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Abstract. It is shown that the point spectrum of the n-particle Schrδdinger
operators in the center-of-mass frame is finite for shortrange and dilation
analytic potentials.

1. Let C be a subset of (1.. .n) and Hc, the Schrδdinger operator of the system C
in its center-of-mass frame. We omit the index C for C = (l...n). The general
structure of the spectrum off/ for, say, the Kato potentials is given by the following
statement1.

Theorem 1 ([1—3]). (i) The essential spectrum of the operator H coincides with
the half-line [μ, oo) where2

m\λ\λe (J £ σP(ΆCi)\.
id) C < £ ( l . . . n )

I UC, =(I...B) >

= mm\\ (J
id) £

I UC, =(I. . .B)

(ii) The set of accumulation points of σP(H) is included in

λ\λe\J Σ M#
{C;} C f £ ( l . . . « )

uCi=(l...n)

The second statement was proved in the additional assumption of the dilation
analyticity of the potentials (see p. 157).

2. Further and exhaustive information on the continuous spectrum of the
Schrδdinger operator of a multiparticle system has been obtained in scattering
theory [4-7].

The next basic problem in a qualitative description of the point spectrum of
the Schrδdinger operator is to find classes of potentials for which the point

1 In this work we use the following standard definitions: the point spectrum σp(A) of an operator A
is the set of all eigenvalues of finite multiplicities of A. The discrete spectrum σd(A) of A is the set of
all isolated eigenvalues of finite multiplicities.
2 For C=(k) we set Hc = 0 and σp(Hc) = σ(Hc) = {0}. The union is taken over {CJ such that σp(//c ) +
0Vi.
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spectrum is finite. A solution of this problem is also important for scattering theory
(see [4, 5, 7]).

3. Familiar examples in physics indicate that one such class is apparently
that of the so-called short-range potentials, i.e., potentials which decrease suf-
ficiently rapidly at infinity. The finiteness of the discrete spectrum of H for this
class was proved in [8-12].

In this paper we prove the finiteness of the point spectrum of H for the short-
range and dilation analytic potentials [the Conditions (i)-(iii)]. In [12] it is
shown that for the isolated part of the point spectrum these assumptions may be
reduced to (i).

4. In order to obtain this result we combine the method of [12] with the method
of rotation of an essential spectrum of [3]. The last method separates the essential
and point spectra and reduces the problem of the description of the point
spectrum to the problem of the description of the discrete spectrum (but not of
the self-adjoint operator). After this the method of [12] may be applied to the
problem.

5. We now describe, briefly, the method of [12]. Let A be an operator, the
discrete spectrum of which one is interested in. Suppose that the essential spectrum
of A lies on some line, say, on the real axis IR. We correspond to A the family

where W is the compact operator such that A(g), gelR, has an infinite discrete
spectrum if A has an infinite discrete spectrum. We show that W may be chosen
in such a way that the accumulation points of σd(A(g)) move under changing g.
In order to do this we find the uniformly continuous (in λ) family of compact
operators L(λ,g), in a Banach space, such that eigenvalues of A(g) are the
singular points3 of L(λ, g) corresponding to a number v. Since the set of singular
points of a uniformly continuous family of compact operators is closed (see, for
example [12]), the accumulation points {λf} of σd(A(g)) are the singular points of
L(λ, g) too for any g (corresponding to the same number v). Now it is not difficult
to show by the standard methods of the perturbation theory that the eigenvalue v
of L(λb g) moves continuously when g changes. Hence the accumulation points
of σd(A(g)) are not constant for gelR. On the other hand the accumulation points
of σd(A(g)) belong to the essential spectrum and therefore can be situated only
on its boundary. Since σes(A(g)) = σes(A) for all geIR they do not depend on g. We
obtained the contradiction to the previous statement. Hence σd(A) has no accu-
mulation points and therefore is finite.

