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On Fitting Rotating Bodies to Exterior Gravitational Fields
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Abstract. Some inequalities have to be satisfied if there is to exist a fluid source
for a given exterior gravitational field. In the case of the Kerr solution one of
the inequalities presented here is much more restrictive than those obtained
by Boyer [1]. However, our conditions do not exclude the possibility of a fluid
source for the Kerr spacetimes.

1. Introduction

Hernandez [2] has shown that for the Kerr metric a relationship is fulfilled
between the total mass, M, the total angular momentum, J, and the quadrupole
moment, Q:

Q = J2/M. (1.1)

Because of this very special relationship it is believed that the Kerr metric cannot
represent correctly the external field of any realistic body [3]. However, the
question of the existence of a rigidly rotating, perfect fluid source of the Kerr
metric has not yet been answered1. This question can arise also in the cases of
other exact vacuum solutions representing "rotation of something" such as the
Tomimatsu-Sato [5] solution.

In this paper we shall extend a method which has first been used by Boyer [1]
to exclude some configurations as sources of the Kerr metric. Boyer has proved
that all possible boundaries of rigidly rotating, perfect fluid sources of a Kerr
metric, for a given M and a = J/M, form at most a two-parameter family of
surfaces. The first parameter, Ω, is the angular velocity of the rotating body. The
second parameter, K, is connected with the polar radius of the body, rp, measured
in the Boyer-Lindquist coordinates:

p = M/K+γ(M/K)2-a2. (1.2)
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It is clear that the boundary of the body has to be a closed, two-dimensional
spacelike surface. Boyer's condition states that for such a surface two inequalities
have to be satisfied:

(1.3)
3. (1.4)

Weputc = G = l .
In this paper we shall obtain some other inequalities of this type. They follow

from Raychaudhuri's equation and from the relativistic virial theorem. In the case
of the Kerr metric one of them is much more restrictive than those of Boyer.
However, neither Boyer's condition nor any presented in this paper are sufficient
to eliminate the possibility of the existence of a rigidly rotating fluid source of the
Kerr metric.

We use in this paper the timelike signature H .

2. Definitions and Basic Assumptions

Let ηι and ξι denote two Killing vector fields which exist in the whole spacetime
since both interior and exterior solutions are assumed stationary and axially
symmetric. The vector field, η\ is asymptotically unit and timelike and has open
trajectories. The vector field, ξ\ is spacelike and has closed trajectories [1,3,6,7, 8].
We shall assume that the four velocity of rotating matter has the form [3, 7]:

u^AW + Ωξ1). (2.1)

We shall also assume that the rotation is rigid i.e. that both shear and expansion
scalar of the matter congruence vanish. It is equivalent that the angular velocity,
Ω, is constant [6]. The quantity

(ί/A)= {(ηη) + 2Ω(ηξ) + Ω2(ξζ)}^2 (2.2)

is called the redshift factor [3]. According to Boyer [1] it has to be constant on
the boundary of the body:

Λoundary= :(1 ~ K)~ ^2 = COΠSt (2.3)

Our last assumption is that the stress-energy tensor has the form

^ X-^p, (2.4)

with ε > 0 and pΞ̂ O inside the body, Carter [7]. (See [13] for a proof without as-
sumption (2.4).) Using the above assumptions has proved that there exists globally
a family {Σ} of spacelike hypersurfaces orthogonal to the trajectories of the
unit, timelike vector field, ni = eφfa ί+ <&£'). Here 2%:=[-ln{-ρ2/(ξξ)}'], ρ2: =
(ηξ)2-(ηη)(ξξ) and ώ:= -(ηξ)/(ξξ). We shall introduce the quantity βt ("distance
from the axis of rotation") by the equation
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Now, let h[ be the projection tensor on a hypersurface Σ. Following Bardeen [8]
we shall introduce the "physical" three-velocity, v\ by the formula

vX\-υ2)-ll2 = Hku
k. (2.5)

Here v2:= -(vυ)= -eim{ξζ)(Ω-ώ)2 is the norm2 of υ\ Notice, that l-v2 =
A~2e26U. The quantity ί\ = &v we shall call the velocity moment. One can show
that

/ = -(uξ)/(uη)= - ί(ηξ) + Ω(ξξ)-]/ί(r}rj) + Ω(ηξ)-] . (2.6)

