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Abstract. Milnor's treatment [6] of Morse's global theory of the calculus
of variations for geodesies [7] is restated in the context of space-time geometry:
it is seen as providing a link between the curvature and the causal structure
of a stably causal globally hyperbolic Lorentzian manifold. An application is
discussed.

Introduction

Morse's global theory of the calculus of variations is the basis of a number of
theorems relating the curvature and topology of Riemannian manifolds [6, 7]. In
this paper I shall describe a method whereby the theory can be restated in the
context of space-time geometry and discuss its potential usefulness in dealing with
global problems in general relativity.

The first three sections of the paper are an outline of the principal physical
and mathematical ideas involved, leading up to a statement of the main theorem
at the end of § 3: these sections can be regarded as an extended introduction
(more detailed accounts of some of the material covered can be found in [1, 3,
4,6, 9]). A large proportion of the argument consists of adapting standard ele-
mentary results from algebraic topology and Riemannian geometry. In order to
keep the paper reasonably selfcontained, I have given outlines of the concepts
involved and sketched proofs of the theorems before describing the necessary (but,
for the most part, trivial) modifications. Only where the argument diverges radi-
cally from that used in Riemannian geometry have I gone into the full technical
details.

The fourth section is a proof of the theorem.

Notation. Throughout, M denotes a smooth (C°°) paracompact Hausdorff
manifold of dimension greater than two in which is given a causal Lorentzian
metric g with signature ( + , —, — . . . ) . This means that (M, g) is time oriented (the
two halves of the light cone are labelled continuously throughout M as future and
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past pointing) and contains no self intersecting causal paths (a causal path is a
piecewise smooth map of a closed interval in IR into M with future pointing
timelike or null tangent vector). Thus M admits an antireίlexive partial ordering <^
(the natural chronology) defined by p<ζq if there exists a timelike path from p to
q and pφg, and a reflexive partial ordering < (the natural causality) defined by
p < q if there exists a causal path from p to q or p = q. [In general, I shall distinguish
between a path (which is a map from the real line into M) and a curve (which is
the image of a path).]

The timelike and causal futures and pasts of an event peM are denoted,
respectively, I + ( p ) , J + ( p ) , Γ ( p ) and J~(p) (for example, Γ(p)={qeM\q<ζp}).

A subset S C M is said to be acausal if:

The domain of dependence of a closed acausal set S is defined by :

D(S)= {^eM I every maximally extended timelike curve through q
intersects S} .

A closed acausal hypersurface without boundary is called a partial Cauchy sur-
face : it is a Cauchy surface if D(S) = M.

In addition to being causal, in § 4 (M, g) is required to be globally hyperbolic
and stably causal. This means that each I + (p)r^I~(q\ p,qeM, is compact and that
M admits a second causal metric h such that every vector which is causal (that
is, timelike or null) with respect to g is timelike with respect to h: less formally,
the light cones can be widened without destroying causality. (These are not the
minimum axioms under which the theorem can be proved, but they make sense
physically.) It follows that M is predictable (admits a Cauchy surface) and that
every event lies in a local causality neighbourhood, that is a goedesically convex
(normal) neighbourhood N with compact closure, satisfying:

If q, reN then q<r if, and only if, there exists a causal path from q to r in N.

More details of these concepts are given in [4, 9].
The metric connexion on M is denoted Pand the inner product in the tangent

space at each event <,). The curvature tensor is defined by (X, Ύ and Z are
vectors fields):

VXVΎZ- VΎVXZ- V[XίΎ}Z = R(X, Y)Z .

A closed n-cell (that is a closed disc in IR") is denoted En and its boundary
S""1. The boundary of a zero cell (a point) is empty.

The index of a symmetric bilinear form H on a vector space V is the maximum
dimension of a subspace of V on which H is positive definite (this is the reverse
of the normal definition: the reasons for this will emerge later). The nullity of H
is the dimension of the subspace of V :

{XeV\H(X, y) =
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§ 1. Conjugate Points and Chronological Homotopy

The physical interpretation of the curvature tensor in space-time is based on the
equation of geodesic deviation (the Jacobi equation) [11]. Briefly, the way this
goes is this: a cloud of free falling test particles in space-time is represented by
a timelike geodetic congruence. If T is the tangent vector field to this congruence
and if X is some other vector field which is Lie propagated by the congruence,
then (after a short calculation):

D2X = R(T, X)T (or, in components: D2Xa = Ra

bcdT
bXcTd] , (1.1)

where D = Vτ is the covariant derivative in the direction of T. This is the Jacobi
equation. An observer G moving along a geodesic y0 in the congruence can
measure the position of a nearby particle & relative to a parallelly propagated
orthonormal tetrad (T, 7l5 Y2, 73) (7l5 Y2, and 73 can be thought of as non-rotating
Cartesian axes in 0's local rest frame). At each instant, (9 assigns a position vector
X = XaYa (α=l,2, 3) to 3P. Provided that all the geodesies are parameterized by
proper time, X will be Lie propagated by the congruence and [rewriting Eq. (1.1)]
the frame components of the acceleration of & relative to G will be given by:

(1.2)

where ί is proper time. This equation gives direct physical meaning to the Riemann
tensor components (R(T, Yβ)T, Yay.

