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Abstract. For the massless A4-model it is proved that renormalization can
be formulated such that each Feynman diagram yields an ultraviolet and
infrared convergent contribution to the Green's functions.

1. Introduction

In a previous paper a new renormalization scheme was proposed for theories
with zero-mass propagators. The characteristic feature of this method is that
subtraction terms involve massive denominators so that no new infrared infinities
are introduced by making subtractions at zero external momenta. So far the
method has been applied to the massive y44-model, the Goldstone and the pre-
Higgs model in Ref. [1], as well as the Higgs model by Clark [2]. Presently under
consideration is the application [3,4] to the pure Yang-Mills field as an extension
of the work by Becchi, Rouet, and Stora [5] on non-Abelian gauge theories. For
all models considered the new subtraction scheme yields ultraviolet and infrared
convergent contributions for each Feynman diagram separately. This eliminates
the need of discussing cancellations of infrared infinities by cumbersome limiting
procedures.

The purpose of this paper is to present a complete and rigorous convergence
proof for the massless ^44-model as an application of a general power counting
theorem [6]. The extension to the other models treated in Refs. [1] and [2] is
straightforward.

After some remarks on the general form of the renormalized integrands
(Section 1) the convergence of Feynman integrals is proved for all diagrams which
do not contain internal self-energy insertions. In Sections 3 and 4 the general case
is reduced to the task of verifying dimensional rules for certain expressions
involving massless propagators only. These rules are checked recursively in
Section 5 and 6 using the method of propagator product expansions.

2. General Properties of the Renormalized Integral

For the definition of the renormalized integrand RΓ of a Feynman diagram Γ
we refer to Section IIB of Ref. [1]. We further define

RQS* = SeΣυer'QΣyeυ(-τyS7)IQ(U) (2.1)
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for any subdiagram ρ QΓ with 2F'Q denoting the family of all forests U e 3F ' Q which
do not contain ρ. If ρ is a self-energy part we also introduce the expression

Rρse = (1 — tpese)RρSe - (2-2)

The values at SQ = 1 are denoted by

The relations between Rρse and Rρsβ or .Rρse are

Rβsβ = Rese (2.4)

if ρ is not a renormalization part

Rgse — (1~~ tgeseJRgse (2.5)

if ρ is a vertex part and

Rδse = (l-τfi)£βse (2.6)

Kρse=^ρse tpe^ρ \^ ' )

if ρ is a self-energy part. At sρ = 1 we have

Rβ^(i-t1

pβ)Rρ (2.8)

for a self-energy part ρ.
For a proper diagram Γ the renormalized integral is of the form

(2.9)

with

(Kf

8M(/) = ε(Γ2 + M2), «(7;) ̂  0, n(σj) ^ 0, n'(σ/) ̂

P is a polynomial in k and p. Y[y extends over the vertex insertions y, Y[σ over the
self-energy insertions σ of Γ. The internal lines of the diagram Γ are denoted by
L1? ..., Lm. The momenta /,- and K], KJ carry the same index j as the line L7 to
which they belong. Y[jr Y[jσ extend over the lines L3 of -y or σ respectively.

The power counting theorem of Ref. [6] applies to integrals of the form (2.5).
The ultraviolet convergence conditions of the theorem are satisfied since the
subtraction rules meet the criteria given in Ref. [7]. We may therefore restrict
ourselves to checking the infrared convergence conditions.
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3. Feynman Diagrams without Self-Energy Insertions

If Γ is not a self-energy diagram and does not contain self-energy insertions all
subtractions are taken at 5 = 0. Hence in each subtraction term some denominators
Ij + idj are changed into K]2 — M2 + ίεM(K]) or a power thereof, while the other
denominators remain the same. Therefore, the general form of JΓ is

where the first product Y[j(lj + iεfj) is the denominator of the unrenormalized
integral. We now apply the Corollary of Ref. [6, p. 20]. With Q = P and Ai being
(IJ + iεΐjΓ' or (K]2-M2 + ίεM(K})Γn(j) the integral (3.1) is of the form (4.13) of
Ref. [5]. Then (4.14) of [5] becomes just the unrenormalized integral

associated with the diagram Γ. To this integral Mack's infrared convergence
conditions may be applied. According to the Corollary of Ref. [6] the integral
(3.1) is absolutely convergent if any reduced integral of (3.2) with vanishing
external momenta has positive dimension.

