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Abstract. Existence of dynamics for infinitely many hard-spheres in v dimen-
sions is proven in a set of full equilibrium measure.
Singular unbounded perturbations are considered with pair potentials di-
verging as (x — a)~λ, λ>2 and a is the hard-core diameter. Long range
forces are allowed with potentials decreasing at infinity as x~λ', λ'>v. The
result corrects and generalizes a proof given in a previous paper by the same
authors.

1. Introduction

This is a revised and corrected version of a previous paper [1] by the same authors.
In that work the existence of dynamics for infinitely many one dimensional hard-
rods was considered. Since then many results have been obtained, dynamics has
been proven to exist in more general cases [2-4] and therefore one of the aims
of that paper, to provide clues to the many dimension extension is no more actual.

However the techniques so far used [1-5] either required a Lipschitz as-
sumption on the pair potential [3,4] or a probabilistic (statistical) proof that
dynamics is essentially finite, in the sense that the particles are grouped into
finite, mutually non interacting clusters [2, 5].

The purpose of this paper is to exploit a method used in [1] to relax the
Lipschitz condition on the pair potential and to prove the existence of dynamics
without any finite cluster consideration: therefore no restriction is required on
the range of values of temperature and chemical potential. In this paper we treat
pair potentials Φ(r) which suitably diverge at the hard-core distance, we need the
[presumably technical] condition that Φ(r) behaves as (r — a)~λ, λ>2 for r-^a.
Long range potentials are allowed, see D2.2.

Since our approach applies to the many dimensional case as well, this is what
we treat here: no main difference in procedure exists with respect to the one-
dimensional case.
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The line of the proof is the same as in [3]. The only difficulty lies on the fact
that since the derivative of the force diverges when the hard cores come close to
each other, the Lipschitz constant cannot be defined directly. The idea is that it
is the same interaction that prevents this to happen and that as a matter of fact
during the motion the force is bounded and a Lipschitz constant can still be
introduced. This would seem to mean that an a priori knowledge of the existence
of dynamics is required, but as in [1-5] we can first consider partial flows in
which only a finite number of particles move. The infinite case is then finally
obtained by a limiting procedure. An estimate on the closeness of the particles
is then the main requirement needed. It is essentially derived by energy con-
siderations: particles have small probability to be initially too close because the
energy becomes large and the Gibbs factor decreases. For the partial flows the
measure is invariant and the same considerations can be extended to later times.

This qualitative argument can be made rigorous by the Ambrose Kakutani
representation of flows technique [6], as first used by Sinai [5], in this context,
in orded to bound the velocities of the particles. The setback in this procedure
is that we cannot characterize explicitely the set of "good" configurations nor we
can exhibit any "bad" configuration at all. It is only in the one-dimensional case
with bounded short range forces that, with a different procedure [7], it has been
possible to determine explicitely the configurations for which time evolution exists.

In Section 2 we introduce notations and definitions and we state the main
result. In Section 3 we introduce the necessary statistical estimates. In Section 4
we give a proof of the existence theorem. In an appendix we give a (sketchy) proof
of the statistical estimates of Section 3 and of some minor lemmas needed in
Section 4.

2. Definitions and Results

In this section we give the main definitions and notations used throughout this
paper and state the main theorem.

D2.1 Phase Space. X is the phase space of infinitely many hard-cores

x = ( q x , P x ) ε % <?* = (.•• 4 i . ) Px = ( Pi ) Qv

where qt is the position of the " f particle and p( its momentum. Therefore
\q{ — q^a, where a is the hard-core length.

A topology is introduced in X in the usual way [8, 3].
If A is a (Lebesgue measurable) region in Rv, X(A) is the subset of X with no

particle outside A.

D2.2 Interactions. Φ is the pair interaction between particles. Φ depends on

the distance between them and we require it satisfies the following conditions:

Φ(x) is a C2 function in (a, oo),

for x^a Φ(x)=oo,
ϊoτ λ ^ 2 λ

We consider the case λ2 + λί in order to allow potentials not necessarily increasing
as (x — a)~λ. In the proof of the existence of dynamics we will need the following
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condition on λι and λ2

This gives in the case λ1=λ2 = λ,λ>2.
We will also need that X > v where v are the dimension of the space in which

the particles move.