Now consider the situation where all the particles in the cloud emerge in an
explosion at an event peM. Initially, G will see & moving directly away from him.
However, if the quantity on the right hand side of Eq. (1.2) is sufficiently negative,
& will, after a time, start moving back towards G and, eventually, pass close by
G again at some event1 qeM. In this case, q is said to be conjugate to p along
y0; mathematically, q is characterized as a conjugate point to p by the existence
of a nontrivial solution of Eq. (1.1) which vanishes at p and at q. Physically, con-
jugate points arise because of the focusing effect of the curvature which is a con-
sequence of the attractive nature of gravity.

The theorem I shall prove below relates the number of conjugate points on
the timelike geodesies from p to q to the structure of the space of timelike paths
joining p and q, which is described within the framework of chronological
homotopy theory [5, 13, 14]. This theory is purely global in the sense that, locally,
all stably causal space-times have the same chronological homotopy type. The
theorem, in conjunction with the equation of geodesic deviation, thus provides
a direct link between the local properties of the curvature tensor and the global
properties of the causal structure, that is between the small and large scale physi-
cal aspects of the gravitational field.

Before going into technical details of the theorem, I shall give a brief account
of the main ideas of chronological homotopy theory and its potential usefulness
in handling global problems.

1 Only in the limiting case where & is infinitely close to Θ will the geodesies actually intersect again
at q. The description of P's position by X is only accurate to first order in the ^Γα's.
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Let (M, g) be a causal space-time and let p<ζq be two fixed events in M. By
a chronological path from p to q is meant a continuous map α: [0, 1]->M such that:

2) If s<ίe[0, 1] then α(s)«α(ί).

If α is piecewise smooth then its tangent vector must be future pointing and
causal if α is piecewise geodetic, then its tangent vector must actually be timelike.
The space Tpq of all chronological paths from p to q has a natural topology (the
compact-open topology [1]) generated by sets of the form:

where KC[0, 1] is compact and C/cM is open. For two paths to be close in the
compact-open topology, not only must the corresponding curves in M be close,
but also pairs of points with the same parameter values. However, the topology
ignores smoothness: the tangent vectors (if they exist) need not be close in any
sense. Two paths α, βe Tpq are said to be chronologically homotopic if they lie in
the same path connected component of Tpq (this means that α can be deformed
into β through a sequence of chronological paths). Two space-times M and M'
have the same chronological homotopy type if there exists a homeomorphism
φ:M-»Λ/Γ such that Tpq and Tφ(p}φ(q) have the same homotopy structure for each

A consequence of the theorem is that, in general (in a globally hyperbolic,
stably causal space-time), Tpq has a very simple structure: it has the homotopy
type of a finite cell complex. Roughly speaking2, this means that it can be deformed
into a space K made up of a finite number of cells of dimension 0, 1, 2 ... fc (that
is, points, line segments, closed discs in IR2, solid spheres in IR3 etc.) glued together
along their boundaries (to give a simple example, a sphere S2 can be thought of
as a cell complex made up of a point and a 2-cell). The number of cells of each
dimension in K carries a great deal of information about the topology of Tpq. For
instance the Euler characteristic of Tpq is given by:

χ(TM) = χ(X) = ΣS(-l) ίft, (1-3)

where μt is the number of cells of dimension i in K (for a more detailed explanation
of this, see [1]). If p and q lie in a local causality neighbourhood, then K consists
of a single 0-cell (a point), so that, locally, all stably causal space-times are of the
same chronological homotopy type.

It must be emphasized that the structure of Tpq depends on the choice of p
and q : chronological homotopy does not lead to any simple topological classifi-
cation of the background manifold M (though, of course, the structure of Tpq is
closely linked with the topology of M). However, the information carried by, for
example, the two point integer valued function χ(p,q} = χ(Tpq) is physically rele-
vant. For instance, consider the problem raised by Penrose's formulation of the
cosmic censorship hypothesis [10] of defining black holes in closed universes.
Loosely, this formulation is that no observer can ever see a singularity which was
once in his past; thus no observer can see a singularity formed by collapse (either
the local collapse of a star or the global collapse of the entire universe) until he
actually runs into it. More formally, space-time must be globally hyperbolic (and
2 Formal definitions are given in § 2.
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hence predictable from a Cauchy surface). This contrasts with the conventional
formulation (Hawking [3]) that no singularity formed by collapse can be seen
by an observer at future null infinity G/+): such singularities are hidden inside
black holes. In this context a black hole is defined to be a spatially connected
region of space not in the past of J^+ (more precisely, it is a connected component
of S~ J~(J>+) where S is a partial Cauchy surface). This version states that space-
time is (future) asymptotically predictable.

Penrose's formulation (which is stronger than Hawking's) has the advantage
of being applicable to space-times (such as closed cosmological models) for which
future null infinity is not defined. However, it leaves open the question of pre-
cisely what is meant by a black hole in such situations. One way of getting a handle
on this problem is through chronological homotopy theory. Consider, first, a
Schwarzschild black hole. Let p be a fixed event outside the horizon and consider
what happens to Tpq as q moves into the future along some timelike path through p
(also outside the horizon). At first Tpq will have a trivial structure: it will be equiv-
alent to a single point. However, when q gets further into the future, there will
exist timelike paths from p to q which "loop around the back" of the horizon.
It is not hard to see that a hole appears in Tpq: its homotopy structure is that
of a circle. As q gets still further into the future, the structure of Tpq gets more
and more complicated. However, if the black hole is replaced by a star, the
situation is qualitatively different: the structure of Tpq remains relatively simple
for all points p and q.