We will use Symanzik's concept of exceptional momenta in the Euclidean
sense for the external momenta [9]. Accordingly a set of external momenta is
called exceptional if any of the momenta or a partial sum of them vanishes.
Exceptional momenta in the Minkowski sense become relevant for the singularities
of Feynman integrals in the limit ε^ +0. We restrict ourselves to the case of non-
exceptional momenta of a proper diagram Γ. The convergence conditions of the
Corollary may then equivalently be stated as follows: Form the reduced diagrams
A of Γ for which all external vertices of Γ are contracted to a single vertex of A.
If the dimension of the unrenormalized integral of any such Δ is positive the
integral (3.1) is absolutely convergent at non-exceptional momenta. Furthermore
it can be shown that the limit ε-* +0 yields well-defined distributions in pl9 . . ., pN

[8].
Self-energy diagrams Σ may be treated similarly provided they do not contain

internal self-energy insertions. In this case we form

JΣ=\dkRΣ
, . (3.3)

= jdk{IΣ— subtractions at 5 = 0}

without taking the final postsubtraction 1 — ί* [see (2.8)]. The total contribution
from Σ to the function Π is then given by

.
ε-> + 0

After carrying out the subtractions the integral (3.3) is again of the form (3.1)
and the Corollary may be applied similarly. The exceptional momentum p = 0
need not be excluded. It will be seen that the dimension of the renormalized
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integral of any reduced diagram A of Γ is positive. According to the Corollary
this implies the absolute convergence of (3.3) even at p = 0. It can further be shown
that the limit ε-> +0 of the corresponding Minkowski integrals exists as distribu-
tions with finite values at p = Q [8]. With this result ΠΣ is well defined by (3.4).

For the proof of the above statements we have to show that the dimension of
certain unrenormalized integrals is positive. Let A be a reduced diagram of the
proper diagram Γ. Then the dimension δ of the unrenormalized integrand of A is

δ = 4 + Σ^2(a-4)aa-b. (3.5)

Here aa is the number of reduced vertices at which α internal lines join, b is the
number of external lines of Γ attached to external vertices which are not reduced
in A. For non-exceptional momenta and a A without self-energy insertions we have

& = 0 and α2 = 0,l

since α = 2 is only possible for the one reduced external vertex of A. Therefore,

(5 = dimJ;jnren(p)>2,
A (3.6)

p = (pι,..., pN) non-exceptional.

This proves the absolute convergence of JΓ if Γ is not a self-energy part, does
not contain self-energy insertions and if the external momenta are non-exceptional.

A stronger result holds for self-energy parts Σ without internal self-energy
parts. A may be any reduced diagram of Σ, including Σ itself. Then there are
only three possibilities:

6 = 2,α2 = 0; 6 = 0,α2 = 0; 6 = 0 , α 2 = l .

In each case

δ = dimJu

Σ

nτen(p) ^ 2, p arbitrary , (3.7)

which implies the convergence of (3.3) if Σ does not contain self-energy insertions.
The criteria developed in this section are not sufficient to prove the convergence

for diagrams with self-energy insertions. This is not surprising since the structure
of the polynomial P has been ignored as far as the infrared properties are concerned.
The following sections serve to extract some information about jRΓ which will be
sufficient for the general proof of convergence.

4. Separation of Zero Mass Propagators

In this section Γ denotes a proper diagram (which may also be a self-energy
diagram), y £ Γ denotes a renormalization part, Σ g Γ denotes a proper self-energy
diagram. The following factorization formulae can be proved by induction

Rr = Σκ^EΓ(μv]SΓUτEKr(-RJ00UσEKs(-R»?°)00, (4.1)

RΣ = ΣKeX' ^Σ{μv}^Σ [[τeKv( ~ ̂ τs)θO ΠσeXs( ~ &σs ^00 > (4-2)

^~^2 Rσ4s\ ' (4 3)
t f 5 /oo
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with

Jf is the family of sets K of disjoint renormalization parts of Γ. tf1 is the family
of sets K of renormalization parts of Σ not including Σ itself. 3? is the family of
ordered sets L = (Lv,LSι, ...,LS4) where Lv is a set of proper vertex parts and
LSl, ...,LS4 are disjoint sets of proper self-energy parts. Any two elements of

should be disjoint, Γ, Σ and γ denote the reduced diagrams obtained from Γ,
Σ or y by reducing the renormalization parts of K. Kv is the set of all vertex parts
in K. Ks is the set of all self-energy parts in K. ( )00 indicates that the external
momenta and s should be set equal to zero. In ()01 the external momenta are
zero while s is set equal to one. The function EΓ is defined by

-ΠΛi-φ)Vπ,v}(C) (44)
{(μ1v1)?...?(μ f ov f o)}.