D2.3 Equilibrium Measure. The following equilibrium equations define the
equilibrium measure μ, [9]. For zlClRv bounded and Lebesgue measurable

(2.1)

where / i s a L 1 ^ , μ ) function and

d(q)n = dqϊ...dqn, d(p)n = dp1...dpn exp (βμn)

[μ is the chemical potential]. β = (kT)~i, T is the temperature

U*]= Σ }
qjeqx 1

D2.4 Equations of Motion. The equations of motion formally read as

d d

dt2 ι

 i + j dqt

 ι 3

The corresponding formal integral equations of motion are

<lί(t) = qi + Pi/mt-lt

odt1(t-t1)ΣJ--Φ(\qi(t1)-qj(t1)\)
i*j °qi

We will prove the existence of dynamics by showing the following

Theorem 2.1. Let Φ satisfy D2.2 and μ D2.3. Then there exist X° and S(t) such
that

(i) 3£° has full μ-measure,
(ii) iS(ί):3£°i->3£0 for every real t and it is a representation of the real line onto

the ίnvertίble mappings of 3£° onto itself
(iii) x(t) = S(t)x = [#ΐ(f), Pi(tJ] satisfy the equations of motion D2.4 with initial

condition xeX°,
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(iv) for every fixed xe 3£° and τe R + there exist A(x, τ) B(x, τ) s.t.

^pΛMt)-qi\)ύA(x9τ)[log+\qn1/2 1*1 ^ τ , (2.2a)

inf, infj (\qi(t)- qj(t)\) ^B(x, τ) [log+1^|]1 / A l + a \t\ ^ τ . (2.2b)

Uniqueness holds in the class of solutions of the equations of motion satisfying the
conditions 2.2.

(v) S(t) is a measurable transformation preserving μ.

The idea of the proof is to introduce partial flows Sa(ή under which only a
finite number of particles move. Then to take the limit for α going to infinity, so
that more and more particles are allowed to move. The existence of the limit is
the crucial step in this procedure. Once we prove this it is quite easy to show that
the limiting flow S(t) has the desired properties, in a completely similar way to
[2-5].

D2.5 Partial Flows. ^ is the sphere centered in the origin of Rv and with
radius 2α, aeZ+. 5α is the partial flow [2,10] in which the particles outside ^
are frozen, those inside move pairwise interacting in the field of the external ones
and when they reach the boundaries of £ α they are elastically reflected. Problems
could arise due to the impulsive forces arising from the collisions. We will need
the following lemma [2,10].

Lemma 2.1. For every fixed yeX(£$ there is a set Jί\y) in £"xR" v , for
every n, of "full" d(q)nd(p)n measure in which Sa(t) is defined with the following
properties:

(i) Sa(t) is an invertible mapping of Jίn{y) onto itself which satisfies the equations
of motion with elastic reflections on d]Γα. The number of collisions is finite for
every bounded interval of time.

(ii) S"(t) is imbedded into an invertible map [still denoted by 5α(ί)7 of 3£ onto
itself the particles outside £ α are fixed under Sa(t). Sa(t) is defined in a set of full
μ measure for all the values of <x and t and μ is Sa(t) invariant.

3. Statistical Estimates

In this section we establish estimates on the displacements of the particles and
on maximum closeness between them under the partial flows Sa.

We do not obtain uniformity in α at this stage, but it will be the same existence
of the limiting flow S(t) which will ensure it, as it will be seen in the next section.

The main feature of the estimates we obtain lies in their statistical nature. We
could not obtain a proposition stating that if initially the particles are not too
close and their velocities not too large, the same will hold for later times. We
simply prove that the probability for this to happen is very small and with prob-
ability one we can pick up configurations with good behaviour w.r.t. α definitely
in α.
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Theorem 3.1. Let Φ satisfy D2.2 and μ D2.3. Then there exists cγ such that
the sets

) \X\3β()0\f^β() sup |

have full μ measure, μ[F(c l 9 τ)] = 1.

Theorem 3.2. Let Φ and μ as in Theorem 3.1. Then there exists c2>0 such that
the sets

G{c2,τ) = {xeX\3y(x)>0:Voi^y(x) inf inf |«"(ί)-«/α(ί)|
I |ί|^ '^Σq

have full μ measure, μ[G(c2, τ)] = 1.

Corollary 3.1. In the hypotheses of Theorem 3.1 the set

J°= f)F(Cl,τ)nG(c2,τ)

has full equilibrium measure, μ(J°)= 1.