Thus, the picture one would have of a closed universe is this: for points p
and q near the initial singularity Tpq has a very simple structure: possible timelike
paths have only one route from p to q or, possibly, they can wind round the back
of the universe a few times. However if p and q are near the final singularity,
which is made up of collapsed stars and the final collapsed state of the universe
itself, Tpq has a vastly more complicated structure due to the presence of a large
number of "black holes".

It is possible that a closer analysis of, for example, the way in which the two
point function χ(p, q) behaves in exact black hole solutions will lead to a precise
and workable definition of a black hole applicable in any situation: the theorem
proved in this paper provides the technical machinery necessary for such an
analysis.

In the next two sections, I shall review the elements of finite dimensional
Morse theory and the calculus of variations for timelike geodesies: these form the
basis of the theorem proved in § 4.

§ 2. Morse Theory: The Finite Dimensional Case

Definitions. Let A be a smooth paracompact Hausdorff manifold of dimension n
and let /:,4->>R be a smooth function on A. A critical point of / is a point ceA
where the 1-form df vanishes; the value f(c) of / at c is a critical value of/. At
each critical point ceA,f defines a symmetric bilinear form Hc (the Hessian of/)
in the tangent space TCA at c: if XE TCA, then:

HC(X,X) =
δx2

 X=Q'
(2.1)
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where the derivative is taken along any path ξ:x^^ξ(x) through c = ξ(0) with
tangent vector X at c. (That this definition is independent of the choice of ξ is
most easily seen by rewriting Eq. (2.1) in the form:

H<(x>x}=->χaχb> (2 2)

where {xa} are local coordinates at c.) The index μc and the nullity vc of / at c
(or just of c if / is understood) are, respectively, the index and nullity of Hc. If
μc = n, then c is a local maximum of/ If vcΦθ, then c is a degenerate critical point:
/ is said to be nondegenerate if it has no degenerate critical points.

The idea is to relate the topology of A to the indices of the critical points of/
That such a relationship must exist is illustrated by the fact that though it is
possible to find a smooth function on the sphere S2 which has a maximum and
a minimum, but no other critical points, it is not possible to do this on the two
dimensional torus. Formally, the relationship is expressed in the theorem [6]:

2.1. Theorem. Let f:A-+JR. be smooth and nondegenerate. If each set

is compact then A is homotopically equivalent to a CW-complex K containing one
cell of dimension μ for each critical point of index μ.

(Two topological spaces A1 and A2 have the same homotopy type (are
homotopically equivalent, written A1^A2) if there exist maps φ12:A1-+A2 and
φ2ί:A2-+A1 such that φ12

0(P2i and Φ 2 i ° Φ i 2 are homotopic with the identity
maps on A2 and A^. In the application in §4, the function considered has only
a finite number of critical points. In this case K is a finite cell complex, that is
it is the union of a finite number of closed sets C? (μ and i are integers) with the
following properties: if Kμ= (Jλ<,μ C\ and Bf-K^nCf, then:

K 1) (Cf - Bf)n(Cj - Bj) = 0 unless μ = λ and i =j.
K2) For each Cf, there exists a map φμ \Eμ-*K which takes Sμ~^ onto Bf
and maps Eμ — Sμ~1 homeomorphically onto Cf — J5f.

For example, any compact triangulated manifold is a finite cell complex. More
details are given in [1].)

In fact, in § 4, I shall use a slightly stronger version of the theorem. Before
stating this, I shall outline a proof of Theorem 2.1 (a more detailed version is
given by Milnor [6]).

The method is to investigate how the topology of As changes as s is decreased
from the maximum value smax of / to — oo . To do this it is necessary to find a
smooth vector field Y on A with the properties :

Y 1) 7 = 0 only at the critical points of /.
Y2) Y(f) > 0 except at the critical points of /

Such a vector field always exists: for example, put Y = g ~ 1 ( d f ) where g is any
Riemannian metric on A (this is not, in fact, how 7 is constructed in § 4).

When s = smax, As is just a finite collection of points. Also if the interval [s, ί]
contains no critical values of/ then At~As. The map φts:At-*As is just the natural
inclusion map. To construct the map φst:As->At, for each αef~l(\_s, ί]) let
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αfl : [0> t — f(ά)]-+A be an integral curve of Y parameterized by f with initial point
α that is :α, that is :

2) /oα>)
3) The tangent to αα is parallel to Y.
Then φ s t:y4 s->A t is defined by:

f(a)<t

(2.3)

This definition makes sense: because 7ΦO on the compact set /"HEX t]) and
because 7(/)>0, an integral path of Y with initial point in /-1([5, ί]) must
eventually reach /~1(ί) Further φf is continuous and φst°φts is the identity on
^4,. The homotopy F:[0, l]xA s->^4 ( between φts°φst and the identity on _/4s is
defined by:

ue[0, 1]

we [0,1]. (2.4)

