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Abstract. For the massless A*-model it is proved that renormalization can
be formulated such that each Feynman diagram yields an ultraviolet and
infrared convergent contribution to the Green’s functions.

1. Introduction

In a previous paper a new renormalization scheme was proposed for theories
with zero-mass propagators. The characteristic feature of this method is that
subtraction terms involve massive denominators so that no new infrared infinities
are introduced by making subtractions at zero external momenta. So far the
method has been applied to the massive A*-model, the Goldstone and the pre-
Higgs model in Ref. [1], as well as the Higgs model by Clark [2]. Presently under
consideration is the application [3, 4] to the pure Yang-Mills field as an extension
of the work by Becchi, Rouet, and Stora [5] on non-Abelian gauge theories. For
all models considered the new subtraction scheme yields ultraviolet and infrared
convergent contributions for each Feynman diagram separately. This eliminates
the need of discussing cancellations of infrared infinities by cumbersome limiting
procedures.

The purpose of this paper is to present a complete and rigorous convergence
proof for the massless 4*-model as an application of a general power counting
theorem [6]. The extension to the other models treated in Refs. [1] and [2] is
straightforward.

After some remarks on the general form of the renormalized integrands
(Section 1) the convergence of Feynman integrals is proved for all diagrams which
do not contain internal self-energy insertions. In Sections 3 and 4 the general case
is reduced to the task of verifying dimensional rules for certain expressions
involving massless propagators only. These rules are checked recursively in
Section 5 and 6 using the method of propagator product expansions.

2. General Properties of the Renormalized Integral

For the definition of the renormalized integrand R, of a Feynman diagram I’
we refer to Section IIB of Ref. [1]. We further define

ﬁgse’:SgZUe%zyeU(-TySy)Ig(U) (2.1
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for any subdiagram ¢ CI" with &, denoting the family of all forests U € # , which
do not contain . If ¢ is a self-energy part we also introduce the expression

Rgse = (1 - t;QsQ)RQsQ . (22)
The values at s?=1 are denoted by

RQZRQSQISQ= 1> RQ=RQSQ|SQ=1 >

lig=légse|se=1 . (2.3)
The relations between R, and R, or R, are
Ry =R e (2.4)
if ¢ is not a renormalization part
R e =(1—19e0)R yeo (2.5)
if ¢ is a vertex part and
R e =(1—T)R s (2.6)
Rye=R,—1tLR, 2.7)
if ¢ is a self-energy part. At s?=1 we have
R,=(1—-tL)R, (2.8)
for a self-energy part .
For a proper diagram I" the renormalized integral is of the form
{dkR (K, p):j"dkzg—c (2.9
with
A=Y (B +iel?),
B=[[, 1T (K5 = M +iey (KP .10

C= no nja(K§2 —M?*+ iep(K§ ))Hed
(K32 +ieK 32y,
SM(I) = 8(72 + MZ)’ n(,y]) > 0, n(o]) -2_ O, nz(o_j) > 0.

P is a polynomial in k and p. Hy extends over the vertex insertions y, [ |, over the
self-energy insertions ¢ of I'. The internal lines of the diagram I" are denoted by
L,,...,L, The momenta [; and K}, K¢ carry the same index j as the line L; to
which they belong. ﬂjy, H;a extend over the lines L; of y or o respectively.

The power counting theorem of Ref. [6] applies to integrals of the form (2.5).
The ultraviolet convergence conditions of the theorem are satisfied since the
subtraction rules meet the criteria given in Ref. [7]. We may therefore restrict
ourselves to checking the infrared convergence conditions.
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3. Feynman Diagrams without Self-Energy Insertions

If I' is not a self-energy diagram and does not contain self-energy insertions all
subtractions are taken at s=0. Hence in each subtraction term some denominators
I? +iel? are changed into K}?— M?+iey,(K?) or a power thereof, while the other
denominators remain the same. Therefore, the general form of J is

P
LG + i) [T TTAK? = M2 ey (K307
where the first product ]—[j(lf-i—isi;‘f) is the denominator of the unrenormalized
integral. We now apply the Corollary of Ref. [6, p. 20]. With Q=P and 4, being
(2 +iel})™ " or (K72 — M? 4igy(K?2)) ™" the integral (3.1) is of the form (4.13) of
Ref. [5]. Then (4.14) of [5] becomes just the unrenormalized integral
dk
[ 15 +iel)

Jp=|dk

(3.1)

Jpeen= | (32)

associated with the diagram I'. To this integral Mack’s infrared convergence
conditions may be applied. According to the Corollary of Ref. [6] the integral
(3.1) is absolutely convergent if any reduced integral of (3.2) with vanishing
external momenta has positive dimension.