6. The Schrδdinger operator of an rc-particle system in the coordinate represen-
tation, in atomic units (mel—l,e = l,h= 1), has the form

= Σ - ^4/(*)+ \ Σ vfa-x

3 The singular point of a family of compact operators K(λ) corresponding to a number v is called the

value of λ for which veσ{K(λ))
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where m^O, A{ is the Laplacian with respect to xi9 and the functions Vu(x) (in this
paper) satisfy the conditions

(i) J|t;i/fc)r(l + |fe|ro

where υiβ)= J Vifiήe^dx.
(ii) VijViJ are dilation analytic with an open connected domain O of the

complex plane, i.e. the operators

Vu(Θ)f= Vijie^Xi-xflfix), ΘeR ,

have an //0-compact4 analytic continuation in 0.
In [3] it is shown that the analyticity domain O can always be extended to a

complex strip

C, —a<lmz<a}.

Thus we can assume that V^Θ) are H0-comρact operator valued functions

defined on a strip 0 = Oa. They satisfy the equality

V$(θ)=Vij(θ). (2)

(iii) VifflViJ satisfy (i) for all fixed <9eO.
The potentials satisfied (ii) are described in [3, 13]. When condition (i) is

satisfied, the operator Hn is defined on 5(1R3") and the subordination inequality
holds ([14]):

| | F ( " ) / | | g ρ α | | / ί (

0 " ) / | | + ρ - 3 " / 2 | | / | | , α > 0 , (3)

where ρ > 0 is arbitrary. It follows from (3) (see [14]) that Hn has a unique self-
adjoint extension.

7. We now define certain subspaces of the configuration space 1R3" (see [15]):
the subspace R{0) of relative movement of the system

and the subspace R{c) of center-of-mass movement of the system:

R^={x:x = (x1...xn)eR3\x1 = ... = xn}.

Defining a scalar product in IR3" by

n

(x,x)!= Σm f (x i 9 x f ) , (4)
i - 1

where (xt, x() is the usual scalar product in IR3, one readily shows ([15]) that the
spaces R{0) and R(c) are mutually orthogonal in the sense of this scalar product,
and moreover that

= R3n. (5)

It follows from (5) that

4 An operator B in a Hubert space H is y4-compact if B is a compact operator from @(A) to H.
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(see, e.g., [18]). This decomposition of L2(IR3") induces a representation of the
operator Hn:

where E{0) and E(c) are the identity operators in L2(R{0)) and L2(JR(C)), respectively.
The operator H is defined in L2(R{0)) by

where A is the Laplacian in L2(R{0)) [in the sense of the scalar product (4)] the
operator T(c) is defined in L2(R{C)) by

where A{c) is the Laplacian in L2(R{C)) in the sense of the scalar product (4). The
subordination inequality (3) for Hn implies (see [15]) a subordination inequality
for the operator H:

| | F / | | ^ ρ α | | / / 0 / | | + ρ - 3 " / 2 | | / | | , α > 0 , (6)

where ρ is an arbitrary positive number. By virtue of this inequality, H has a
unique selfadjoint extension ([17]), for which we retain the same notation H.

8. We now proceed to describe the compound systems, that is to say the
systems derived from the original system by neglecting the interaction between
certain of its subsystems.

A partition of the set {1,..., n} is defined as a collection of disjoint nonempty
subsets Q such that (J Q = {1,...,«}, and the term "subsystem" (cluster) for the
subset Ct. Partitions will be denoted by lower case roman letters: a, b,c,....
The number of subsets in a partition a is denoted by k(a), and the set of all partitions
by &1\ in addition, we set jtfs = {ae sd, k{a) = s}. We partially order the partitions
as follows. If b is obtained from a by breaking up certain subsystems in α, we
write bCa ("b is contained in α"). The smallest partition containing a and b is
denoted by aub: aub = sup(a,b) and the largest partition contained in a and by
by anb: anb = inϊ(a, b).