Proof. Since {F(cί, τ)} and {G(c2, τ)} are decreasing families of sets as τ in-
creases the corollary is just a consequence of Theorems 3.1 and 3.2 together with
countable additivity of μ.

In the next section we will prove that for all the configurations in J° the
equations of motion have solution, and starting from J>° we will construct the
set X° of Theorem 2.1.

4. Proof of the Existence Theorem

We first prove that lim Sa(t)x exists (particle by particle) if x e / ° [Corollary 3.1]
α—• o o

and this defines a flow S(t). Then it is easy to show that S(t)x satisfies the equations
of motion and the proof of Theorem 2.1 can be completed.

Existence of the Limit of the Partial Flows

We fix τ e R + and xeJ°. Let Δ CW

A = £(0, δ) = sphere in IRV centered in 0 with radius δ . (4.1)

We assume

ί w , 2 ϊ W } (4.2)

where β(x) and y(x) are defined in Theorems 3.1 and 3.2 respectively. We will
prove that

ΣΛq\t)-q^-\t)\\Δ<^, (4.3)
2

||«"(t)||Σ= sup \qf(t)\ £cIR v . (4.3a)
Σ
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Since δ can be chosen arbitrarily large, once we prove Eq. (4.3) we obtain

lim # ( 0 = ̂ ( 0 . (4.4)
α—* oo

By use of Lemma 2.1 we obtain from the integral equations for q°fct) and q*"1^);

+ Σ
JφΔiii

where

F{x) =-4~ Φ{\x\) xe R v , (4.6a)
dx

'\} (4.6 b)

[see Eq. (4.1) for def. of Σ and Theorem 3.1 for c x]

R(ot) will be determined later [Eq. (4.15a)] . (4.6c)

In Eq. (4.5) we assumed that the particle "i" does not reach the boundaries of
Σα-i therefore, see Theorem 3.1, we require that

2α~1>(5 + c 1(α) 1 / 2τ. (4.7)

The second sum in the r.h.s. of Eq. (4.5) is small if R(ot) is sufficiently large, this
because

forj8 = α , α - l \qβj(t)-qf(t)\ ^R(α) for |ί| gτ;

where Theorem 3.1 has been used. Assuming that

(4.8)

and taking into account the hard core condition, explicit bounds on the force can
be obtained, see D2.2; there exists B sufficiently large so that

Σ l f [ ^ ( ί i ) - ^ ( ί i ) ] l ^ l / 2 β [ Λ ( α ) ] " λ ' ' " 1 + v

9 thesamefor α - 1 (4.9)

where v is the number of dimensions of the space in which the particles move.
The details are given in Lemma A1 in the Appendix.

To estimate the first sum in the r.h.s. of Eq. (4.5) we can use the Lipschitz
condition on the pair force, D2.2. By Theorem 3.2, in fact, the particles remain
at distance larger than c2oί~1/λ\ and this determines the value of the Lipschitz
constant effective in our case. As a matter of fact only a few particles, due to the
hard-core condition, can simultaneously be so close to the particle qt. Taking this
into account we prove in Lemma A 2 that there exists A sufficiently large so that

Σ
e / h ( l ) (4.10)

(4.10a)

(4.10 b)
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Equations (4.9) and (4.10) allow to obtain from Eq. (4.5)

(4.11)

we can iterate the procedure leading to Eq. (4.11) in the hypothesis that the
analogous of Eq. (4.7) still holds. To iterate n times we need that

2 α - 1 χ 5 n - ( 5 + /i[2c1(α)1/2τ + jR(α)] (4.12)

which is the analogous of Eq. (4.7) taking into account Eq. (4.10b).
For the values of n satisfying Eq. (4.12), the π-iterated of Eq. (4.11) gives

λ' £ {2l\)"1τ2llAoc2w]1-1

1=1

= BR(ayλ' £ (2Π)~ 1 τ 2 / [ylα 2 M ] / " 1 +(2π!)- 1 τ 2 "[^α 2 "72c 1 (α) 1 / 2 τ (4.13)
1=1

where Theorem 3.1 has been used to estimate

We will show that an opportune choice of R(oc) and n in Eq. (4.13), within the
restriction of Eq. (4.12), makes the r.h.s. of Eq. (4.13) small as α->oo. We have

BR(oc)-λ' fj(2ll)-1τ2l[_Λa2uy-1

1=1

oo

-ιΊA<xι"]-ί X (2l\)-ίτ2l[Aoί2ιr\ι

1=1

= BR(oc)-λ'[Aa2uγ1 exp[τ(yl)1/2αtt] . (4.14)