Thus, when s = smax, ^4S has the homotopy type of a finite collection of 0-cells
(points) and, as s decreases, the homotopy type of As only changes when s passes
through a critical value of /

Suppose that sc is a critical value o f / and that c1? c2...cme/~1(sc) are the
corresponding critical points in A Then, for small enough ε, ASc_ε is equivalent
to ylSc+ε with cells E"e> , Eμ°* . . . Eμc » attached. The proof of this is intuitively
straightforward, though quite long when written out explicitly: one chooses
coordinates {xa} in a neighbourhood JV f of each critical point ct so that / has the
local coordinate form :

/ = $c + * 1 + X2 + + X

μι — X

μί + i

(this is possible by a lemma of Morse [6]). Outside these neighbourhoods ASc_ε

is pushed along Y into ASc+ε as before. A purely local argument is used to deal
with what happens inside each JV f : for each /, the μCι-cell:

must be attached to ASc+ε in Nt (this illustrated in Fig. 1 for n = 3 and μc. = 2).

Remark. Though it is clear from this outline that a space with the same
homotopy type as A can be built up from a number of 0-cells by attaching a cell
of the appropriate dimension for each critical point of / (such a space is called
a spherical complex), it is not immediately clear that this space is a finite cell
complex (that is that the cells are attached in such a way that the axioms Kl
and K2 are satisfied): some sublety must be employed to prove this. However,
for many applications [for example, the proof of Eq. (1.3)] this refinement is
unnecessary.

Suppose now that AcB is an open submanifold of B with compact closure
and that, as before, / is a nondegenerate smooth function on A with a continuous
extension to A. Then, provided that there exists a smooth vector field Y on A
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f = s -

Fig. ί. The change in homotopy type at
a critical point of index 2

which satisfies, in addition to Y l and Y2:

Y3) If ξ:xκ>ξ(x) is an integral path of Y with initial point ζ(0)eA, then
ξ(x)εA can be defined for all x^O, and ξ([0, co))r^A = φ (that is, ξ never
reaches the boundary of A in J5),

precisely the same proof can be used to show that the conclusion of the theorem
still holds.

In its main application to Riemannian geometry, this theorem is used to
calculate the structure of the space of paths joining two fixed points in a geode-
sically complete Riemannian manifold, and hence the homotopy invariants of
the manifold. Naively, what is done is to treat the energy functional :

as a real function on this path space (all the paths are assumed to parameterized
by the interval [0, 1]): its "critical points" are the geodesies. There are two ways
of realizing this idea: the first, and older, approach is to approximate the path
space by a finite dimensional manifold of the same homotopy type [6]. The
second, and more sophisticated method, is to extend the finite dimensional theory
outlined above to infinite dimensional Riemannian manifolds (that is, Hubert
manifolds) and then apply it directly to the full path space [8, 12]. It is possible
that, with suitable modifications, this second approach could be made to work
in Lorentzian manifolds: this has not yet been done. Here I shall show how the
old method can be adapted to space-time geometry. What this approach lacks
in mathematical sophistication, it makes up for with geometrical transparancy.

There are two points at which the Riemannian argument, as expounded by
Milnor, breaks down when applied to metrics with Lorentzian signature (these
same problems arise in a disguised form in trying to apply Palais and S male's
version of the theory). The first is that the energy functional is, locally, neither
maximized nor minimized by affinely parameterized geodesies: for spacelike
geodesies, this difficulty is intrinsic (a spacelike geodesic can be shortened by
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deforming it in a timelike direction and lengthened by deforming it in a spacelike
diection), but for timelike geodesies the problem can be trivially overcome by
using a slightly different action functional. The second is in the construction of
the approximation manifold. This is a more serious difficulty which arises from
the noncompactness of the geodesic "spheres" even in geodesically complete
space-times: two events can be far apart according to the manifold topology, but
zero distance apart according to the metric. However, by concentrating on the
timelike path space and by adopting a different (and, in fact, simpler) approxima-
tion procedure it is still possible to obtain physically interesting global informa-
tion: the payoff is a means of relating local properties of the curvature to global
properties of the causal structure. In this approach, the geodesic completeness
condition is replaced by one of global hyperbolicity.

§ 3. The Calculus of Variations for Timelike Geodesies

Let p<ζq be events in M and let Tp* C Tpq denote the space of piecewise smooth
timelike paths from p to q. An n-parameter variation of yΌeT*q is a map
y:[/x[0, l]ClR"x[0,1]->M (t/ClR" is an open neighbourhood of the origin)
satisfying:

a) y(0,ί) = y0(OVίe[0,l].
b) yx:t\->y(x, t) defines a path in T*q for each x = (x1,x2,...xn)εU.
c) 3 a partition 0 = ί0<ί1< ... <ίm = l of [0,1] such that each restriction

y\U x [tb ίf+1] is smooth.
According to emphasis, an n-parameter variation will either be written as a

map γ:Ux [0,1]->M or as a collection of paths yx.
Each n-parameter variation yx of a path y0eT*q generates a family {Zt } of

n continuous piecewise smooth vector fields on y0 which vanish at p and q.
Explicitly, X^t) is the tangent at y0(ί) to the path:

xW^O,... 0,^,0,... 0,ί)

for each fe[0,1].
The vector space of all continuous piecewise smooth vector fields on y0eT*q

which vanish at the endpoints of y0 will be denoted by Γ; it is clear that any
finite subset of Γ can be generated by a variation of y0. Naively, Γ can be thought
of as the infinite dimensional tangent space to T*q at y0 and, in fact, it is exactly
this notion which is made precise in the modern treatment of Morse theory.

