF) carrier space. Indeed, since by virtue of Equation (4.5) of I they
are bilinear in ^ιn = (φίn)nίn) variables we have by Equations (2.3) and (2.7)

XΨ= -i{X, Ψ}=-iDX(tΨ) = iDΨ(tx) (5.4)

where X is any classical generator of the Poincare group.

( /S V /S V \
— - — , - — is not in general in 3F\ for instance if X — P0

^πin <5<Pin/
then

=πln(z) and -=m

2φίn(z) + Aφίn(z) (5.5)
<Sπin(z) — δφίn(z)

and 3Po is not in 2F for an arbitrary 3in in 3F. Hence XΨ is an element of the carrier
space only when 3ΨeέF. This holds only if we take JΓ(J^) as the carrier space.
In this case all fields Φ, Φτ, Φin, and Φout as well as all generators Pμ and Mμv are
defined as continuous mappings of Jf into $.

Because in the classical field theory we have Pμ - P[

μ

n = P°μ

ut and Mμv = M™ = M™1

by virtue of (2.7) we obtain

P = Pin = P°υt M — Mϊn — Mout (* &\1 μ Γμ Γμ •> 1V1 μv ~1V1 μv ~1V1 μv P 6)

By Equation (5.6) the quantum generators Pμ and Mμv are represented by the
first order differential operator only. Consequently, the vacuum state Ψ0 defined
by the formula

Pμ ¥>o = 0, MμvΨ0 = Q (5.7)

is given in Jf(^) by the functional Ψ0(φ,π)=l. Hence by (5.7) the interacting
and the asymptotic quantum fields have the same vacuum fo in Jf(^). The
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elements of the Wightman domain given by the formula

by virtue of Equation (2.7) are represented by the sums of products of Frechet
derivatives of the classical field Φ. Hence the Wightman domain as well as the
Fock space Hϊn of Φίn field are subspaces of the carrier space Jf .

VI. Discussion

A. We have constructed here the relativistic local quantum field Φ(x), possessing
the local relativistic asymptotic fields Φin(x) and Φout(x). The explicit form of
the quantum scattering operator S which transform Φin into Φout field can be
also given: this problem is considered in Part III of our work. The problem of
unitary of the quantum scattering operator reduces to the problem of a construction
of an invariant measure in the space of initial conditions.

B. The formula (3.9) shows that the present quantization method provides
a certain normal ordering which is given by the formulae

N(Φn)(x)=Φn(x). (6.1)

Using the formula (2.13) we find that

Φ%x) - (I - n)Φn(x) + nΦn - \x)Φ(x) . (6.2)

The powers N(Φ") (x) are local respect to the quantum field Φ(x) and all other
powers N(Φm) n, w= 1, 2, 3, ... . Indeed, using the formula (2.11) we obtain

\_N(Φn) (x) , N(Φm] (yfl = ίnmΦ"(x) y\Φ] . (6.3)

Hence if x and y are space-like separated then, by virtue of (3.5), Δλ[x, y|Φ]=0
and we have :

[JV(Φ")(x), N(Φm)(y)-]=0. (6.4)

The normally ordered powers N(Φn) are also Poincare co variant: indeed using
Equations (5.2), (5.3), and (6.1) we obtain

U(a. Λ}N(Φn) (x)U^Λ} = N(Φn) (Ax + a) . (6.5)

The formula (6.4) and (6.5) show that the normal ordering (6.1) satisfies the most
important requirements which are usually imposed on normal ordering in the
axiomatic quantum field theory. One can easily verify using results of Lemma 2
of Appendix A that the formula (6.1-6.3) after smearing with a test function
β(x)eS(R3) provides well defined operators from the carrier space Jf into Jf .

C. The canonical quantization discussed in the present paper may be extended
to a certain class of nonpolynomial interactions F(Φ). The extension of the present
results may be proved by using, in the proofs of Theorems 2—6 the corresponding
results for a classical nonlinear relativistic wave equation with a nonpolynomial
nonlinear term (cf. 5, App. A).
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Appendix A

In this appendix we shall prove some technical lemmas and inequalities used
previously. We first recall the definition of the space J^: we say that an element
3 = (φ,π)ε^' iff Φ0e^ where Φ0(ί, x) is the solution of Klein-Gordon equation
with the initial conditions Φ0(0, x) = φ(x\ dtΦ0(Q, x) = π(x): in turn an element
Φ0e 2F iff it has finite F-norm given by

00

||Φ0||| = sup||Φ0(ί, ) l l l+ s uPiΦoMI2 + \ sup|Φ0(ί, x)\2dt
t x — oo x

where || ||£ is the energy norm.