We therefore choose

R((x) = 2a/3. (4.15 a)

Accordingly we set n in Eq. (4.13) equal to

n(oc) = 2aj3 (4.15b)

so that Eq. (4.12) is satisfied for α larger than some fixed value. Writing Eq. (4.13)
with the estimate Eq. (4.14) and using Eq. (4.15)

+ (2c 1 τ)(α) 1 / 2 [^τ 2 ]" ( α ) [2φ) ! ]- 1 α 2 M n ( α ) (4.16)

which goes to zero as α diverges because u< 1, see D2.2.
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Bounds on Displacements

We fix as before xe/° and τ. We want to prove that there exists K, depending
on x and τ, such that for all "Γ

^(ή-q^Ka, 2" '- 1 ^ i | ^2 f l " . (4.17)

We choose an integer v depending on x and τ such that the following holds
(i) v>β(x),y(x) [see Eq. (4.2)],

(ii) the sum [over α] of the r.h.s. of Eq. (4.16) for oc^v is less than 1,
(iii) Equation (4.12) holds with δ = 2a~2 for a^υ.

For "small" α Eq. (4.17) is derived directly from Theorem 3.1:

J. (4.18)

For large α, α > ft, we use Eq. (4.16) so that, by the choice of v, we have with δ = 2αi

ί α i + l ) 1 ^ (4.19)

Equations (4.18) and (4.19) give Eq. (4.17).

Bounds on Closeness between Particles

The proof is similar to the previous one. We choose υ so that

(i)' v^v,
(ii)' the sum of the r.h.s. of Eq. (4.16) for a^υ is less than l/4c 2(α- l ) " 1 M l ,

(iii)' 2 α + 1 - 2 α ^ 2 ^ ( x , τ ) ( α + 2) 1 / 2 + c 2 α " 1 M l f o r α ^ t ; .
Condition (ii)' is the analogous of (ii) while (iii)' ensures that if |g7 — ^ | > 2 α ί then
the particles cannot be closer than c2^

llλ\ see Eq. (2.2a). Note that by (i)' v
satisfies also (iii).

Using Theorem 3.2

2 α - 1 / λ S c 2 ( α i + l ) - 1 / λ l } , | ί | ^ τ and ot^βi

^c2v~1/λi(oci+iy1/λi

where

+ 1 , υ] .

For α^f t + 1 and | ^ | ^ 2 α ι + 1 we have, ^ =

For |gy|>2αi + 1 we can use directly (iii)' so that the desired bound, Eq. (2.2b), is
obtained.
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S(t)x is a Solution of the Equations of Motion

Let xe/° . Fix qteqx and t. We have for sufficiently large α

S . (4.20)

We take the limit of both sides of Eq. (4.20) as α goes to infinity.
The l.h.s. gives qt(t) as proven before. The main point is that the sum in the

r.h.s. is uniformly convergent because of the uniform bounds on the displacements
proven before. The thesis is then obtained because also the convergence of q"(ti)
is uniform in \tx\^t.

The same equations of motion prove that

which naturally extends S(t) to the set

X° is invariant under S(t) and so also (ii) of Theorem 2.1 is proven. Uniqueness
in the sense of (iii) is easily proven with the same iterative procedure used to prove
the existence of the limit Sa(t), see also [3, 7]. We still have to prove (v) of Theo-
rem 2.1. The proof is based on the invariance of μ under the partial flows Sa{t)
and the existence of the limit for Sa(t). Since the analogous proof in [3, 5] was
based only on these facts we omit it.

5. Appendix

In this appendix we first prove Theorems 3.1 and 3.2. The essential point in both
theorems is the use of a technique introduced by Sinai [5], to obtain bounds on
the velocities of the particles. Since Theorem 3.1 is more similar to the analogous
ones in [2, 3, 5] we firstly present in some details the proof of Theorem 3.2. We
then just sketch the main differences one meets in dealing with Theorem 3.1.

Proof of Theorem 3.2

Let

G\c2,τ)={xeX\mϊ mi \q\t)-q'\t)\^a + c2oι-1^}. (5.1)
| ί | ^ τ {q,q'eqxnΣ*}

We estimate the measure of

B\c2, τ) - complement of Ga(c2, τ) (5.2)

as the sum of μ[B\(c2, τj\ and μ[_B2(c2, τ)]. B\ is the subset of Ba in which con-
dition 5.1 is violated at t = 0, therefore μ{B\) can be estimated just by static con-
siderations. Since the configurations of Bι have large energies (for large α) because
of the Gibbs factor, μ(B\) will approach zero as α diverges.

