Parity Operator and Quantization of $\boldsymbol{\delta}$-Functions

A. Grossmann

Centre de Physique Théorique, C.N.R.S., F-13274 Marseille Cedex 2, France

Abstract

In the Weyl quantization scheme, the δ-function at the origin of phase space corresponds to the parity operator. The quantization of a function $f(v)$ on phase space is the operator $\int f(v / 2) W(v) d v M$, where M is the parity and $W(v)$ the Weyl operator.

Introduction

We are concerned here with the elementary problem of writing down an operator $Q(f)$ which quantizes a function f on (flat) phase space. The existing solutions [1] (see also [2]) all involve, to the best of our knowledge, the performing of Fourier transforms. By contrast, our equation (10 bis) picks up local contribution from the classical function and also exhibits a rather unexpected role played by the parity operator.

1. Displaced Parity Operators

Let E be the phase space for $v<\infty$ degrees of freedom, i.e. a $2 v$-dimensional vector space over \mathbb{R}, with a symplectic form $\sigma(v, a) \cdot(a, v \in E)$. Let $v \rightarrow W(v)(v \in E)$ be a Weyl system over E, i.e. a strongly continuous family of unitary operators acting irreducibly on a separable Hilbert space \mathscr{H} and satisfying

$$
\begin{equation*}
W(a) W(v)=e^{a}(v) W(a+v) . \tag{1}
\end{equation*}
$$

We have introduced the abbreviation

$$
\begin{equation*}
e^{a}(v)=e^{2 i \pi \sigma(a, v)} . \tag{2}
\end{equation*}
$$

The family $W^{\prime}(v)=W(-v)$ also satisfies (1). By the uniqueness theorem of von Neumann, there exists in \mathscr{H} a unitary operator M, determined up to a phase, and such that $W(v) M=M W(-v)$ for every $v \in E$. Since M^{2} commutes with the irreducible family of operators $W(v)$, it is a number of modulus 1 , which can be adjusted to 1 by a multiplication of a suitable number $e^{i \theta}$ to M. Then $M=M^{*}$ and M is determined up to a sign.

For every $v \in E$, define $M(v)=W(v) M=M W(-v)=W(v / 2) M W(-v / 2)$. Every $M(v)$ is both unitary and self-adjoint.

The spectrum of every $M(v)$ consists of the numbers ± 1. The corresponding eigenspaces are ranges of the projection operators $\frac{1}{2} W(a / 2)(1 \pm M) W(-a / 2)$.

The operators M, W satisfy the relations

$$
\begin{align*}
& W(a) W(b)=e^{a}(b) W(a+b) \\
& M(a) M(b)=e^{b}(a) W(a-b) \\
& W(a) M(b)=e^{a}(b) M(a+b) \tag{3}\\
& M(a) W(b)=e^{b}(a) M(a-b)
\end{align*}
$$

$(a, b \in E)$.
Notice that $M(a) M(-a)=W(2 a)$.

2. Fourier Transform of the Family \boldsymbol{W} (a)

The (symplectic) Fourier transform of a function f on E is defined by

$$
\begin{equation*}
\tilde{f}(v)=\int e^{v}\left(v_{1}\right) f\left(v_{1}\right) d v_{1} \tag{4}
\end{equation*}
$$

The invariant measure $d v_{1}$ on E shall be normalized by the requirement that $F^{2}=1$. This, together with (2) allows us to write formulae where v, the number of degrees of freedom, does not appear explicitly.
Theorem. The sign of M can be chosen so that, for every $a \in E$ and all Φ, Ψ in a dense linear subset $\mathscr{D} \subset \mathscr{H}$, one has

$$
\begin{equation*}
\int e^{a}(v)(\Phi, W(v) \Psi) d v=(\Phi, M(a) \Psi) \tag{5}
\end{equation*}
$$

the integral on the l.h.s. of (5) is absolutely convergent. In shorthand,

$$
\begin{equation*}
\int e^{a}(v) W(v) d v=W(a) M \tag{6}
\end{equation*}
$$

Proof of (5). We shall work in a special representation space \mathscr{H} which will simplify calculations, and will be used in forthcoming papers. Consider in $L^{2}(E ; d v)$ the unitary operators $T^{a}:\left(T^{a} \Phi\right)(v)=\Phi(v-a)$ and $E^{a}:\left(E^{a} \Phi\right)(v)=e^{2 i \pi \sigma(a, v)} \Phi(v)$. We have $T^{a} E^{b}=e^{a}(b) E^{b} T^{a}, F T^{a}=E^{-a} F, F E^{a}=T^{-a} F, M T^{a}=T^{-a} M, M E^{a}=E^{-a} M$. Here F is defined by (4) and $(M \Phi)(v)=\Phi(-v)$.

The operators

$$
\begin{equation*}
W^{\mathrm{reg}}(a)=T^{-a} E^{-a} \tag{7}
\end{equation*}
$$

satisfy (1) but act reducibly on $L^{2}(E ; d v)$.
A closed invariant irreducible subspace of $L^{2}(E ; d v)$ may be constructed with the help of a σ-allowed complex structure on E, i.e. an \mathbb{R}-linear map J satisfying $J^{2}=-1, \sigma(J a, J v)=\sigma(a, v)(a, v \in E)$ and $\sigma(a, J a)>0(a \in E, a \neq 0)$. Define $s(a, v)=$ $\sigma(a, J v)$ and $h(a, v)=s(a, v)+i \sigma(a, v)$. Now introduce \mathscr{H} as the set of continuously differentiable functions in $L^{2}(E ; d v)$ that satisfy the modified Cauchy-Riemann equations:
$\left(\nabla^{a} \Phi\right)(v)+2 \pi s(a, v) \Phi(v)=i\left[\left(\nabla^{J a} \Phi\right)(v)+2 \pi s(J a, v) \Phi(v)\right]$
for all $a \in E$. Here

$$
\left(\nabla^{a} \Phi\right)(v)=\left(\frac{d}{d \lambda} \Phi(v+\lambda a)\right)_{\lambda=0} .
$$