Lemma I. A mapping Φ[ [3] :JiΓ93-> XF where XF is a Banach space of functions
defined on R4 and having finite F-norm (a completion of C^(R4) in F-norm), is
infinitely differentiable in Frechet sense, a differential of m-th order satisfies an
equation

(Π + m2)DmΦ(x) - 3λΦ2(x)DmΦ(x) + £ cjt k> lD
jΦ(x)DkΦ(x)DlΦ(x] = 0

j + k + l = m
and an inequality j,k^ι<m ^ ^

sup ^ sup ι m l |DwΦ[ l3](3 ι J . . - ϊ 3 j l lF<oo (A.2)

for every bounded subset B of the space 3F.

Proof. It will be clear from the following considerations that the inequality
is satisfied uniformly with respect to 3 from a bounded set B and 3t satisfying
l ^ l l f g i l , so we shall omit in denotations the functional dependence on 3, 3f and
the symbols sup, sup . The proof of (A.I). (A.2) and all the further

results will be based on the four fundamental inequalities. We shall now write
and prove them. The first one is:

t-τ 2

Jf A(t-s,x-y)u(s, y)v(s, y)w(s, y)dsd3y

where τ^ί— T<£; u,v,w are arbitrary, sufficiently regular, functions, and the
supremum in the first bracket is taken with respect to all the backward cones
with vertices lying in slab τ <£ s ̂  t (more exactly we take the intersections of the
cones with the slab).

This inequality is proved in [5] p. 14 as Corollary to Lemma 7. We shall
denote as in [5]

s s
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The second inequality is:

ί-ίo 2

JJ Δ(t-s,x- y)u(s, y)v(s, y)w(s, y)dsd3y

(A.4)
'ί-ίo \ v '

supf tA/S f
ί-Γ

where the meaning of the expressions occuring in it is the same as in (A. 3).
We shall now prove (A.4). We use a representation

ί-fo ]_ ί-ίo ^ fo

JJ zl(ί — 5, jc — y)uvwdsd3y = — - J J uvwdS -
f-Γ 4π ί-Γ |x-y|=ί-s i — lS

ί-ίo

+ f J
t-T \x-y\£t-s

μ2 = (t- s)2 -(x- y)2, and k(μ) is a bounded function.

We have:

£(ϊu2dS}( j llφ^llvφ)!!2^
/ \ί-Γ

'ί-ίo

f u2d3y<
t-T \x-y\£t-s / V-3 ί-Γ

but

7° J H2d3yώ=7°7 f «2< dsdρ
ί-Γ |jc-j|^f-s ί-Γ 0̂  Ss>β

and introducing the new variables ξ = (t — s) + ρ,η = (t — s) — ρ instead of ρ, 5 we
obtain

^ Γ sup j u2dS ̂  Γ sup I u2dS
ηe[0,T]Sη § S

and this implies (A.4).
The third inequality is a simple generalization of the inequality proved in

Appendix II, Part I : if u is a regular solution of an equation

ι + V(x))u(x) = f(x) (A.5)

in a domain bounded by a cone S and hyperplane f = 0 then

^ exp - J sup \V(σ, x)\dσ
m 0 x<=Bσ

(A.6)
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where
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ρ(τ)= sup
cre[0,τ]

Γl 3 1
+ ί k Σ (COS<X Xj)dtu — cos(n, t)dx.u)2 + -m2 cos2(π, t)u2

||/(σ, ')\\*2= ί l/fo ^)|2^, and 5σ, 5σ— as on the picture
Bσ

- —

Proof of (A.6): Multiply the Equation (A.5) by dtu:

4Ci(^)2+iW+imV]-p^
integrating over Fτ:

?o+ J ^oMcos(n,ί)dS- j Σ cos(n,Xj)dx.udtudS
Sτ Sτj=l

+ j Vu8tudx= J fdtudx

where

Eτ=
Bτ

and transforming the left-hand side of the equality we obtain:

''°+l. ό Σ

Vτ Vτ
m:

hence

ρ(τ)^ρ(0)+- jsup |F(σ,Jc)|ρ(σ)rfσ+ f ||/(σ, )ll!^| +-
m 0 xeBβ \0

and

^2Uθ)+ f ||/(σ,
2 '

m 0 xeBσ

J COS(/ί,

2
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Now, reasoning as in the end of the proof of Lemma 1 in Appendix II, Part I,
OO 00

we get the inequality (A.6). When the integrals j \\V(t, OIL* and ί l l/fo OIL*
are convergent we have the estimate: ° °

supf u2dS + sup||tt(ί, - \\V(t,
0

(A.7)

The fourth inequality is a slightly modified Lemma 8 in [5] : let u, v, w be any
sufficiently regular functions and

Ψ(x)=]$A(x-y)u(y)v(y)w(y)d4y
a

a, b-real numbers, then

sup

sup
α g s ^ b

sup

ίl|vφ)ll>
1/2

1/2

sup
l/2

+ sup

l/2

1/2

l/2

l/2

1/2

sup

with a constant ̂  independent of u, v, w, α, b; here
\ l / 2

(A.8)

and the meaning of |MlS?' fe] is clear

Proof of (A.8): At first we shall estimate ^(x)!2 by the help of the inequalities
(A.3) and (A.4). We have to consider three cases: t^a<b, a<t<b, a<b^t, but
the inequalities for the first two cases are the simple consequences of this for
the last by the use of a time reflection and a division of the interval of integration
[a, b~\ into two intervals [α, ί] and [t,b]. Thus we consider the case
From (A. 3) and (A.4) we have:

' A(x — y)uvwd4y + J j A(x — y)uvwd4y
ί-l

ί-l ds

(ί-s>
,3/2



306 T. Baίaban et al.

Of course, if t — 1 > b then the second integral does not occur and in the first we
have b instead of t — 1 as the upper limit of integration. Thus

b b

sup ||w(s)||f J ||φ)||^ds+ sup || φ)|||J ||w(s)||^ds
a<s<b a a<s<b a

sup

+ sup
a^s^b

00

because (t — s)~3 / 2^l in the first integral, and j sup \Ψ(t, x)\2dt is estimated by
b x

the same expression, since on the right hand side we have

Γ b + l ί - 1 Λ ς oo b Js 5+1 b

C<U>2\ ί ί (-), \3l2dt+ ί f (" ' ) . x 3 /2^+ ί ί (-¥SΛ
L b α (^~S) fc+1 α (^ S) b ί-1

[
b " l o o d ί f c °° dί b

α b (ί ~ 5) b - 1 s + 1 (^ ~~ S) α

? Λ ΓZ?

Finally

The same inequalities hold for the remaining cases, so (A.8) is proved.
Now we are ready to prove Lemma 1. The proof will be inductive, the induction

with respect to m. For m = Q it is proved in [5] and let us consider the general case.
We assume that Φ has the Frechet derivatives to m-th order satisfying the Equations
(A. 1). An expression AsD

mΦ(x) = s~ 1(DmΦ[x|^ + 53'] — DmΦ[x|3] satisfies an equation

(Π + m2)AsD
mΦ(x) + £ Cjί k §, (AsDJφ(x)DkΦlx\z + ̂ Ί DlΦ[xfo + 53']

j + k +1 = m

+ D^(x)D^(x)zJsD^(x)) = 0 (A.9)

and let us define Φ1 as a solution of an equation

(D + w2)Φ1(x) - 3λΦ2(x)Φ1(x) - 6λΦ(x)D'Φ(x)DmΦ(x)

+ Σ Cj. k, lD
f(DjΦ(x)DkΦ(x)DlΦ(x)) = 0 (A. 10)

j + k +1 = m

satisfying the initial conditions

|3' if m = 0
1 l 1 ' 1(0,0) if m>0.
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Taking the difference of (A.9) and (A. 10) we obtain an equation for AsD
mΦ(x} — Φ^x).