The action j: Γp*-*IR is defined by:

7(α)=Jέ<7;7>*Λ; αe T* (3.1)

where T is the tangent vector to α. The exponent | is chosen that the Schwarz
inequality can be used directly to prove:

3.1. Lemma. // /(α) = J J < T, 7>*ώ is the proper length of the path oteT*q then
j(oc)2 g /(α), with equality holding if and only if a is parameterized by a linear func-
tion of proper time.

The point of this is that if p and q are sufficiently close (for instance if they
lie in a local causality neighbourhood) then there is just one timelike geodesic
curve from p to q; this geodesic maximizes proper time over all other timelike
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curves from p to q [9], It follows from the lemma that if the geodesic is param-
eterized by a linear function of proper time, then the resulting path maximizes j
over all timelike paths in T*q. In other words, locally j is maximized by affinely
parameterized geodesies. The idea now is to investigate how this local behaviour
is modified when p and q are not close together. The basic tools for this investi-
gation are the first and second variation formulae (proofs are given in the
appendix) :

First Variation Formula. Ifγx is a one parameter variation ofy0e T*q generating
the vector field XeΓ then:

^MαL=o=-Σ. i<*^^

Second Variation Formula. Let y0εT*q be an affinely parameterized geodesic.
If γx is a two parameter variation of y0 generating the vector fields Xί9 X2eΓ then:

the paths y0£T*q such that — (j(yx))\x = Q = Q for all one parameter variations of

Here T is the tangent to yQ, λ=(T, T>^, 1 is the projection orthogonal to T and
D = Vτ. The points of [0, 1] where yx fails to be smooth are labelled by i and Δf

refers to the discontinuity at these points.

It follows from the first variation formula that the critical paths of 7, that is

A
dx

y0, are precisely the affinely parameterized geodesies in T*q (this is because
31DT-DT-0 if, and only if, DΓ = 0).

Just as in the finite dimensional case, j defines a symmetric bilinear form H
(the Hessian of j) in the tangent space of its critical paths: if y0e T*q is an affinely
parameterized geodesic and if Xl9 X2eΓ then H(Xί9 X2) is defined by choosing
a two parameter variation yx of y0 which generates Xί and X2 and putting:

(3-2)

The second variation formula implies that H is bilinear and independent of the
choice of yx; the symmetry follows directly from the definition.

A vector field X2eΓ in the null space of H at y0, is characterized by the
condition :

X2) = QVXieΓ. (3.3)

This, in conjunction with the second variation formula, implies:

a) Δ;(DX2) = O V ι , (3.4)

b) D2X2 = R(T,X2)T. (3.5)

That is, X2 must be of class C1 and it must satisfy Eq. (3.5) (the equation of geodesic
deviation); in fact, a) and b) together imply that X2 must be smooth. A vector field
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satisfying Eq. (3.5) on a geodesic is called a Jacobi field; if n linearly independent
Jacobi fields vanish at two distinct points p and q on a geodesic y then p is said
to be conjugate to q along y with multiplicity n. What has been shown, therefore,
is that the nullity of H for an affinely parameterized geodesic ye T*q is equal to
the multiplicity of p as a conjugate point to q along y. The crucial point is that
the index of H can also be characterized in terms of the conjugate points of 7.
This is the content of the index theorem:

Morse's Index Theorem. Let yεT*q be an affinely parameterized geodesic. The
index of H at y is equal to the number of points te [0,1] such that y(t) is conjugate
to q along y, each such point being counted according to multiplicity.

I will not give the proof here since it is rather long and it is identical to the
proof of the corresponding theorem in Riemannian geometry, as given in a number
of standard works on the calculus of variations (for example, Milnor [6]). Briefly,
the idea is this: first a partition 0 = ί0<ί1< ... <ίw = l of [0,1] is chosen so that
each y(tb ti+ΐ) is contained in a normal neighbourhood. Next, Γ is split into the
direct sum of two subspaces Γί and Γ2 which are orthogonal with respect to
H:Γ1 consists of vector fields which vanish at ί0, ί1?... and tn. Since j is maximized
by affinely parameterized geodesies in a normal neighbourhood, H is negative
semi-definite on 7^. The second subspace, Γ2, is finite dimensional: it consists of
broken Jacobi fields. A vector field XeΓ2 satisfies Eq. (3.5) in each interval
(ίp ti+ i) but its derivative DX need not be continuous at each t f; such a vector field
can be generated by a variation yx where each yx is a broken geodesic (that is it
consists of a finite number of geodesic segments).

The index of H is equal to the index of its restriction H\Γ2: this is computed
by a slightly intricate argument in which p is allowed to move along y. At each
conjugate point to q the index of H\Γ2 is shown to increase by the multiplicity
of the conjugate point. Π

The index of a geodesic y0:[0,1]->M is defined to be the index of the bilinear
form H.