B2 is the set of configurations for which condition 5.1 is not violated at ί = 0
but it will eventually within time τ. B2 is therefore represented as the evolution
of the set Γ which has a pair of particles at distance (a + c2ot~1/λi). Since the
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measure μ is invariant under Sa again the estimate is essentially static: technically
we use the Ambrose Kakutani representation of flows [6] with base Γ as firstly
developed by Sinai [5] in this context. More precisely we have [where z below
is a constant representing the fugacity and arising from the chemical potential
and the integration on the momenta]

0" V h
Σ> !)" V φ -

-] exp(2β\\Φ\\)\Σf Σ > 0 ~ V

^ const, exp [ - βc2

 λloc + 2αv] (5.3)

[see D2.3 for notations] \ where in Eq. (5.3)

iΦl;J"" = (-qι.~) where ί^l^n and /ΦU,... (5.4)

||Φ|| is defined by the following property, see D2.2 hypotheses,

for every xeX: inf Σ Φ(\q-q'\)^-\\Φ\\ . (5.5)

To evaluate μ ^ ) w e write

μ{Bl) = $ΆΣ&)dμ(y) ΣninlΓ1' J*ΣS x ^ d{q)nd(p)n exp {- βHί(q)n(p)M}XB«2 (5.6)

Therefore for any given y outside ^ we define the flow Sa in ]£α in a set of full
d{q)nd(p)n measure [see Lemma 2.1] and in this set we consider the configurations
which violate Eq. (5.1) only at times different from zero. We therefore introduce
for every n, number of particles in £ α , a surface Γn in the n-particle phase space
]ΓjJ x IRvn made up by n(n—ί)/2 subregions such that in each of them, Γn

φ the pair
of particles q{ and qj are at distance α + c 2 α~ 1 / λ l . The measure d(q)nd(p)n can be
projected on Γn along the Sa flow to have

dΓndt on (J S*(t)Γ. (5.7)

To write down explicitly dΓn we consider M\y) as a differentiable manifold with
a local system of coordinates: if xeJίn

x = tei>.. ,4n;Pi,...,P,ι).

A metric is introduced as

The idea is to project d(q)nd(p)n along the normal ζ to Γn and then obtain dΓn by
this and the scalar product between the normal to Γn and the tangent vector
(derivative) of the flow, [5, Lemma]. In our case is however simpler to first project
d(q)nd(p)n along another direction w. More precisely

d(q)nd(p)n = diqYAp^dσ^j = dljjdr^ , (5.8a)

ru(w,0 (5.8b)

Hereafter we will denote by χ(B; x) the value in x of the characteristic function of the set B.
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where dσtj is the Lebesgue measure on IRV projected on a sphere of radius equal
to a + c2oί~i/λl and rtj is the distance between qt and qy Of course w is not neces-
sarily normal to Γψ it is just orthogonal to those particular curves in Γ}j for
which q{ is constant. However it is easy to see that if 5 is a unit vector tangent
to Γ j then

so that, with ζ unit normal vector to Γ^

and this gives, together to Eqs. (5.8b) and (5.8a)

dΓζ = normal projection of d(q)nd(p)n^(2)1/2dΓw . (5.9)

To obtain dΓn we consider the scalar product between ζ and π, where

We then have

\(π,ζ)\Sl/m(\Pi\ + \Pj\)- (5.10)

Therefore with the notations of Eq. (5.7) we have, by use of Eqs. (5.8), (5.9), (5.10):

d/7^(2) 1 / M//n(|p^PM4)Mp)n<foy. (5.11)

By Eqs. (5.7) and (5.11) we have from Eq. (5.6)

(n I)'1 \ΓΛΓ" γ_τdt exp {-

0 " 1 n(n - 1 )/2 J Σ g - 2 d(g)i •2 JΛv«» - 2, d(pγn

 2

• J R V 2 φ ) 2 exp {-

< const. exp[αv — βc2λίoί] (5.12)

where invariance of the energy has been taken into account and the last inequality
was obtained in a similar way to the derivation of Eq. (5.3).