The product extends over the set

C = (τ1,...,τ,) (4.5)

of all proper self-energy parts of the reduced diagram f . /f(C) is the unrenormalized
integrand of f expressed in terms of the momentum variables pertaining to (4.5)
and with all s-parameters set equal to one. Contraction of a self-energy part τ;
with external momentum / leads to a 2-vertex to which the factor %lμ lv is assigned
in If{μvγ In Eq. (4.3) the function IyL{λ}{μv} is defined by

{λ} is the set of indices λσ2 with σ2 e LS2, { μv} is the set of index pairs (μσ3vσ3) with

0 3e£S3.
The function EΛ (omitting Lorentz indices and setting Λ = Γ = Γ/K is deter-

mined by the recursion formulae

Eσ = p«VFσμv = (l-tpl)Eσ (4.7)

σ = σρl...ρa

valid for the self-energy parts σ of A. ρ l 5 . . ., ρa are the maximal self-energy insertions
of σ. The reduced diagram σ does not contain any further self-energy insertions.
/5 is the unrenormalized integrand of σ constructed according to the rules below
(4.3). In (4.8) the arguments of Fμ

ρ

v should be expressed in terms of the variables
k\ f.

For a self-energy part Σ the formulae (4.4) and (4.5) apply with σ = Σ = Σ/K.
If Γ is not a self-energy part we have

Ϊ7 — Ϊ7 — Γ- K V * l V l πμ aVa
£ - & - L Γ •• ΓQa
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Our aim is to prove the absolute convergence of the Feynman integrals

JΓ(p) = j dkRΓ(kp) , p non-exceptional , (4. 10)

for proper diagrams Γ which are not self-energy parts and

j^Kp) = J dkRΣ(kp) , p arbitrary , (4. 1 1)

for proper self-energy parts Σ. The convergence of (4.10) already provides enough
information for self-energy parts since the contribution from Σ to the function Π
is given by

Π y = lim JΣ .
ε-> + 0

The infrared convergence conditions (3.2) and (3.3) of Ref. [6] for the integrals
(4. 10) and (4. 11) are

dQguRΓ(k, p) + 4a > 0 , p non-exceptional , (4. 1 3)

deguRΣ(k, p) + 4α > 0 , p arbitrary . (4.14)

The lower degree refers to a set

M = ( t l l 9 . . . , M β ) (4.15)

of momentum vectors which are chosen as follows. Among the vectors

lj,K*,K*j (4.16)

occurring in the denominators of RΓ and RΣ we select a basis

ui9...9ua9vl9...9vb (4.17)

so that any vector of (4.16) is a linear combination of vectors (4.17) and pl9 . . ., pN.
Moreover, according to (3.3) of [6] we require that the vectors M I ? ..., ua occur in
massless denominators, i.e. be one of the vectors /,- or K* with n(σj)>0. For any
such basis the conditions (4.13) and (4.14) should hold.

A basis

u ' l 9 . . . 9 t f a 9 υ ' i 9 . . . 9 υ ' b (4.18)

is called equivalent to (4.17) if it is related to (4.17) by a non-singular linear trans-
formation which expresses the u'j homogeneously by the u r The lower degree with
respect to a set u does not change if u is replaced by the set

n' = (Mi,...,tO (4.19)

of an equivalent basis (4.18).
For the recursive derivation of the dimensional rules (4.13) and (4.14) it is

useful to employ special sets (4.15) of momentum vectors which refer to a family K
of disjoint subdiagrams of Γ. We can always find a basis equivalent to (4.17) which
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is of the form

w[, ...X(f ),ί;[,..., ιί(f); (4.20)

MΪ,...X ( τ ),ι>ϊ,...,ιί ( τ ); τ e K , (4.21)

a = a(Γ) + ΣτeκΦ) , Γ = Γ/K9 (4.22)

where the Uj, v^ are momenta (4.16) affiliated with lines of the reduced diagram Γ ,
the uτp v] are momenta (4.16) affiliated with lines of the diagram τ e K.

In this section the infrared conditions (4.13) and (4.14) will be established as a
consequence of the inequalities

(4.23)

(p non-exceptional)

degu?E-Σ(k, p) + 4a(Σ) ^ 0 (4.24)

(p arbitrary)

degu^ϊfcp) + 4α(Σ)>0 (4.25)

(p arbitrary)

uτ = (ul . . ., <f ,), f = Γ/K, Σ = Σ/K

which will be derived in the remainder of the paper. (4.24) and (4.25) further imply

4α(Σ)^0. (4.26)
p = o

We now apply the rule (2.18) of Ref. [6] to the factorization formulae (4.2)
and (4.3). With (4.24)-{4.26) we obtain

(4.27)

(4.28)

(4.29)

(4.30)

by induction. In the recursive proof (4.2) is used for the factors ()01 and (4.3) at
5 = 0 for the factors ()00.