It follows from the considerations similar to these presented below that Φ1 has
a finite J^-norm so the difference AsD

mΦ(x) — Φ1(x) has a finite F-norm. We shall
estimate it now. From the equation satisfied by this difference we obtain an
integral representation of the form:

AsD
mΦ(x)~Φ1(x) = - ttd*yA(x-y) [_3λΦ2(y)(AsD

mΦ(y)-Φί(y))
o

'] -D'Φ(y)Φ(y)DmΦ(y))

'] - Φ(y)D'Φ(y)DmΦ(y))

j+k+l=m
j,k£l<m

+ DjΦ(y)A sD
kΦ(y)DlΦ[_y\3 + ̂ 'j + DjΦ(y)DkΦ(y)AsD

lΦ[_y\t + 53']

- DfDjΦ(y)DkΦ(y)DlΦ(y) - DjΦ(y)D'DkΦ(y)DlΦ(y) - DjΦ(y)DkΦ(y)D'DlΦ(y)'] .

Applying the inequality (A.8) to this representation we obtain

+ sum of the terms with a typical representative of the form

or

kD?Φy+ *up\\D*Φ\\E\ ?
with

q<m

in the first form, and functional arguments

3 + sg' or 3].

Now it follows from the induction hypotheses and from the inequality (A.7) that

are bounded, and

i l ^ O as

so the sum on the right hand side of the above inequality tends to zero. Thus it
remains to consider an expression

The difference AsD
mΦ — Φ1 satisfies an equation of the form (A.5), hence applying

the inequality (A. 7) we can estimate this expression by

/ 00

Ci exp \c2 J supΦ2(ί, x)dt
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times the sum of the terms of the form

oo \ l / 2 / oo \ 1/2 Γ

J sup\DpΦ(t,x)\2dt\ J sup\DrΦ(t,x)\2dt\ \sup\\AsD
qΦ-D'D*Φ\\E

- o o x / \ — o o jc / I t

+ sup||ί)«Φ[ί, |3 + s3']
t

which can be estimated by

\\D*Φ\\F\\DrΦU\\A8D*Φ-D'D*Φ\\F +

The last expression tends to zero as s— >0 thus we have proved that

\\AsD
mΦ-Φ1\\F-+Q as s->0.

This ends the proof of Lemma 1.

Let us now remind the definition of the function uτ. It was defined as a solution
of the equation

with the Cauchy data

(wt(τ, •), dtuτ(τ, •)) = («(*» •), 4Φ, •))

where α is a solution of Klein-Gordan equation from 3F .

Lemma 2. The function wτ[ |$] determines a C00 mapping - in the Frechet sense
from ^ into XF, a differential of m-th order satisfies an equation

(Π + m2 - 3λΦ2(x))Dmuτ(x) + X djt k> l D
jΦ(x)Dluτ(x) = 0

Km

(A. 11)

and an inequality

sup sup l|βmwt[ l 3 ] ( 3 ι » - - - 9 3 J l l F < o o (A. 12)
δeβ | |3 l | |F^l,i = l , . . . , m

/or £t;ery bounded subset B of the space ̂  .

The proof of Lemma 2 is identical to the proof of Lemma 1 because the equations
which occur here are of the same form as equations occuring in Lemma 1, so we
omit it.

Now we are going to prove the very important fact: the convergence of Dmuτ( )
in the space 2F when τ-> + oo. More exactly, we shall prove

Lemma 3.
sup sup PX[ |3](δι ?.. 53m)-^wwτ2[ l3](3ι? . . ,3m)llF^O

3eβ | | 3 ί | lF^l, ί = l , . . . , m

as τ 1 ? τ 2

where B — a bounded set in the space 2? ' .
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Proof. From the Equation (A. 11) we obtain an integral representation

Dmuτ(x) = δmt Oφ) - 3λ ff A(x - y)Φ2(y)Dmuτ(y)d4y
τ

+ Σ djtkJttΔ(x-y)WΦ(y)DkΦ(y)Dluτ(y)d4y. (A. 14)
j+k+l=m τ

Km

Similarly as in the above considerations the dependence on 3 and & will be obvious
and we shall omit it. The integral representation (A. 14) gives us

Dmuτι(x)~Dmuτ2(x)

= Σ dJ,k, / If Δ(x - y)DJφ(y)DkΦ(y) (Dluτί(y)-Dluτ2(y))d4y

+ Σ dj,kJttΔ(x-y)WΦ(y)DkΦ(y)Dluτι(y)d4y (A.15)
j + k + l=m ti

and applying the inequality (A.8) we get

||DX-D-XJFSc £ {p'tί^-D'tO

+ sup ||β'«τι(ί, )-£'«τ2(ί, )ll£) ||/>'Φ||F||D*Φ||F+(<DI«τι>
ί / \

+ sup ||DΉτι(f, )\\E\(\\D]Φ\\f[.DtΦT^+ \\DkΦ\\fίDJφTl τιt)\ (A.16)
ί / J

Now, similarly as in the proof of Lemma 1, we use (A.6) and obtain

i<ι
— from (A.I) and (A.2) it follows that the right hand side of the inequality is a
finite expression, and

Σ
t

(A.17)

By induction we can estimate the left hand side of this inequality by a finite
expression multiplied by sup \\uτι(t, ) — uτ2(t, )||E.