Therefore if c2 is sufficiently small by Eqs. (5.3) and (5.12) we have: there exist
constants K and c such that

[Gα(c2, τ)] > 1 - K

Theorem 3.2 is therefore proven with the position
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Proof of Theorem 3.1

It is convenient in the following proof to consider

\p\ = max \pδ\
1 ^δ^v

where pδ is the δ component of the vector p. The results we obtain then auto-
matically hold also in the previous metric.

In analogy with the proof of Theorem 3.2 we consider the sets

F%cl9τ)= [xeX\sup sup ^ ( O l ^ j / α l . (5.13)

To evaluate the complement of F*(c l5 τ) we introduce

D*(cl9τ) = \xe3ί\ sup I

We have

n(n!)-' fΣS d(q)n exp {- βϋl{q)n\y]} ^

exp{-i8T[(p)J}χ[D;;(p)J

)a exp {- βUl(q)n\yl}nv \^

^ const, exp [ - βc\a/2m + αv] . (5.14)

To estimate Da

2

D«2 = \xeX\xφD«usup sup IpfWI^c^α)1/2}. (5.15)

We then have the analogous of Eq. (5.6), we introduce the surface Δn in Mn(y)
made up by vn subsets Δn

Uδ δ= l,...,v /= l,...,n so that

Then we project d(q)nd(p)n along the flow on zΓ

We have, see D2.3;

dAlδ = d(q)nd(pid{Pί)
δ expOSμ)(π*, C*) (5.16)

l , v

where rf(Pi)δ=Πy^ir π * ^s t n e v e c t o r tangent to the flow as defined before

Eq. (5.10) and hereafter denoted by π* to distinguish it from the number π. C* is
now the unit vector normal to Δn

iiδ\

C* is a vector with non-zero component only along δ direction, "Γ particle.

Therefore

|(π*, ζ*)\ < |FfI F—p— force on the " f particle .
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Using this in Eq. (5.16), we have in analogy to Eq. (5.12)

£„(n!)" Vnv Ja-,d(q)l exp{-

•(2πβ- 1 m) 1 ' 2 exp {- βc\aβm} ^d^Ffa K?).1?,]

• exp {-/?/[<h \{q)lqy-\} (5.17)

where

Since exp{ — βI(q1\qx)}F(q1\qx) is bounded in q1 and x, there exist a constant X
such that

we have

-βc\a/2rή\(2πβ~'

^ const, exp [ — βcl%/2m + αv]

which goes exponentially to zero if cί is sufficiently large. The definition of F(cί9 τ)
is now perfectly analogous to that given for G(c2iτ) after Eq. (5.12).

In the remaining of this appendix we will give the proofs of some estimates
needed in Section 4.

Lemma 5.1. Let qx be the generic spatial configuration in X such that qo = Q>
qie^iO^Rf for ίή=0 and r2<R. Then there exists a constant B independent of qx

such that

Ϊ Φ O

Proof Since R > r2 by use of D 2.2 we have, (q0 = 0),

Because the r.h.s. is decreasing with the distance of the particles

Σι\F(<lo-qι)\ύ Σl^Γ 1 "" ' , for \ar\^R-a
ΪΦO reΈv

where a = a/10. Therefore

Lemma 5.2. There exists A such that the following holds. Let {qt} and {#•} be
spatial configurations with qo = qΌ and for i # = 0 | ^ | > r > a . Then
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Proof. By D2.2 there exists a continuous non increasing function

xeW, on [r, oo) such that

— Φ(x)\<k(\x\)
dx2 =

Let x and yelRv then

F ( ) \ d l

where dl is the arc length along the curve y, and γ(x, y) is a regular curve connecting
x and y such that its distance from the origin is either |x| or \y\. Further we may
and will require that

\y(x,y)\^2π\x-y\.

Therefore since k is a monotone function

\F(y) - F(x)\ S jγ{x,y)dlk(\x(l)\) S ίk(\x\) + /c(|y|)] \y(x, y)\

Then we have

iΦO

The sum in the r.h.s. can be split into two parts; the contribution of the particles
in the sphere £ (0,10a) which is bounded by N [the largest number of particle
in the sphere] times the maximum value of k(\q\\ namely k(r). The second sum
is finite due to the explicit form of k( ) so that

<liΦΣ

From this the thesis is easily obtained.
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Note Added in Proof. After this paper was completed we realized that analogous results have been
obtained for the one dimensional case by Semliakow in a paper published in "Uspekhi Matematiceski
Nauk., XXVIII, Vol. 1, 1973".
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