With this result (4.1) and (4.2) yield the infrared convergence conditions
(4.13) and (4.14). The inequalities (4.23)-(4.25), which we assumed for the functions
EΪ and EI will be derived in the work that follows.

5. Propagator Product Expansions

A useful tool for checking dimensional properties of renormalized Feynman
integrals is the method of propagator product expansions which will be developed
in this section. A representation

F = V F
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or

F =y Fσ t_^y. σa. /^ ^\

77 ΓT / / / ^ Γ T ΓT f (VQ\ '
* σa = ί IjσJσvilj) [[Q[ ljρJσaρj(

Kj )

will be called a propagator product expansion of Eσ or Fσ if the factors

ffC/LJ'' OU.QJ J OO.JΪ J O&QJ

of the argument w = /,- or K? have the form

M

with M being a monomial in the components of w. The momenta /,- and KJ carry
the index j of the line Lj of Γ to which they are assigned. Eσ(X, Fσa are called terms
of the propagator product expansion. We will construct propagator product
expansions of Eσ, Fσ by using the recursion formulae (4.4) and (4.5). The propagator
product expansions thus obtained will satisfy certain properties, in particular,

degzl^O (5.4)

for the factors of each term. For given decompositions ^ΛjFρjΛj of the factors
FQ. the formula (4.5) induces a decomposition of Eσ by

p _y p p _y p
^σ Z^α^σα? J ρj Z-i*j Qj&j>

Eσa = I-σF8ιaι...Fρaaa, (5.5)

If (5.4) is satisfied for the Fρ.aj it will also hold for Eσa. The non-trivial step is to
construct the decomposition of a solution Fσ of (4.4) from a given propagator
product expansion of Eσ. As hypothesis of induction we assume that the propagator
expansion (5.1) of Eσ satisfies (5.4). Let the product Y[jσ in (5.1) extend over all
internal lines Lj of σ for which the momentum /; depends on pσ, i.e.

l-XjpO + K*, χ,.φO. (5.6)

Then the product Y[ρ is taken over all self-energy parts of σ, including σ itself.
The product Y[jρ extends over some internal lines of ρ with momentum K*. We
construct a propagator product expansion of a solution to (4.4) in two steps.
First we set up a propagator product expansion ^βHσaLβ which is a solution of

/ J . (5.7)

Then we construct a propagator expansion ΣyFσaβy as a solution of

(l-ί^)HSβ/? = ΣyΛ^y. (5 8)

This implies
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yielding a solution

of (4.4) in the form of a propagator product expansion.
We begin with the construction of Haβ by applying 1 — ίgσ to the //-dependent

part

0=ΠAΛ) (5 n)
of Eσa. Each factor

M

may be written as a product of factors

l

or vj, (512)
' Ij + iBiy ( }

Substituting these products for ea into (5.11) we find

where each factor gt is of one of the forms (5.12).
We now apply the formula

(5 13)

gjo = t°pσgpA=(l-t°pσ).

For working out Δgt we use (5.6), (5.12), and the identities

(5.14)

+

with the abbreviations

r = (r° (1 _ iε)f) for a 4-vector r = (r°, r),
(5.15)

Thus, in each of the three cases,

where each tλ

ίβ is a product of propagators of non-positive degree.
Inserting (5.16) into (5.13) we obtain a solution ΣβH™β °f (5 7) in the form of

a propagator product expansion

(5.17)
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where again

deg/z^.^deg/z^^O. (5.18)

Applying this construction once more we find a solution of (4.4) in the form of
a propagator product expansion

Γ σ~ 2^<*βy^ σaβy /r -j Q\

Fσaβγ = Tljfσaβγβj} ΓL Πjβ/σα^yβX^J )

which again satisfies (5.4).

6. Recursive Derivation of Dimensional Rules

We begin by introducing some useful definitions. Let ω be a diagram obtained
from Γ by forming subdiagrams and reduced diagrams. In particular, ω may be
one of the diagrams σ which are self-energy parts of A = Γ/K. Iω is the space of
all linear forms

(6.1)

The notions of linear dependence, basis etc. in Lω refer to the (in KJ) homogeneous
parts of the vectors (6.1) considered as linear forms in fel5 ..., km.

S is the set of all momenta /,- or K? which are linear combinations of the
variables w l s ..., ua which occur in the infrared convergence conditions. Sω is the
set of all internal momenta /,- or K*j (ρ self-energy part of ω) which are affiliated
with ω and belong to S.