Now, by virtue of Equation (2.39) of I we have

sup||wτι(ί, -)-uτ2(t, )\\E-*Q as
t

Because we have also

1/2
[JD*φ][tι,t2] = >0 as
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thus the inequality (A. 16) implies the condition (A. 13). Strictly speaking, what
we need it is not the condition (A. 13) but a condition

sup||Dmtt°-Dmtt?JF->0 as τ1 ?τ2-^ + oo (A. 18)
3.3i

where Dmu®(x) is a solution of Klein-Gordan equation with the Cauchy data
at f = 0 equal to (Dmuτ(Q, -), (dtD

muτ) (Q, •))• But using the Equation (A. 11) again
we obtain another integral representation:

Dmujx) = D"Ί<τ

0(x) + Σ djt kt l ft A(x- y)DjΦ(y)DkΦ(y)Dluτ(y)d4y (A. 19)
j+k+l=m 0

and from this and (A.8) we obtain

\\Dmu°τι-Dmu°τ2\\F^Dmuτi-Dmuτ2\\F + c £ UDluτι-Dluτ2y
j + k + l = m\

+ sup||D'wτι(ί, )-Dluτ2(t, )\\E\ \\DjΦ\\F\\DkΦ\\F.
ί /

Using (A. 17) we get finally an equality

m

||D"w°-D»ι£||fSM Σ \\Dluτι-Dluτ2\\F
ί = 0

and this together with (A. 13) imply (A. 18). The representation (A. 19) gives, by the
same considerations, that the function Dmu®( ) belongs to the space 2F'.

Lemma 4. The functionals Φτ(ί, α), Φin(£, α), Φout(ί, α) belong to the space Ω.

Proof. At first we shall consider Φτ(ί, α). It is clear from Lemma 1 that it is
infinitely differentiable in the Frechet sense on the space 3F and the all differentials
are bounded on the bounded subsets of 3F. For a functional derivative δΦτ(t, ά)
we have

=(tαθ,*), d,uτ(0,X))

thus, by Lemma 2 and 3,

δDmΦ (ί, α)
σ2 c / — — Φmwτ(0, jc), 3,Z

03(3;)

and this element has a finite F-norm, equal to \\DmυPτ\\F. It is bounded on the
bounded subsets of ̂  hence Φτ(ί, α)e£2. We have proved in Part I that

Φτ(ί, α) -> Φin (ί, α) as τ -»+ oo .
out

From Lemma 3 it follows that Φτ(ί, α) is convergent in the topology of the space Ω,
because

δ δ

 m o m o

^δ( ) τι ' Φj( ) F
so the functionals Φin (ί, α) belong to Ω also. We have used in the paper the
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functional depending on gin not on 3, so we must show that the results of Appendix
A are valid for the dependence on 3in also. It suffices to show

Lemma 5. The mappings W±:%in -»3 are the C^-homeomorphisms of the
out

space 2F onto itself, mapping bounded sets onto bounded sets, similarly the inverse
mappings.

Proof. In the paper of Moravetz-Strauss it was shown that the mappings are
the homeomorphisms of the space J^ onto itself, transforming bounded sets
onto bounded sets, and there was essentially proven the regularity of W± ([5],
Corollary, p. 25). The regularity of the inverse transformations was proved in
Lemma 4. Π

To show that, for example, (A.2) remains valid for the dependence on 3in, let
us notice that (A.2) is equivalent with the statement that a mapping

(a Banach space of functions with finite F-norm) is of C°° class and bounded
on bounded subsets of 3F. But from the above lemma it follows that the same
remains valid for a mapping

thus (A.2) holds for Φ[ |W^±δin]. Similar situation is for the other inequalities.
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