We will use Symanzik’s concept of exceptional momenta in the Euclidean
sense for the external momenta [9]. Accordingly a set of external momenta is
called exceptional if any of the momenta or a partial sum of them vanishes.
Exceptional momenta in the Minkowski sense become relevant for the singularities
of Feynman integrals in the limit ¢— +0. We restrict ourselves to the case of non-
exceptional momenta of a proper diagram I'. The convergence conditions of the
Corollary may then equivalently be stated as follows: Form the reduced diagrams
A of ' for which all external vertices of I" are contracted to a single vertex of 4.
If the dimension of the unrenormalized integral of any such 4 is positive the
integral (3.1) is absolutely convergent at non-exceptional momenta. Furthermore
it can be shown that the limit é— +0 yields well-defined distributions in py, ..., py
[8].

Self-energy diagrams X may be treated similarly provided they do not contain

internal self-energy insertions. In this case we form
Jy={dkR

y=JdkRs , (3.3)

= [dk{Iy— subtractions at s =0}

without taking the final postsubtraction 1 — t}, [see (2.8)]. The total contribution

from X to the function II is then given by
1I(p*)=115p*)—1150) 4
M y(p*)= lim Jx(p).

After carrying out the subtractions the integral (3.3) is again of the form (3.1)
and the Corollary may be applied similarly. The exceptional momentum p=0
need not be excluded. It will be seen that the dimension of the renormalized
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integral of any reduced diagram A of I is positive. According to the Corollary
this implies the absolute convergence of (3.3) even at p=0. It can further be shown
that the limit é— +0 of the corresponding Minkowski integrals exists as distribu-
tions with finite values at p=0 [8]. With this result II; is well defined by (3.4).
For the proof of the above statements we have to show that the dimension of
certain unrenormalized integrals is positive. Let 4 be a reduced diagram of the
proper diagram I'. Then the dimension & of the unrenormalized integrand of 4 is

=4+ ,5,(a—4)a,—b. (3.5

Here a, is the number of reduced vertices at which o internal lines join. b is the
number of external lines of I" attached to external vertices which are not reduced
in 4. For non-exceptional momenta and a A without self-energy insertions we have

b=0 and a,=0,1
since o =2 is only possible for the one reduced external vertex of 4. Therefore,
d=dimJy"*(p)=2,

3.6
p=(py, ..., py) non-exceptional. (3.6)

This proves the absolute convergence of Jy if I' is not a self-energy part, does
not contain self-energy insertions and if the external momenta are non-exceptional.

A stronger result holds for self-energy parts X without internal self-energy
parts. 4 may be any reduced diagram of X, including 2 itself. Then there are
only three possibilities:

b=2,0,=0; b=0,0,=0; b=0,a,=1.
In each case
0=dimJy""(p)= 2, p arbitrary, (3.7

which implies the convergence of (3.3) if 2 does not contain self-energy insertions.

The criteria developed in this section are not sufficient to prove the convergence
for diagrams with self-energy insertions. This is not surprising since the structure
ofthe polynomial P has been ignored as far as the infrared properties are concerned.
The following sections serve to extract some information about R which will be
sufficient for the general proof of convergence.