We recall that HCι is the Schrodinger operator of the cluster Ci in its center-
of-mass frame. For C~(k) we set HCi=0 and σP(HCί) = σ(HCι)= {0}. Let

9. Now we describe a few points of the Aguilar-Balslev-Combes theory, which
we use further (for details see [3]). Let V(Θ\ (9elR, be the group of operators in
L2(R{0)) defined by

Consider the family of operators H(Θ) defined for (9eIR by

H(θ)=
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Since V(Θ) is Ho — ε-bounded5, this family has an analytic extension to 0 defined by

H(Θ)=:e-2ΘH0+V(Θ), ΘeO.

(2) implies

H*(Θ) = H(Θ). (7)

For CQ(l...ri) we denote by HC(Θ) the operator defined as H(Θ) for the system C.
10. The spectrum of H{Θ\ ΘeO, is described by the following

Theorem 2 ([3])

(i) σJH(Θ))= U_ Σ σd(HciΘ)) + e-2ilmΘR+.
aejrf Cτea

(ii) σd(H(Θ))nR is constant for Θe O and equal to σp(H)\ (J_ Σ σ

P(
HCι)-

aesύ Cxea

(iiΐ) The set of accumulation points of σd(H(Θ))r\lR is included in

aesά dea aesό Cxea

Further we assume that <9eO\IR and is fixed.
11. We associate with H a two-parameter family of Berezin's operators

L(z, Θ) = LH(z, Θ) ([16], see also [17]), defined by induction on partitions a in the
space @(H0):

Lu(z,Θ) = e2ΘιΘR0(ze2Θ) Va(Θ\ u = ua = {(α) Π

Π Π (E + Lh(z,θ))(E+
s = k(a)+ί bejrfs,bca \

The symbol J~J denotes a product of the appropriate operator factors in some

arbitrary but fixed order. It is not difficult to see by induction that if z lies outside

the set Σ σes(HCi(®))> then La(z9Θ)9 is a bounded operator in @(H0) and E +
dea

La(z, Θ), zφ Σ σ(HCι(Θ)), has a bounded inverse. We set

F(z,Θ)= Π Π (E + La(z,Θ)Γιe2ΘR0(ze2Θ). (9)
s=ί aejtfs

It is evident from (8) and (9) that the operators L(z, Θ) and H(Θ) — zE are related by

Θ) = F(z9 Θ)(H(Θ)-zE). (10)

5 An operator B is A — ε-bounded if the following inequality is valid

\\Bf\\£ε\\Af\\+b(ε)\\f\\t fe®(A),

A compactness implies A — ε-boundness.
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12. If z lies in the continuous spectrum of H(Θ\ the operator L(z, Θ) is no
longer bounded on @{H0). We shall be interested in the limit of the family of
operators L(λ, Θ) as λ approaches σes(H(Θ))n1R. This limit will be studied in
specially chosen scales of Banach spaces B%\ B,aestf, whose construction is
given in the Appendix.

Throughout this work we shall assume that Condition A formulated in the
Appendix is fulfilled by the potentials6.

Let
Σ σp(Hc<)={λa},aeJ, and

Ctea

deb

13. Lemma 1. The operator L(λ, (9), \λ— λa\^κa, is uniformly bounded, con-
tinuous in the operator topology with respect to λ, and compact in B%\ aesi.

Lemma 2. The operator F(λ,Θ\ \λ—λa\^κa, is bounded from B to Bffl; for
λ = λa the operator has an inverse which maps B$ continuously into B, <

Lemma 3. The operator H(Θ) — λaE is continuous from B%] to B, <

The proofs of these lemmas are exactly the same as those of Lemmas 1.1-1.3
of [12].

14. Let Hi denote the class of operators in L2(,R(0)) satisfying the conditions:
(a) the operators of Ψ* are finite-dimensional, (b) the operators of if are con-
tinuous from L2(R{0)) to S(R(0)), (c) W(Θ)= V(Θ)WV(Θ)~\ ΘeR, WeiT, have
an analytical extension to 0, as continuous operators from L2(R{0)) to S(R{0)).