Enough technical machinery has now been assembled to state the main
theorem (the proof is the content of the next section):

Theorem.Let p^q be two events in a stably causal globally hyperbolic space-
time M. Ifp is not conjugate to q along any geodesic in Tpq then Tpq has the homotopy
type of a CW-complex K containing one cell of dimension μ for each geodesic in
Tpq of index μ.

Remark. In general Tpq will contain only a finite number of geodesies and K
will be a finite cell complex.

§ 4. The Proof of the Theorem

The proof proceeds in three stages. The first step is to construct an approxima-
tion manifold and to prove that it has the same homotopy type as Tpq. In the
second stage, a certain vector field is defined on this manifold and in the third
it is shown that this vector field has the properties necessary for the application
of the finite dimensional theory outlined in § 2.
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As before, p<ζq are two fixed events jn M. The open set I+(p)r\l~(q) is de-
noted /. Since M is globally hyperbolic, I is compact and equal to J+(p)r^J~(q).

By a theorem of Hawking's [2], M admits a continuous global time coordinate
τ : M-»R which is strictly increasing along every future directed causal path in M
(the existence of such a time coordinate is an alternative characterization of stable
causality). Each level surface of τ is an acausal C° hypersurface in M. Let S = τ~ 1(s)
be such a level surface. Since every point of S lies in a local causality neighbour-
hood, there exists a neighbourhood3 Ns of S with the property:

If meS and neNs then m<ζn (m<ή) if, and only if, there exists exactly one
timelike (causal) geodesic from m to n in Ns (and dually).

The collection of all neighbourhoods N& where S is a level surface of τ, forms an
open cover of the compact set 7. Thus it is possible to find a finite set {S0, Sί...Sn+ί}
of level surfaces (labelled in order of increasing τ) such that:

a) geS0, qeSn+1.

b) /Cl j ί t f* .
c) /nSjCΛΓ^nΛΓs,; i = l ,2 . . .n.

[c) is a straight forward consequence of b).] Also, again since I is compact, there
is no problem in assuming that each St is smooth near /.

Let W be the open subset of the product manifold P = SίxS2...xSn con-
sisting of w-tuplets (m 1,m 2 . . .mπ) which satisfy:

and let V be the open subset of R" of points (ίl5 £2 ... £„) satisfying:

0<ί 1 <f 2 < ... <ίπ<l

(for greater compactness in the following, I shall write £0 = 0, tn+1 = I,m0 = p and
mn+ι=(ί)' The approximation manifold A is defined to be the product Wx Vc
PxR".

4.1. Lemma. ,4 is homotopically equivalent to Tpq.

Proof. There exist two maps i:A-+Tpq and r:Tpq-*A. The first associates a
broken geodesic ya = i(a) with each point α = (w l5 w2...mπ, ί1? ί2 - Όe^5 7α is

made up of the timelike geodesic segments joining m0 to m1 ? mj to m2 and so on,
the affine parameters on each segment being fixed by the condition:

yΛίiHro,.; i = 09l...n+l. (4.1)

The second map takes the path ueTpq to the point r(tt) = aa = (mί,m2...mn,tl9

t2...t^A where mi is the unique intersection point of α with St and ί—oΓ1^).
Clearly r°i\A-*A is the identity. To prove the lemma, it is sufficient to show

that i°r:Tpq->Tpq is homotopic with the identity on Tpq. The required homotopy
F: [0, 1] x Tpq-+Tpq is easily found: the image of (u, α)e [0, 1] x Tpq under F is the
chronological path F(u, α):[0, l]->M:F(t/, α):ίκ>F(w, α)(ί) which coincides with α
for O r g ί r g w and with a broken geodesic from α(w) to q for u^t^ 1. To be explicit,

For each xεS, choose a local causality neighborhood NX9X. Put Dx = D(NxnS)nNx and put
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Fig. 2. The definition of YP

put r(α) = (m 1,m 2...mn, ί l 5 ί2...ίπ) and suppose that the broken geo-
desic from α(w) to q is made up of the geodesic segment from α(w) to mί? param-
eterized by the interval (M, ίf), together with the portion of / °r(α) between mt and #. Π

Let a = (m]_...mn9tί...tn)eA,\Qt 7J be the tangent vector to yfl on the geodesic
segment between w^ and mi and let /ί. = <7J, 7]>*. The proper length l{ of the
geodesic segment m ί _ 1 m ί is given by:

if = $;_!<?/, Ti)
idt = λf -(if — i f _ i ) ; i = l , 2 . . . n + l . (4.2)

The quantities ίί5 A ί5 and /f and the action j can be regarded as real valued func-
tions on A; they are all smooth and positive.

A tangent vector to A has the form Y=YP + y where 3' = (yι5y2...^π)eIR11,
YP = (Yl9 Y2...7J and, for each i, ^ is tangent to the hypersurface St in M. Using
this decomposition, one may define a vector field Y on ,4 by specifying the values
of Y{ and yt at each a = (mί ...mw, ίA ...ίπ) as follows:

y; = π.[(/. +1 /.)*.μ-^. τ f +i - λf 1 T^] , (4.3)

y^ί^-^ + Jίίi + i-O^ί-ίi-i)1. (4.4)

Here i runs over 1, 2.. .n. The right hand sides of these equations are evaluated
on St and πf denotes the orthogonal projection into Sf.

