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Abstract. We prove that any stationary state describing an infinite classical
system which is "stable" under local perturbations (and possesses some strong
time clustering properties) must satisfy the "classical" KMS condition. (This
in turn implies, quite generally, that it is a Gibbs state.) Similar results have
been proven previously for quantum systems by Haag et al. and for finite
classical systems by Lebowitz et al.

1. Introduction

It is generally accepted that the appropriate microscopic description of both
equilibrium and nonequilibrium properties of bulk matter is via "macroscopic
states". These states are (when quantum effects are unimportant) probability
measures on the phase space K of an infinite system of indistinguishable particles
moving in 1R3 [1,2]. When the system is in equilibrium it is assumed that the
appropriate macroscopic state is a Gibbs (or equilibrium) measure at some tem-
perature β~x and fugacity z. There are several alternative ways of describing these
measures, e.g. the DLR equations, the Kirkwood-Salsburg equations, etc. These
are however all essentially equivalent [3,4]: the infinite volume Gibbs states
corresponding (as they presumably should physically) to an appropriate limit of
finite volume grand canonical ensembles. Other finite volume ensembles such as
the microcanonical and the canonical are also expected to have Gibbs states as
limits [5].

In this paper we investigate the problem of justifying the use of Gibbs meas-
ures for infinite classical systems. (The analogous problem for finite classical
system was treated in [6].) Of course, any measure ω which describes the state
of a system in equilibrium must be stationary, i.e. invariant under the time evolu-
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tion (αf = at) generated by the system's Hamiltonian H:ω(f)= \fάω— \atfdω.
The existence of such an evolution and the invariance of Gibbs measures under
its action has been proven recently by Lanford [7,2], Sinai [8], and by Marchioro
et al. [9]. However, the Gibbs states may not be the only stationary, invariant
measures. Even the requirement that the measures which are to describe macro-
scopic states be sufficiently "regular" may not rule out extra stationary states [10].
Thus in the ideal gas system there exist stationary states corresponding to any
given velocity distribution, not only the Maxwellian. It is therefore of interest to
see whether the imposition of additional physical requirements on the measures
appropriate for the description of equilibrium systems will single out the Gibbs
measures.

One such suitable physical requirement is provided by consideration of a
stability condition similar to the one introduced by Haag, Kastler and Trych-
Pohlmeyer (HKT-P) [11] for quantum systems. (Indeed, their work, which has
since been extended further [12-14] was the motivation for this investigation and
our analysis and results are closely related to theirs.) This condition may be
motivated by the following consideration: We can never know precisely the exact
nature of the forces under which our system evolves. Therefore, if near a state ω
stationary for αf there were no state stationary under a time evolution obtained
by a "small local perturbation" of H, ω could not be regarded as physically
reasonable. We may therefore require that, for small λ, there exists a state ωλh

stationary for the time evolution given by the Hamiltonian H + λh such that
ωλh-*ω as Λ->0. As we shall see such a requirement of stability on the state ω
imposes non-trivial constraints on the form of ω which tend to single out the
Gibbs states. The Gibbs states ω are stable since the state e~βλhω/ω(e~βλh) is
stationary for H + λh.

To obtain a precise formulation of stability we need to specify the class of
perturbations h under which ω is required to be stable as well as the manner in
which ωλh is to approach ω as A->0. Since our use of the measure ω is to obtain
expectation values of "physical" observables closeness should refer to such ex-
pectation values, i.e. we should require at the minimum that as λ-*0, ωλh(f)-^ω(f)
for such observables. Having said this much there does not seem to be any unique
way to be more specific. We would naturally like to make the assumptions as
weak as possible and the conclusions as strong as possible. For the purpose of
this paper it is technically convenient to assume that stability under the per-
turbation h requires that for λe [0, δ], <5>0, ωλh may be chosen to be given by an
L2(ω) density function. A state ω is then called stable only if ωλh(f)-+ω(f) \ffeL2(ω)
and all h belonging to some class 3) which will be specified later.