Consider the family of operators

With the family H(g, Θ) we associate a three-parameter family of operators
L(z, g, Θ) defined by

z, Θ)W(Θ). (12)

It follows from (10), (12) that

E + L(z, g, Θ) = F(z, Θ) (H(g, Θ) -zE). (13)

15. Using Eq. (13) and obvious estimates for eigenfunctions of the discrete
spectrum of H(g, Θ) one obtains the following:

Lemma 4. // λ(g) is a point of the real discrete spectrum of H(g, Θ), then the
operator L(λ(g), g, Θ) has the eigenvalue — 1.

16. Lemma 5. Assume that the operator L(λa, Θ) has an eigenvalue — 1. Then
there exists a positive number ε and a subset Ψ*ofW such that —ίφ σ(L(λa, g, Θ)) for
ge(0,ε) and WeiT.

Proof. We evaluate the first derivatives with respect to g, at the point g = 0,
of the eigenvalues of L(λa, g, Θ), which equal - 1 at g = 0.

See note added in proof.
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Let j£?4α) be the eigensubspace of the operator L{λ\ 0, Θ) = L{λ\ Θ) that
corresponds to the point — 1 of the spectrum, and ψ(Θ) an arbitrary function in
$£$ for which there exists an eigenfunction ψ(g, Θ) of L(λa, g, Θ) such that
ψ(0, Θ) = ψ(Θ). Let λψ(g) be the eigenvalue corresponding to ψ(g, Θ\ λψ(0)= — 1 7 .

The following equation is obtained using (7) and Lemmas 1-3 exactly in the
same way as the corresponding equation in [ 6 ] 8 :

(dλψ(g)/dg)\g = 0 = (W(Θ)ψ(Θlψ(Θ))/(F-1(λa, Θ)ψ(Θ\ψ(Θ)). (14)

We assume that, in addition to (a)-(c), the operator W(Θ) satisfies the condition:
W(Θ) is strictly negative on JS?£°, i.e., there exists C > 0 such that

(W(Θ)ψ(Θ\ψ(Θ))<-Qψ(Θ)eJ?{

Θ

a). (15)

But by Lemma 2

\(F~ \λa, Θ)ψ(Θ), xp(Θ))\ < oo, ψ(Θ)e Bg>,

and so it follows from (14) and (15) that for any function ψ(Θ)e^a)

(dλψ(g)/dg)\g = o + 0.

The last implies the statement of the lemma.

17. Having prepared all the necessary material for the proof of our main
theorem, we now proceed to state and prove it.

Theorem 3. Let the potentials V^ in the operator H satisfy (i)—(in) and Con-
dition A. Then the point spectrum of H is finite.

Proof. Suppose, on the contrary, that H has an infinite point spectrum. By
Theorem 2 the point spectrum of H outside the set

U Σ^I (16)

coincides with the discrete spectrum of H(Θ), ΘeO\IR, the accumulation points
of which is contained in (16).

Define H(g, Θ\ L(z, g\ &£> and λψ(g\ ψ(Θ)e&£\ as before
Since W(Θ) is a compact operator in L2(R{0)\ it follows that the operator

H(g, Θ) has the same limit spectrum as H(Θ) for any finite g. Since W is a finite-
dimensional operator, it thus follows that for any g the operator H(g, Θ) has an
infinite discrete spectrum, whose accumulation points are precisely the same as that
of σp{H). Let λn(g\ n= 1, 2,..., denote the eigenvalues of H(g, Θ) belonging to the
discrete spectrum and accumulating to the point λa, aestf:

Kk9)-+λa as n-+oo, 0 e R . (17)

It follows from Lemma 4 that

(18)

It is not difficult to show that λψ(g) does not depend on Θ therefore we omit index Θ in notation.