The aim is to compute the homotopy type of A by applying the finite dimen-
sional theory to j and Y. The first step is to prove that; is monotonically increasing
along the integral paths of Y. To do this, write Y= YP + y and compute YP(j) and
y(j) separately. If y0 = i(a)ETpq is a broken geodesic and ζ:χκ>ζ(x) is an integral
path of Yp through ζ(Q) = a = (ml ...mw t1 ...ίj then yx = i(ζ(x)) is a one parameter
variation y0 which generates a broken Jacobi X on y0 satisfying:

(4.5)

It follows from the first variation formula that



148 N. M. J. Woodhouse

An integral path of y through a defines a family of reparameterizations of
i(ά). The function j can be written in the form :

^ΣΓίία to-fi-i))*. (4.6)

Thus, since y(lί) = 0:

(4.7)

Next it must be shown that Y(j) vanishes only at the critical points of j in A,
that is at the points aeA for which i(a)εTpq is geodetic. First note that if i(d) is
geodetic then 7 = 0 at a. Suppose that Y(j) = 0 at a, that is Yp(j) = Q = y(j). By
Eq. (4.7), λι = λi + ί and by the first variation formula, (Yt, ^>=0 (for each i). Thus
3̂  = 0 and λ{- Tί+l — λi+ί- T{ is spacelike. But Yt is a non-zero multiple of the
projection of λt T ί+1 — Λ. ί + 1 Tt into the spacelike surface Sf. Hence, for each
z = l , 2 . . . W , 7]=7]+1, that is i(0) is a geodesic.

Now suppose that a = (m^ . . . ran, ίx . . . ίπ) is a critical point of j, so that i(α)e TM

is a geodesic. As in § 3, let Γ be the tangent to Tp* at y0 = i(α) and let H be the Hes-
sian of j at y0. The following argument establishes that the index of j at a (as a
function on A) is equal to the index of the bilinear form H :Γ x Γ-»R Each one
parameter variation yx of y0 generates a vector field XeΓ and defines a path ζ
in /I through a :

Let Z = (Zi ...Zπ, zx ...zw) denote the tangent vector to this path at a = ζ(0). The
one parameter family of broken geodesies yx = i°r(γx) will not, in general, be a
one parameter variation of y0 since the points of [0,1] where yx fails to be smooth
are not fixed as x varies; it will however, generate a broken Jacobi field XeΓ.
Each restriction X \ ( t i _ i > t i ) is smooth and:

^(ί^Zί + Z f - T ; i = l , 2 . . . n , (4.8)

where T is the tangent to y0 in M. This equation identifies the tangent space
TaA at a with the subspace Γ of Γ consisting of broken Jacobi fields which are
smooth on each interval (ί£_ 15 ίf). lϊ XeΓ then X = X (though, in general, y x=t=7 x)
and:

^27 (4.9)

where the derivative is taken along ζ (see the remark following the proof of the
second variation formula). Even when Xή=X, X can be written:

(4.10)

where Xf(tt) = 0, i = 1, 2 . . . n, and :

H(X,X') = Q (4.11)

(by the second variation formula). Thus (as in the proof of the index theorem [6])
the vector space Γ can decomposed into the direct sum of two //-orthogonal
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subspaces :

(412)

where the subspace F consists of the vector fields in Γ which vanish at each ίf.
Now the section of y0 between mi^1 and mt is contained in a local causality

neighbourhood and so maximizes j over all other timelike paths form m^ to
mt [parameterized by the interval (th ίf _ J]. Thus y0 maximizes j over all variations
which fix p, m 1 ,m 2 . . .m n and q. Therefore H is negative semi-definite on Γ and
the index of H is the same as the index of its restriction to Γ; by Eq. (4.9), this
is equal to the index at a of j (as a function on A). Further, if p is not conjugate
to q along y0 then the nullity of j at a is zero.

The closure A of A in P x 1R" is compact, so that all that needs to be done to
complete the proof of the theorem by applying the finite dimensional theory is
to show that no integral path ξ:χt-+A of Y reaches the boundary A. More pre-
cisely, it must be shown that if ξ:x\->A is an integral path of 7 with initial point
ξ(ΰ)eA then ξ(x)eA can be defined for all xe(0, oo) and ξ(09 oo)n^-0. This
involves examining the behaviour of 7 on A.