We prove that stability plus some strong clustering conditions imply that ω
satisfies the classical analogue [15] of the quantum KMS condition. Let

Ffjt) = ωτ(f, atg) = ω(foctg) - ω(f)ω(g) (1.1)

and let

GfJή = ω({f^tg}) (1.2)

where {f9 g} is the Poisson bracket between / and g (see Def. 1). Then the classical
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KMS condition, in its dynamical form (KMSD), says that

GfJt)=-βjtFf,g(t), Uge® (1.3)

with β some constant. For the cases we are considering KMSD implies an equi-
librium KMS condition (KMSE), not involving the time evolution:

ω({f,g}) = βω(g{f,H}). (1.4)

It can be shown [15,16] that when & is "large enough" (1.4) implies (using some
additional mild assumptions) that ω is a Gibbs state. (It may be readily seen that
the finite volume canonical ensemble, dω = (l/Z)e~βHγ\dqidpi, satisfies the

ί

KMSE condition for functions with proper boundary conditions.) It is the balance
between desiring to make 2) small so as to minimize the assumptions and the
requirement that Θ be large enough so that KMSE=> Gibbs that determines the
choice of 3).

The argument which we give is, for the most part, related to that of HKT-P
(avoiding however the use of Fourier representation for the KMSD condition)
with the proper replacement of commutators by Poisson brackets (PB). Unfortu-
nately the PB, involving derivatives, is not as nice mathematically as the com-
mutator. In particular {/, g] not to mention {/, atg} will not be bounded (or even
necessarily exist) even if / and g are very nice. This introduces various technical
problems. The appropriate (mostly technical) assumptions on the time evolution
necessary for our analysis of stability are given in Section 2 where we define a
"regular time evolution". In Section 3 we prove the main result: stability plus
proper clustering of the dynamical system (K9 αί5 ω) implies the KMSD condition.

The results, however, are not very satisfactory because of the large number
of assumptions that have to be made. These are far from being provable with our
present knowledge of the theory of the Hamiltonian equations for systems with
infinitely many degrees of freedom. Indeed the only case for which the assumptions
can be verified is the ideal gas. This is done in Section 4. Some remarks about
the reasonableness of our assumptions and alternative formulations are made in
Section 5. The relation between stability and Gibbs states for the ideal gas can
also be proven directly without the use of the KMS condition [17].

II. Classical Systems

A classical system of infinitely many particles moving in Rd is described by the
following three objects [1,2]:

1) The "phase space", denoted by K, which consists of the sequences
X = (qi,pi)«L1=(xi)? of points x = (q,p)eRd x Rd with the "local finiteness" prop-

00

erty: i.e. the number of points of (J {qt} inside any bounded region is finite. Two

sequences which differ only by a permutation are regarded as identical.
2) The "algebra of the unbounded strictly local observables", denoted 5t,

which consists of the functions f:K->R which can be described in terms of a
sequence (/(m))£° of C^-functions f(m):(Rd x Rd)m-^R which are symmetric, have
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compact support and are identically zero for all but finitely many values of m.
The expression for / in terms of (f{m))o is given by

/(*)= Σ Σ /(mK. .*J= Σ(Σ/(m)).
m = 0 ί i < . . . < ί m m = 0

The space K will be regarded as a topological space with the smallest topology
which makes all / e 2 l continuous. For technical reasons we shall be working
primarily not with 21 but with 2ί: the algebra of bounded strictly local observables
generated by the functions G:K-+R of the form

G(X)=Ψ(f(X))

with / e 2 I and Ψ:R-+R a C°°-function bounded together with its derivatives.
3) A "state", denoted by ω, is a Lebesgue probability measure on the Borel

σ-field of K such that 2Ϊ is densely contained in L2(ω).
We introduce a "Poisson bracket" via the following definition:

Oφmon 1. Let /,««, *b» « „ } - f ( | | " |

denotes the scalar of the gradients. The map {.,.} is a bilinear map from
21 x SΆ->C(K) = continuous functions on K. It will be called the Poisson bracket
(PB).

Time Evolution of Classical Systems

The time evolution of a classical system should be described by the following
chain of definitions.