(W(Θ)ψ{Θ), ψ(Θ)) and {F~\λa, Θ)ψ{Θ), ψ(Θ)), in fact, do not depend on Θ.
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By (17), (18), Lemma 1 and the theorem stating that the set of singular points of a
compact operator is closed (see Appendix to [12]), it follows that

σ(L(λa,g,Θ))3-l #eIR,

for any operator Wvaif. But this contradicts Lemma 5. Hence the point spectrum
off/ outside of the set (16) is finite. Hence the entire point spectrum of// if finite.
Theorem 3 is proved.

Appendix

1. In this appendix we define scales of Banach spaces in which the operators
L(z, Θ\ F(z, Θ) are studied. We describe these scales in the so-called momentum
representation. This representation is obtained from the more familiar coordinate
representation by the Fourier transformation F of the basic space L2(1R3") and the
corresponding transformation FHnF~x of the operator Hn. We shall therefore
translate some of our definitions into the language of the momentum representa-
tion and add some new definitions. The old notation will be retained for the
operators Hc in the new representation; this will involve no confusion since all
our deliberations will be in the momentum language.

2. We define a scalar product in the momentum space R3" (see [7]) which is
dual (in the sense of the Fourier transform) to the scalar product (4) in the con-
figuration (coordinate) space:

n

(p,p)'= £ mΓ^pi). (Al)
i = l

To each partition a there corresponds a pair of spaces Ra and Ra (the space of
relative movement of particles in subsystems of a and the space of the CM move-
ment of these subsystems), defined by

Λβ = {p:p = (p1...pn)eR3Λ, £ Pk = 0 VCtea}9

[ k e C ι J

R = Ra (k(a)=l)

and

Ra={P:P = (Pi - Pn)eR> mϊ~ 1Pi = mjγPj i f t n e r e exists Ckea such that i, je Ck}.

With these definitions we have (in the sense of the scalar product (Al))

Ra±Ra, Ra®Ra = R. (A2)

If k(a)= 1, the spaces Ra and Ra are the Fourier-duals of R{0) and R(c\ respectively.
It follows from (A2) that

L2(R) = L2(Ra)®L2(Ra).

We define
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and

where Jίa(pa\η) are the estimating functions introduced in [17]. We recall one
property of these functions:

\ί^Jφa,n)fdPa<C, ηk>3.

The Banach spaces in question are defined as follows:

β m ,/« 0 )=Λ(i)i f f l (R a ), \\fhm,η{Ra)= II-/C

and

beJa beJa

We define a linear mapping of B%]η by

beJa

where we used the notation

τ(p)=l/2(p,p)', peR.

Denote the image of B%]η under the homomorphism Π(b\Θ) by

B{m,η,Θ becomes a Banach space if we define the norm by

4. B%]ηtΘ and Bmη(R) are the desired scales of Banach spaces. The following
inbeddings are valid for them

B{:\η>,ΘCB^Θ, Bm,ιη,(R)CBmtη(R), m'^m,η'

When rή > m, these imbeddings are compact. The spaces B$ and B of the main
text are B{^nΘ and Bmη(R), respectively, for any fixed induces m,η, subordinated
by the conditions

m > M > 3 / 2 ( l - 2 / m ) .

5. Now, in conclusion, we formulate the additional restriction on the operator
H. Let

Let La(z, Θ) denote the restriction of the operator La(z, Θ) to <3(Ha).
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Condition A. The potentials Vt^x) have the property that the equation φ -f
La(λc, θ)φ = 0 has no nontrivial solutions of the form9

% 6<m<2m 0,
bCa

beJc

o —

η>3/2(1 —2/m), for any α in J / and cCα, c e j / 5 J c

For the definition of the estimating functions Jfξ(pl\ Θ\ see [17]. We note here only that
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Note Added in Proof. Condition A cannot be effectively controlled, but it is not so important
because for any potentials {Fα}, satisfying (i)-(iii), there exist a number ε > 0 and a subset 5ίC{(ij),
i,j=l...n} such that Condition A is satisfied for the Hamiltonian H{g) = Ho + Σ Va + ]Γ gaVaig =

αe9I

(0α,αe2l): {0<|gfα|^e} (I. M.Sigal, unpublished).