The velocity moment i is connected with the rotation scalar, ω, for the congruence
of trajectories of vt by a formula which has the form very close to its Newtonian
counterpart:

ω2=-(l/4)(l-Ωη-2^-2(1V
iη(1V/). (2.7)

Here ±Vt denotes the covariant derivative on a hypersurface Σ.
One can show that the total active gravitational mass of the rotating body

can be written in the form

M = J(ε + 3p)έΓ*dK + 2ΩJ. (2.8)

Here / = interior (E = exterior), and dV denotes the invariant volume element
on Σ. Equation (2.8) can be called the relativistic virial theorem because in the
Newtonian limit it becomes

0, (2.9)

(recall that the Newtonian limit of the l.h.s. of (2.8) is M 0 + <fgrav + <ίrot + <fint where
M o is the rest mass and # i n t the internal energy). As far as we know the relativistic
virial theorem has never been written in this compact form. However, this form
and those known in the literature are only a simple modification of Bardeen's [8]
formula for the total mass of a rotating body. Hartle and Sharp [9] were the first
who remarked that the Newtonian limit of the relativistic formula for M was
connected with the Newtonian virial theorem. To see that (2.8) is equivalent to
Bardeen's formula one can use some of Einstein's field equations and then write:

2ΩJ = 2jv2(p + ε)e-"ί/(l-v2)dV + (Sπy1 J eΰU(ξξ){ly
iώ){LViώ)dV. (2.10)

/ I + E

Putting (2.10) into (2.8) one obtains exactly the formula which appears in [8].
Now, let λι be a unit, spacelike vector field which is a linear combination of ηι

and ξ* orthogonal to u\ We have Rjcι/
/C2/ = O. Using Ricci the identity one can

obtain from the last equation:

(2.11)

This equation proves that

(2.12)
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where B is the boundary of the body.2 It means that the integral which appears
on the left hand side of Equation (2.12) can be computed without knowledge of
an interval solution.

3. Basic Inequalities

Let us project Raychaudhuri's equation on a hypersurface Σ and integrate it over
the volume of the body. Using the Gauss Theorem and Equations (2.8) and (2.12)
one can put the result into the form:

M-2ΩJ-(4π)~1 §(1V
ilnA)e~®dBi

B

^-2dBi = 0. (3.1)
B

We now assert the following inequalities:

M-2dBi (3.2)

(3.3)

ώ(ξξ)e%(1V
ίώ)dBi. (3.4)

B

P

(3.2) follows from (3.1) and the fact that In 4 = J dp/(p + ε(p)) + const (the last
B

equality is a consequence of the equations of motion VtT
ιj = 0\ because the

pressure is zero on the surface of the body and nonnegative inside. (3.3) is implied
by (2.12) and (3.4) is obtained by using (2.10) and Equation (a) of the Appendix.

Inequality (3.2) becomes in the Newtonian limit the well-known Poincare
condition

2πM^Ω2V. (3.5)

Where V is the volume of the body. If it not satisfied then the body cannot be
stationary and has to expand [10]:

$θe-®dV^0, (3.6)

where 6 = ukVkViUl is the change of the expansion rate and PJ denotes the covariant
derivative in the whole spacetime.

From Equation (2.7) it follows that if (3.3) is not satisfied then either there
exists a region inside the surface given by Equation (2.3) in which ρ:gθ [it means
physically that there exists an event horizon (ρ = 0) inside the body], or that the
gradient of the velocity moment V/, is a timelike vector. Both these possibilities
are absurd. We are not successful in the elucidation of the physical meaning of

2 Equation (2.11) can be integrated in a special coordinate system in which x:=(£/Ω)ί/2 is one
spatial coordinate. One then obtains XQ2ffl~3 = gxx/gyr The last two equations reduce the number of
independent components of gιk to three. The second spatial coordinate, y, is chosen in such a way that
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Fig. 1. The region of admissible values of
Ω and K for a/M=0.001. K(a) = 0.6Ί,
MΩ(a) = 0.000, K(b) = 0.68, MΩ{b) = 0Λ17,
K(c)=1.00, MΩ(c) = 0.192

0,00 0,05

inequality (3.4). In the Newtonian limit it becomes the trivial condition
and it seems to be less restrictive than the condition Ω^: max(ώ) which, as it is
generally believed [3], has to be fulfilled in any realistic body. As in all the in-
equalities (3.4), (3.5), (3.6) only surface integrals appear, we can check them with
no knowledge of the interior solution.