Definition 2. Let ω be a state of a classical system. Suppose that there is an
ω-measurable full set 34?ωCK on which a group α of maps ott: J f ω ->J^, ίeR, is
defined such that;

a) if (qlt\ Pi{t))f= 1 = at{qt, p^fL 1 then q^t), pt(t) are differentiable functions of t,
b) the operators

define a strongly continuous group of operators on L2(ω) whose generator i f has
a domain which contains 21

c) iffapdfetfa, and X(qi9pdf = (m,Pti))i\t=o = (*i, *?)?> then V/G2I

everywhere on 34?ω. When this holds then α is called a time evolution for ω.
ω is a stationary state for α if C/(ί) is a unitary operator for all t. (We shall

generally write oct f for U(t)f.)

Remark. If ω is a Gibbs state for a Hamiltonian H with pair-potential φ the
time evolution associated to the Hamiltonian equations:

is a time evolution [2, 7, 9] having all the above properties, and leaves ω invariant.
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Definition 3. Let ω be a state of a classical system and let α be a time evolution
for it. We shall say that α is a regular time evolution for ω when the following
properties hold.

i) Let 2ϊ(ω, α) = \ / α ί ^ ( = algebra generated by the functions in αf9I, teR).
teR

The series1

makes sense term by term and is absolutely convergent in 3^ω and {/, g}sL2(ω),
V/,ffe9l(ω,α).

ii) If Λe9ϊ(ω, α) the equations

( 2 2 )

have a solution (9i(ί), Pi(t))ΐ =^(qi,pi)r=1eJ^ω for all fe^fe^ such that α*
verifies the properties a)-c) of a time evolution for ω with 2ϊ(ω, α) replacing 21
(see Def. 2).

The generator <£h of the strongly continuous group of operators U\t) on
L2(ω) is, by our assumptions,

Sehf =<?/ + {/, h} V/e 8ί(ω, α). (2.3)

Remark. There is no interacting classical system for which it is known that
the time evolution is regular.

Let us denote by J ^ , for /tClR^xIR^ the collection of ω-measurable func-
tions f on K such that f(X) depends only on the points xteA.

Definition 4. A collection of functions 3) is locally dense in L2(ω) if £#n3$Λ is
dense, in the L2(ω) norm, in L2(ω)n3SΛ for any closed

III. Main Theorem

Let Y = (K,oί,ω) be a classical dynamical system with a regular time evolution
generated by a Hamiltonian H. Let Θ be a locally dense subalgebra of 3I(ω, α)
which is invariant under α. We make the following further definitions:

5) Y is dispersive if

^ e Z ^ I R ) as a function of ί,

6) 7 is 3-/oZd mixing if V bounded /fJ z= 1,2, 3

ω(α f l Λ

1 Notice that in order to be able to define {.,.} on tfω one needs to assume that 3tfω is locally stable:
i.e. if X = (qi,pι)?e3tfp

ω and (δ^f is a sequence of vectors in RdxIRd which is identically zero for all
but one index then X' = (
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7) Y is stable under the perturbation he3 if for some δ>0 and for each
λe [0, δ) 3 a state ωλh which is

i) invariant under the time evolution α^,
ii) absolutely continuous with respect to ω and given by an L2(ω) density

function
iii) ωλh converges weakly to ω on L2(ω), i.e.

\imωλ\g) = ω{g), MgeL2{ω).

8) Y is stable if it is stable under the perturbation h, for all he3ι.

Remark. The assumption that Q} is locally dense in 9I(ω, α) will only be used
in [16] where it is needed for proving that the KMSE condition implies that the
state is a Gibbs state.

Our main result is the following theorem:

Theorem 1. Let ω be an invariant state under a regular time evolution at which
is dispersive and 3-fold mixing. If ω is stable then it is a KMSD state, i.e. it satis-
fies (1.3).

We shall first prove the following lemma.

Lemma 1. Under the assumptions of the theorem, Mf^g^^:

i) J G;(ί)Λ = 0,
— oo

00 N

ii) J ^ 1 («ί) . . .G ι ( ί) . . .F ϊ ( ί)ώ=0, ViVeZ+,
- o o k= 1

where F^t) and Gt(t) stand respectively for Ff g (t) and Gf g (t) defined in (1.1) and
(1.2).