The scalar product in \mathscr{H} is $\int \bar{\Phi}(v) \Psi(v) d v$.
Let $\Omega(v)=e^{-\pi s(v, v)}$. Then \mathscr{H} consists exactly of the functions $\Phi(v)=\Omega(v) \varphi(v)$
where φ belongs to the holomorphic representation space of Bargmann.
The operators $W(a)=T^{-a} E^{-a}$ act irreducibly on \mathscr{H}.
Consider in \mathscr{H} the family of coherent states

$$
\Omega^{a}=W(a) \Omega=T^{-a} E^{-a} \Omega .
$$

One has

$$
W(a) \Omega^{b}=e^{a}(b) \Omega^{a+b}, \quad M \Omega^{b}=\Omega^{-b} .
$$

Furthermore, the complex conjugate of $\Omega^{a}(v)$ is $\Omega^{v}(a)$, since

$$
\Omega^{a}(v)=\Omega(a) \Omega(v) e^{-2 \pi h(a, v)} .
$$

We have

$$
\begin{equation*}
F \Omega^{a}=F T^{-a} E^{-a} \Omega=T^{a} E^{a} F \Omega=\Omega^{-a} \tag{8}
\end{equation*}
$$

since $F \Omega=\Omega$.
The linear span of the Ω^{a} is dense in \mathscr{H}; so we have proved that $F \Phi=M \Phi$ for every $\varphi \in \mathscr{H}$. One obtains next from (8)

$$
\begin{equation*}
\int e^{a}(v) \Omega^{v} d v=\Omega^{a} \tag{9}
\end{equation*}
$$

(in the sense, say, of pointwise convergence). Finally, (9) gives, for all $a, c \in E$

$$
\int e^{a}(b) W(b) d b \Omega^{c}=\int e^{a}(b) e^{b}(c) \Omega^{b+c} d b=e^{c}(a) \Omega^{a-c}=W(a) M \Omega^{c}
$$

which proves (5) on the dense set of finite linear combinations of coherent states.

3. Weyl Quantization of $\boldsymbol{\delta}$-Functions

Given a function or distribution f on E, the Weyl quantization procedure consists in associating to it the operator $Q(f)$ in \mathscr{H}, formally defined by

$$
\begin{equation*}
Q(f)=\int \tilde{f}(v) W(-v / 2) d v \tag{10}
\end{equation*}
$$

One has $Q(1)=1$, and

$$
Q\left(T^{a} f\right)=W(a) Q(f) W^{-1}(a)
$$

in agreement with the interpretation of $W(a)$ as displacement operator.
We are interested in the quantization of δ_{a}, the δ-function located at the point a of phase space. The operator $Q\left(\delta_{a}\right)$ is formally given by

$$
\begin{equation*}
Q\left(\delta_{a}\right)=\int e^{-a}(v) W(-v / 2) d v \tag{11}
\end{equation*}
$$

It is claimed that

$$
\begin{equation*}
Q\left(\delta_{a}\right)=2^{2 v} W(a) M W(-a)=2^{2 v} W(2 a) M \tag{12}
\end{equation*}
$$

The assertion (12) follows immediately from (5).
The expression (10) can now be supplemented by

$$
\begin{equation*}
Q(f)=2^{2 v} \int f(v) M(2 v) d v=\int f(v / 2) W(v) d v M \tag{10.bis}
\end{equation*}
$$

involving the classical function $f(v)$ itself rather than its symplectic Fourier transform. This is often rather useful: consider e.g. the equation $Q(h)=Q(f) Q(g)$. Simultaneous use of (10) and of (10. bis) allows us to relate in a simple way the supports of $f, g, h, \tilde{f}, \tilde{g}, \tilde{h}$ which all have physical significance.

It is instructive to compute

$$
Q\left(\delta_{v}\right) \Omega^{b}=2^{2 v} e^{-2 v}(b) \Omega^{2 v-b}
$$

Notice that $2 v-b$ is obtained from b through reflection at the point v. Consequently the expectation value $\left(\Omega^{b}, Q\left(\delta_{v}\right) \Omega^{b}\right)$ is peaked at $b=v$, as it should physically.

As a final exercise, we look at (10. bis) in the x-representation, with $v=1$ and $\hbar=1$. One has then

$$
\begin{aligned}
& (W(x, p) \psi)\left(x^{\prime}\right)=e^{-\frac{1}{2} i x p} e^{i p x^{\prime}} \psi\left(x^{\prime}-x\right) \\
& (M \psi)(x)=\psi(-x) \\
& d v=(4 \pi)^{-1} d x d p \\
& \sigma\left(v, v^{\prime}\right)=(4 \pi)^{-1}\left(p x^{\prime}-x p^{\prime}\right)
\end{aligned}
$$

If $f(v)=f(x, p)$ depends only on x, a trivial explicitation of (10. bis) gives $(Q(f) \psi)\left(x^{\prime}\right)=f\left(x^{\prime}\right) \psi\left(x^{\prime}\right)$.

References

1. Pool, J.C.T.: J. Math. Phys. 7, 66 (1966)
2. Grossmann, A., Loupias, G., Stein, E. M.: Ann. Inst. Fourier 18, 343 (1968)

Communicated by H. Araki