4. Application to the Kerr Solution

In the case of the Kerr solution we have in Boyer-Lindquist coordinates:

(ηη) = 1 - 2M/(r2 + a2 cos2 θ), (4.1)

(ηξ) = 2Mrasin2θ/(r2 + a2 cos 2#), (4.2)

(ξξ)= - sin2θ{r2 + a2 +2Mra2 sin2θ/(r2+a2 cos20)} . (4.3)

An application of inequalities (1.3), (1.4), and (3.2), (3.3), (3.4) in the case of
a/M=0.001 is shown in Figure 1 and in the case of a/M=ί in Figure 2. In these
figures the curves & represent Boyer's condition (1.4) and the lines %> represent
Boyer's condition (1.3). The curves si are calculated numerically from inequality
(3.3). Inequalities (3.2) and (3.4) are satisfied in the region between si and J* and
they do not give additional restrictions. One can observe that the region of
admissible values of the parameters K and Ω increases for O ^ α / M ^ l with
increasing a/M. However, when a/M>ί we have two additional restrictions
which follow from the relativistic virial theorem and from the condition that the
polar radius, rp, has to be real:

(4.4)
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Fig. 2. The region of admissible values of Ω and K for a/M= 1. K(a) = 0.22, MΩ(a) = 0.00, K(b) = K(c) =
1.00, MΩ(b) = MΩ(c) = 0.50. Point 6 represents the most relativistic material source of the Kerr metric

This means that for very great a/M, K&0 and Ω&0 are the only possible values
of the parameter K and Ω. In other words configurations (if they exist) which are
the sources of the Kerr metric and have a/m$> 1 are in a sense nearly Newtonian.
The most relativistic source of the Kerr metric is characterized by the following
values:

a = M, K=l, ΩM=l/2. (4.5)

5. Conclusions

Although our condition (3.3) is much more restrictive than those of Boyer, it is
not sufficient to eliminate the possibility of the existence of a fluid source of the
Kerr spacetimes even for very great values of a/M.

It will probably be interesting to apply our conditions to some other vacuum
solutions of the Einstein field equations.

Appendix

We shall present here all the Einstein field equations which have been used.
They are [14,15]:

® (a)

(b)

(c)

The last one is Raychaudhuri's equation projected on a hypersurface Σ.



Rotating Bodies 115

We would like to thank Professor Andrzej Trautman for his kind interest in this work, and
Maciej Kozlowski and Alexander Czerny for helping us with the preparation of the computational
programme. We are also greatly indebted to Professors J. Ehlers and W. Kundt for comments and
suggestions.

References

1. Boyer,R.H.: Proc. Camb. Phil. Soc. 61, 527 (1965)
2. Hernandez,W.: Phys. Rev. 159, 1070(1967)
3. Thorne, K. S.: In Gravitation and Cosmology, Proceedings of the International School of Physics,

Enrico Fermi XLVΠ (ed. R.K.Sachs). New York: Academic Press 1971
4. Herlt,E.: Ann. Phys. 7, 178 (1970)
5. Tomimatsu,A., Sato,H.: Phys. Rev. Letters 29, 1344 (1972)
6. Boyer,R.H.: Proc. Camb. Phil. Soc. 62, 495 (1966)
7. Carter,B.: J. Math. Phys. 10, 70 (1969)
8. Bardeen,J.M.: Ap. J. 162, 71 (1970)
9. Hartle,J.B., Sharp,D.H.: Ap. J. 147, 317 (1967)

10. Abramowicz,M.A.: Acta Astronom. 21, 449 (1971)
11. Bardeen,J.M., Wagoner, R. V.: Ap. J. 167, 359 (1971)
12. Roos,W.: Diplom-Thesis, Hamburg University (1974)
13. Greene,R.D., Schucking,E.L., Visheshvara,C.V.: The Rest Frame in Stationary Spacetimes with

Axial Symmetry, Preprint
14. Abramowicz, M. A.: Some Special Vector Fields in Stationary and Axial Symmetric Spacetimes.

Preprint (1973)
15. Bardeen,J.M.: In Black-Holes, proceedings of the Les Houches Summer School 1972 (eds. C. and

B.S.DeWitt). New York: Gordon and Breach 1973

Communicated by J. Ehlers

Received August 29, 1974; in revised form November 10, 1975