Notice that all the above integrands are absolutely intergrable since the Ft(t)
are bounded and, by virtue of the dispersive property, G^eUi^Mf^g^Q). We
also note that i) and ii) are satisfied in any mixing KMSD state.

Proof. Let / and g belong to Q). The stability of ω under / as a perturbation
implies the existence of states ωλf (for δ>λ^O) such that ΘcL1(ωλf) and which
are invariant under the perturbed time evolution. It follows from the latter that

ωλf(J?λfatg) = 0,

which, by (2.3), implies that

ωλf{{fatg})= \ωλf(J?atg)= - ^-ωλf(atg).
λ λ dt

Integrating both sides of this equation from — τ to τ and taking the limit τ->oo
we obtain

J ω ^
- o o - oo "I

= limA-1[ωv(ατ ί/)-ωΛ /(α- I0)] = O, (3.1)
τ-> oo

where the last equality follows from mixing. As λ->0 ωλf converges weakly to ω
(on L2(ω)) which implies (by the principle of uniform boundedness) that the L2(ω)
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norms of the densities which give ωλf are bounded uniformly in λ9 and thus

Hence one may interchange the limit Λ,-»0 with the integration in (3.1) (using the
dominated convergence theorem) to obtain i).

The condition on ω expressed in i) makes no reference to the existence of
approximating states ωλf and, as it turns out, the derivation of i) is the only place
in the proof where the stability of ω is used directly.

ii) Will be proven by induction on N starting from i) (N = 1). As an induction
step, let us assume ii) to hold for some JV^l and any fi9gie3)9 i = ί,...,N and
prove it for N+1 and a given fi9 gte^, i= 1,...,N+1. We denote, for some

and G(t)=Gft§(t).

The induction assumption, when applied to {Fl9...9FN_l9F}9 implies

Y (3.2)
k=l

We shall now take the limit u->co using the 3-fold mixing and dispersiveness of ω.
First, notice, using well known properties of the PB and the mixing property

of the unperturbed time evolution, that

^^^

+ ω(fN'<xt+ugN+1 {aufN+1,atgN})

+ ω(aufN+1 atgN-{fN, oct + ugN+ί})

= GιΛ-G1-\-G2) + G^ (3.3)

where

Gi(ί) ^ — FN(t)GN+1(t) + ω(fN)ω(gN)GN+ x(t)

G2(t) - ^ Γ * G»(t)FN + 1(t) + GN(t)ω(fN+ί)ω(gN+,).

Also:

F{t) = ω((fNatgN)au(fN+1octgN+1)) - ω(fNocu fN+ 1)ω(gNaugN+1)

- ^ + FN(t)FN + ί ( t ) + FN(t)ω(fN + Jωfefjv + ί ) + ω(fN)ω(gN)FN + 1 ( t ) .

The dispersive property of ω guarantees that the terms of (3.3) which involve F(t),
Gx(t\ and G2(t) are bounded by an LX(1R) function of t9 independent of u. Hence
in these terms one may interchange the limit u-^oo with the intergration and,
applying the induction assumption to {F l5. ..,FN_UFN} and to {Fί9.. .,FN_ί9 FN + ί},
it is easy to see that they converge to

7V+1

J YJFι{t)...Gk(t)...FN+ι(t)dt.
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As to the remaining terms, those may be rearranged as follows:

ω(fN)ω(gN+ί) J F^t)... F N _ 1(ί)ω({αu fN+u octgN})dt

+ ω(gN)ω(fN+ J j F^t)... F N _ !(ί)ω({/

-ω{fN)ω(gN+1)ω({fN+u octgN})]dt

ί Fiit -u)...FN_ x(t-u) [ω(aufN+ί'<xt_ugN {fN, ottgN+1})

As u-^oo the last two integrals converge to zero since their integrands do so
pointwise (3-fold mixing) while remaining bounded, uniformly in u, by

C i l l ί Λ + ^ α ^ H ^ ^ e ^ O R ) and by C2 \\ {fN, atgN+,} \\ L 2 ( ω ) eL1 (R),

respectively. The remaining terms, after applying again the induction assump-
tion, are

N-ί

-ω(fN)ω(gN+1)$ £
fc=l

JV— 1

-ω(^)ω(/N + 1)ί Σ
fc=l

^ ^ > 0 (bounded convergence th) .