The functions lb th and have continuous extensions on A and, in fact A is
characterized by the vanishing of either ti — ti^^ or of:

for some i = l , 2 . . . n + l . The vector field 7 is well defined and continuous on Ά\
this can be seen by rewriting Eqs. (4.3) and (4.4) in the forms:

lί = π ί(φ ί-τ / + 1 -7; + 1-φ ί + 1 .τ ί .79, (4.14)

^ = Φi τ ί +ι-φ ί +ι τ ί 5 (4.15)

where:

τ^ίίi-ίf-i)*, (4.16)

(Pi = (li)*, (4.17)

and i runs over 1 to n. These equations are also formally valid for z = 0 and
i = n+l if:

τo = Φθ = yθ=Fo = τn + 2 = φπ + 2 = ; y Λ + l = ΪUl=0

From Eq. (4.15):

Y(ti-ti_1) = y(ti-ti_ί)

= φί(τi+1+τί_i)-τi(φί+ι+φί_ί) (4.18)

while a short calculation along the lines of that used to prove the first variation
formula yields :

+ τ t_ 1<7],π ί_ 17:_ 1> t ι_ 1)-τ 1(φ i + 1<7ϊ,π ί7;> t l

+ p ί-1<i;,π ί-ιT ί> t ι.1)]. (4.19)



150 N. M. J. Woodhouse

The suffices on the inner products indicate where they are to be evaluated. Both
<7; TV^X^ and <Tί9 ^7]>(i are negative in A, so it follows from Eq. (4.19) that:

ί = i j 2 . . .n+l

and from Eq. (4. 18) that:

Thus no integral path of Y can reach ^4 at a point where 7 Φ 0.
Unfortunately, there are points of A where 7 = 0. The possibility of an integral

path of 7 reaching one of these points (after an infinite parameter distance) can
be eliminated by the following rather messy argument: suppose that ξ\x\->A is
an integral path of 7 such that ξ(x)^aeA as x->oo and that 7 = 0 at a. Since j
increases along ξ,j(a)>0. Thus, for some value of z, z = fc+l say, φk+ί(ά)ή=0 and
τk+1(α)Φθ. Now y = Q at α, so it follows from Eq. (4.15) that either:

φ — τ^Q (4.20)

or:

<p f Φθ and τ f Φ θ (4.21)

for i = k + 2 and i = k. Since Eq. (4.21) cannot hold for all values of i, it can be
assumed, without loss of generality, that either fcφO and φk = τk = 0 or that fcΦn
and φk+2 — τk+2 = 0 Suppose that the former statement is true and, for simplicity,
suppose that fcΦ 1 (the argument goes through in much the same way when fe= 1).

As x— »oo, τk(ζ(x))-+Q, so, for large values of x:

Substituting this into Eq. (4.18), one obtains that, for large values of x:

^ + τ f c _ 1 <T k ,π f c _ 1 T k _ 1 > ί k _ 1 ] , (4.22)

where :

As ξ(x) approaches α, μ remains finite, tk — tk_ί-^0 and <Tk, πkTk>ίk and
^fc^fc-iTfcXk-! become large and negative, behaving like (ίfc-ί/c-i)"2. The
quantities :

and:

also become infinite, but only as (tk — tk_1)~~l. Thus, for large values of x,
Y((lύ2) > 0, contradicting (lk(a))2 = 0.

To summarize, the smooth manifold A is homotopically equivalent to Tpq.
The critical points of the function J-.A-+TR. are in one to one correspondence with
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the geodesies in Tpq and the index of j at each critical point is equal to the number
of points conjugate to q on the corresponding geodesic in Tpq. If p is not conjugate
to q along any geodesic in Tpq then the critical points of j are nondegenerate. The
closure of A in P x BΓ is compact, j is strictly increasing along the integral paths
of 7 and no integral path of Y with initial point in A reaches the boundary of A.
The theorem is now seen to be a corollary of the finite dimensional theory
outlined in § 2.

Appendix: The Variation Formulae

Let yoET*q, let yxί xe( — ε, ε)c!R, be a one parameter variation of y0 and let
0 = ί0<ί1<... <tm — ί be a partition of [0, 1] such that yj^.^t,) is smooth for
each xe( — ε, ε) and for each i= 1, 2... w. Let T be the tangent vector field to the
yx's and let X be the vector field on y0 generated by the variation. Note that X
can be extended off y0 as the tangent vector field to the family of paths :

The first variation formula is established by evaluating (at x = 0):

>*)dt (Al)

(the integral is taken over yx), using the fact that &XT = Q, that is:

VXT=VTX. (A2)

Now:

(A3)

and:

(A4)
where _L is the projection orthogonal to T. The proof is completed by substituting
(A4) into (A3), integrating over each interval (ti_1, ίf) and summing over i.

Now suppose that y0 is a geodesic. Let yx be a two parameter variation of y0,
generating vector fields X1 and X2 on y0, and, as before, let 0 = ί0 < f x < . . . < ίm = 1
be a partition of [0, 1] such that each y x \ ( t ί _ i ! t ί ) is smooth. Again, X± and X2 can
be extended off y0 so that:

VXJ=VTX^ VX2T=VTX2, V^X2=VX2X,. (A5)

The second variation formula is established by calculating, at jt = 0 = (0,0):

(A6)
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since Δ ί(λ~ 1-T) = 0 and FT(A"1 T) = 0 on y0. Now:

(A7)

and:

2)T]. (A8)

The proof is completed by substituting (A 7) and (A8) into (A6).

Remark. In this second proof, it is not actually necessary that γx be a two
parameter variation of y0: the proof works equally well for any two parameter
family in T*q containing y0 subject only to the conditions:

1) y:(jc, t)\-*yx(t) is smooth near y0(ί) for all but a finite number of values of ί.
2) The vector fields X1 and X2 generated by yx on y0 are continuous.

Thus it is not essential that the points in [0, 1] where yx fails to be smooth are
fixed as x varies.
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