For any ω we choose a set of (in LJ linearly independent momenta

tf = «,... ,<ω)) (6.2)

in Sω such that any momentum of Sω is a linear combination of them. By adding
other elements

of Sω we extend (6.2) to a basis

of Lω. We finally form the set S^ of all internal momenta affiliated with ω which
are linear combinations of uj, pω only.

In this section the following dimensional rules will be derived:

(6.4)

(6.5)

(6.6)

(6.7)
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The lower degrees are applied to the functions Fσa and Eσa in which the momenta
are expressed in terms of uσ, vσ, and pσ. On account of the relation

(6.8)

there are only two possibilities

K ° j e S ' σ , l j ε S ' σ

or

K ' j φ S ' r J j φ S ' . . (6.9)

The relations (6.4)-(6.7) will be derived recursively. We first show that (6.4) implies
(6.6). For this we need only verify

σpσFσα . (6.10)

Fσa is of the form

Fm = Ujf^j)UβUjβf,Λβ^) (6-11)

Let Δ(w) be any of the factors with w denoting lj or K?.

(6.12)

where U is a linear combination of u°, ... and V a linear combination of ί/[,... .
Then

tuσΔ(w)=<jdegzl if x=V =

0 if x = 0, FΦO

0 if χφO,F = 0,
(6.13)

|0 if x = 0, K Φ O

if xφO, V = 0.

Since degJrgO the inequality

follows and thus (6.6). Similarly (6.5) implies (6.7).
As hypothesis of induction we now assume that (6.5) has been shown, and

prove that (6.4) follows. To this end we show

Aα-1, (6-14)

,«Hσaβ-l. (6.15)

We begin with (6.14). The factors eσρjol(Kρj) and some of the factors gt(lj) of Eσa

appear unchanged in Hσaβ and need not be checked. If the factor gt(lj) appears as

gi(Kσj) in Hσaβ we have [note (6.9)]
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if

and

<tegu°p°9ι(lj) = 0 =
if

If #;(/,-) becomes replaced by one of the terms ία/? in (5.16) we have

deg^tiJljKI) = degu, D,g ;(/,-) - 1

if

/,,κ;es;
and

de&<^0i((/) = 0 =
if

Since the replacement g^t^ occurs once in going from Eσa to Hσaβ we find (6.14).
Similarly (6.15) is derived.

In order to complete the induction proof we have to show that (6.5) follows
from (6.4). From (4.5) we get

(6.16)
egu^^τα, -

The sums extend over all maximal self-energy insertions τ of σ with the restriction
pτφS'σ for Στι

 and Pτ^S'σ f°r Σt2 ^ denotes the diagram obtained from σ by
reducing the maximal self-energy insertions. Using

the relation

pAa + 4α(σ) = deg, v/5 + 4α(σ)

(6.17)

)

follows. According to the hypothesis of induction

degM^Fτατ + 4α(τ)^0

for any τ. This implies

Hence

JEσα + 4ίi(σ) ̂  degM&p
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Each factor of 1% corresponding to an internal line of σ is of degree — 2, therefore

with the product extending over all momenta belonging to the set S .̂ Also
where c is the number of linearly independent (in L5) internal momenta of
Hence

e n.

σ/Q is the diagram obtained from σ by reducing the set Q of all lines of σ which
do not belong to Si. Combining (3.7) with (6.4), (6.17), and (6.18) we find the
desired result (6.5). This completes the proof of the relations (6.4)-(6.7).

Using (2.18) of Ref. [6] we obtain

(6.19)

(6.20)

(6.21)

(6.22)

With σ = Ξ = Σ/K the inequality (6.20) implies condition (4.23) for self-energy
diagrams. Condition (4.22) follows from (6.19). We finally derive (4.21) f o r Λ = Γ/K
where Γ is not a self-energy part. (4.6) implies

The sums extend over all maximal self-energy parts τ of A with the restriction
pτ φ S'Λ for ]Γτl and pτ e S'Λ for ^τ2. With

we find

= άegJΛ + 4a(Λ)

4aτ

Here

and a(Λ) ^ c where c is the number of linearly independent internal momenta of
S j. Hence
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Q is the set of all lines of A which do not belong to 8χ. Since all elements of 8χ
are linear combinations of w 1 ? . . . , ua the external momenta of Λ/Q vanish. Further
assuming non-exceptional momenta pί9...,pN we obtain (4.21) by combining
(6.23), (6.24), with (3.6). This completes the check of the infrared conditions.
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