We thus obtain ii) for N+1, which by induction concludes the proof of the lemma.
To prove Theorem 1 using Lemma 1 we will use the following result whose

proof is delayed to Appendix II.

Lemma 2. / / O φ F e C ^ R ) (i.e. FeC\Wί) and F(t)-+0 as \t\->ao) and Gel}(R)
satisfy

+ and {τ l 5...,

G(ί)= -β — F(t) (at almost all telSL) for some

Proof of Theorem 1. Let fgeS) and consider, for some {τ1?...,τN}ClR, the
and G functions which correspond to

Clearly

and
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Thus, by Lemma 1 (where our assumptions are needed):

J Σ F(t + τ1)F(t + τ2)...G(t + τύ...F(t + τN)dt = O.

k=l

Since the given F and G functions satisfy the above equation for any NGZ+ and
{τ!,...,τN}eIR, it follows by Lemma 2 that

G(t)= -β--F(t) (for almost all ίelR) with some J 8 G R . (3.4)
at

The above argument was carried out for given f,ge2 assuming FφO. The
fact that (3.4) is valid generally and that the constant β is independent of the
particular pair of observables follows from the fact that F and G are bilinear in

Thus we have shown that ω is a KMSD state with some β which, for con-
sistency (see [15,16]), has to be positive.

IV. Stable States of the Ideal Gas System

It is interesting to apply the criterion of stability to states of the infinite ideal gas
system. As mentioned in the introduction this system has many stationary states
which are not Gibbs equilibrium states although they satisfy all the usual regu-
larity conditions.

The special features of the ideal gas enable one to state more explicitly for
what states the assumptions (which were used in conjunction with stability) in
Theorem 1 will be satisfied.

Let us denote by Γ = IRd(g)IRd the one particle phase space and by αt

(1) the free
time evolution on it:

The free time evolution of the ideal gas, under which the particles move inde-
pendently, is generated by the formal Hamiltonian H= Σjfijlm and may con-
veniently be described as

Thus we also have for / G 2 Ϊ , Equation (2.1),

«,/(*)=£{ Σ αW/<">(xfl,...,xj
n=0 U i <Ϊ2< .'in

where α[ f l )/ (π)(x1?...,xw) = / ( w )(αj 1 )x l 5...,α[ 1 )xπ). This feature is a consequence of
the lack of interactions and it implies that for the ideal gas 5I = 2I(ω, α). Thus the
generator S£ of the time evolution, see Definition 2, is the closure of its restriction

Σ — — to 31 (in other words JS? is essentially anti-selfadjoint on 9Ϊ, c.f. Ref. [15b]).
/π cq:

Let /e ϊ ί , we define ΛfeΓ to be the smallest set such that

supp(fn))CΛ}CΓM, VneZ+. (4.1)
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In order to apply the general result to the ideal gas system we define Q) C 21
as the sub-algebra generated by functions Ψ(f) with / e 9 I such that Λ" excludes
the subspaces {Pi = 0} i=ί,...,n. It is easy to see that 2 is locally dense with
respect to any state which locally is absolutely continuous with respect to the
Liouville measure. Let /, ge@, since Λf and a^Λg separate after a finite time %
we obtain

{/, 0 , ^ = 0 for | ί | > Γ

which implies that any state of the ideal gas for which 2 is locally dense is dis-
persive. The three fold mixing property will also be possessed by many stationary
states of the ideal gas, e.g. if the correlation functions are products of the one
particle correlation function since such states are Bernoulli [10].

It is interesting to notice that the above restriction on 2 is necessary: for a
general / e 2 ί \\{f,ottf}\\L2{ω) is not integrable as a function of time. In fact the
leading term in {/, <xtf}, for large t and / = ]Γ/ ( 1 ) , is

The increasing factor t reflects the instability of the time evolution: a small change
in the initial configuration, (fa, Pi)->(c[i, pi + λδitJ), results in a growing deviation
of the configurations at time ί. However, the summands in (4.2) are non zero only
if qieΛfnoάllΛf which restricts qt to a volume of the order of C/t in Γ (that is,
in case Λf is not bounded away from {p = 0}). Hence the L2(ώ) norm of (4.2)
need not even decay to zero.

V. Remarks on the Dispersive Property and Other Matters

1. One may expect the instability of the time evolution, which leads to the in-
creasing factor in (4.1) to be generic. It is easy to convince oneself that for finite
systems ||{/, octf}\\L2iω)++O as ί-»oo, and that for an infinite system the decay of
the above norm is a measure of some sort of dispersion (hence the term). At this
point we lack any general result about the existence of such dispersion in systems
of interacting particles.

2. One may interpret the dispersive property in a way which relates the proof
of Theorem 1 to the method used for finite system. A consequence of stability,
which is useful when dealing with the finite classical and quantum system [6], is
the invariance of the state under any flow whose generator is an admissible per-
turbation invariant under av Therefore stability is a strong restriction on the state
whenever the system has a large class of "generators" which commute with the
Hamiltonian.

We note now that, for a given fe29 the condition

\\{<*tf,9}\\i2(ω)eLι V#e^CL 2 (ω)

is exactly what is necessary in order to be able to define an operator Jtf

f on the
domain 2 by the Bochner integral:

Jirg= J dtfafig}. (5.1)
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The operators Jίf defined in this way act as derivations on 3 and commute
with the time evolution:

00

Jίf{θLτg)= J dt{cctf,aτg}

= ατ ί
— oo

Hence the dispersive property guarantees the existence of a "large" class of
"pseudo-generators" defined on a "large" domain, which commute with the time
evolution. It is thus not surprising that a condition of this type was needed in
Theorem 1.

Part i) of Lemma 1, which was the only direct consequence of stability used
in the proof of Theorem 1, may now be rewritten as:

g) = 0 Vf,ge@, (5.2)

which looks like an in variance property of the type encountered for finite systems.
[In view of the derivation property of J£f it implies that Jίf is anti-hermitian
in L2(ω).]

3. As already mentioned in the introduction and as is clear now, the fact that
<3) is locally dense in 21 (ω, α) has not been used at all in the proof of KMSD con-
dition. It will however be needed in the proof [16] that KMSE implies that ω is
a "canonical" equilibrium state with temperature β~x. The precise definition of
2ί(ω,α) is however far from unique: 2ί could be replaced by other large enough
algebras 2Γ of functions which are such that the series defining the Poisson
brackets { f, g}, f, ge2Γ, are convergent [17].

4. When dealing with finite classical systems in Ref. 6 we introduced the
notion of "dynamical stability": if the system is in a state ω stationary under the
time evolution generated by the Hamiltonian H then if H is changed, say at
ί = 0, by a small perturbation λh then this should cause only a small change in
the expectation values of the observables / for all times. This appears to us to
be a physically very reasonable requirement on an equilibrium state and is ex-
pressed formally as

|ω(α^/)-ω(/) |^β(A)sup|/ | (5.3)

with ε(λ)-+O as Λ->0.
We noted there and this is true also here that if the HKT-P stability, Defi-

nition 7, iii) is changed to require that \ωλh(f) — ω(f)\^ε(λ) sup | / | then it
x

implies (5.3) since the existence of an ω^ with the property that ωλh(oc}hf) = ωλh(f)
implies that

\ω(aϊ»f)-ω(f)\S\ω(a}hf)-ωλ><(aϊhf)\ + \ωλh(f)-ω(f)\. (5.4)

The converse statement is also true, at least in a weak sense, since we can then
construct ωλh(f) by taking the Cesaro mean of ω(afhf) for a suitable large class
of functions /.
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5. The dispersion assumption is, as already noted, the most questionable one
for general interacting systems. It is used many times in the course of the proof
of Theorem 1 to insure the convergence of various integrals such as the one
occuring in (3.1). We merely wish to note here that one could carry through the
proof, albeit more clumsily, by "merely" assuming in each place where necessary,
that the integrals converge and that limits can be interchanged.

Acknowledgements. We would like to thank Dr. Rudolph Haag and Dr. Eva Trych-Pohlmeyer
for informing and explaining to us their results prior to publication and for valuable discussions, and
to Dr. Henry McKean for a valuable discussion regarding Lemma 2.

Appendix A: Proof of Lemma 2

Lemma. // 0 + FeC^(]R) (i.e. FeC\W) and F{t) j ^ 0) and GeL^JR) satisfy

and V{τl9...,τN}elBLN

9 (A.I)

then

G(t) = βi- F(t) (for almost all t e 1R.)
dt

for some

Proof Let NεΈ+ and {τ1,...,τJV}eIRN and denote

and

We consider R(t) as a curve in RN which, as a consequence of F being in
has the following properties:

i) It is contained in a compact region [ — B,BY, where 0 < 5 < o o is a uni-
form bound on F(t).

ii) R(ί)^0as|£|-+oo.
iii) R(t) is differentiable.

Let us first show that

J (G(t\VΨ(R(t)))dt = 0. (A.2)
— oo

Since GeZ^IR) the above integral defines a continuous functional on C :([ —J5,5]N)
with the norm

| | y | | = sup {\Ψ(x)\+\\VΨ(x)\\}.
xe[-B,B]N

To prove the claim observe that for monomials it reduces to (A.I) and thus holds
true and extend, by linearity and continuity, to all Cx([ — B, B~]N) (in which the
polynomials are dense with respect to the above norm).
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Now, let Sj eC^IR) be a sequence of functions whose derivatives are uniformly
bounded and converge pointwise to θ(x— a) (the Heaviside step function). By
substituting S^Ψ) in place of Ψ in (2) we may conclude (using the bounded con-
vergence theorem) that

, ΨeCx(RN) and - o o ^

IΨ(a) = j (G(ί), VΨ(R(t))dt = 0. (A.3)

We shall use the above representation and the above result to show that
VτeR:

Π? J ]=0 (A.4)
G(t) G(t + τ)J K

for almost all ίelR.
Let τ , ί o eR Since lim F(t) = 0, one may find 2^NeZ+ and a collection

|ί|->oo

{τ1 = 0, τ 2

 = τ, τ^...,τN} for which
a) the coordinates of

define t0 uniquely (in the following we shall omit the subscripts of R(ή)

c) | s ( ί ) | ί = ί o φ 0 .

We shall call αeR a regular value of Ψe C1^) if
i) aΦΨ(Q)

ii) Ψ(R(ή) = α for at most a finite number of times: t^a),..., tn(a)

in) jtΨ(R(t))\t=tij t i{a)

Let us now apply (A.3) to a function ΨeCι(RN) for which Ψ(R(to)) = ao is a
regular value (the conditions a)—c) guarantee that such functions exist). It is not
difficult to see that the set of regular values is open and that the derivative of
IΨ(a) in some neighborhood η of a0, is given by

dt Jrί \{RUa\VΨ{R{tm\

for almost any aeη.
Equation (A.5) seems to relate the values of the gradient of Ψ at a finite number

of points of IR .̂ However, any non trivial relation is excluded by the arbitrariness
of Ψ. In particular, one may modify Ψ in a small neighborhood of R(t0) [see (a)
above], (A.5) is therefore satisfied only if, for almost any ί in some neighborhood
of to,

(E(t),¥)
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with some β(t) independent of Ye RN. It follows that for almost any t, in the above
neighborhood of t0, G(t) and R(t) are parallel and in particular (A.4) is satisfied.
By the σ-compactness of IR it follows that, for a given τeIR, (A.4) is satisfied for
almost any ί e R

Thus, for a.a. (tut2)eΊR2

F(t1)G(t2) = F(t2)G(t1)

which implies that for some /?eIR

G(t) = βF(t) at a.a. ί e R , since F φ O .
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