4. Separation of Zero Mass Propagators

In this section I' denotes a proper diagram (which may also be a self-energy
diagram), y CT" denotes a renormalization part, ¥ CI" denotes a proper self-energy
diagram. The following factorization formulae can be proved by induction

RF = ZKefEf{uv}Sf nteKV( - R‘ES)OO naeKs(_ Rﬁgva)oo ’ (41)

RE = ZKE%” Ef{uv)SE l_[te KV( - Rrs)OO l—[ae Ks( - RZ?V")OO s (42)

— _ 0 =
ndzéLSZ( - R;:sz)Ol Ha’;eLS3 ( —R¥ V03)00 l—[a4eLs4<_ W Ra4s)00 > (43)
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with

0R,, 5.  OR,

apol ’ os apcuapav .

A" is the family of sets K of disjoint renormalization parts of I'. #” is the family
of sets K of renormalization parts of X not including X itself. . is the family of

ordered sets L=(Ly, Lg,, ..., Ls,) where L, is a set of proper vertex parts and
L, ..., Lg, are disjoint sets of proper self-energy parts. Any two elements of

K=L,uLgu...uLg,

=1
Ro‘s—'

should be disjoint, I, £ and 7 denote the reduced diagrams obtained from I,
2 or y by reducing the renormalization parts of K. K, is the set of all vertex parts
in K. Ky is the set of all self-energy parts in K. (),, indicates that the external
momenta and s should be set equal to zero. In (),, the external momenta are
zero while s is set equal to one. The function E is defined by

Er=[T (1=t ruonl ©)

4.4)
{wv={(u1ve)s o (pve)} -
The product extends over the set
C=(ty,...,Tp) (4.5)

of all proper self-energy parts of the reduced diagram I'. I{(C) is the unrenormalized
integrand of I' expressed in terms of the momentum variables pertaining to (4.5)
and with all s-parameters set equal to one. Contraction of a self-energy part 1;
with external momentum / leads to a 2-vertex to which the factor %lu,lvl is assigned
in If,,. In Eq. (4.3) the function I3, ;,, is defined by

Ly =155, I—Io-zeLs2 ng,z I—[a3eLs3 %PZ?, P333 1—[046 Lsa(l —(574%). (4.6)
{A} is the set of indices 4,, with o, € Lg,, {uv} is the set of index pairs (u,,v,,) with
o3 €Ly,

The function E, (omitting Lorentz indices and setting A=I"=TI/K is deter-
mined by the recursion formulae

Eo’ = poﬂpdvFouv = (1 - tp;)Eo‘ (47)
E =1Ly Fheve 4.8)
o= O./Ql - la

valid for the self-energy parts o of A. g4, ..., g, are the maximal self-energy insertions
of o. The reduced diagram & does not contain any further self-energy insertions.
I; is the unrenormalized integrand of & constructed according to the rules below
(4.3). In (4.8) the arguments of F,* should be expressed in terms of the variables
k%, p°.

For a self-energy part X the formulae (4.4) and (4.5) apply with =% =ZX/K.
If I' is not a self-energy part we have

E =E, =13,,F3" .. Fpe

o _ 49
A=I'=T/K,A=A/o,...0,. (49)
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Our aim is to prove the absolute convergence of the Feynman integrals

Jp)=[dkR(kp), p non-exceptional, (4.10)

for proper diagrams I' which are not self-energy parts and

J E(p)=§dk§2(kp), p arbitrary , (4.11)

for proper self-energy parts X. The convergence of (4.10) already provides enough
information for self-energy parts since the contribution from X to the function II
is given by

[ (p?) =115(p*) —114(0)
;= lim Jy.

e~>+0

(4.12)

The infrared convergence conditions (3.2) and (3.3) of Ref. [6] for the integrals
(4.10) and (4.11) are

deg,Rk, p)+4a>0, pnon-exceptional, (4.13)

deguﬁ s(k, p)+4a>0, parbitrary. (4.14)
The lower degree refers to a set

u=(uy, ..., U, (4.15)
of momentum vectors which are chosen as follows. Among the vectors

ly Kj, K7 (4.16)
occurring in the denominators of R and IQZ we select a basis

Uiy ons Ugy Uiy onny Up 4.17)

so that any vector of (4.16) is a linear combination of vectors (4.17) and py, ..., py-
Moreover, according to (3.3) of [6] we require that the vectors uy, ..., u, occur in
massless denominators, i.. be one of the vectors [; or K with n'(¢;)>0. For any
such basis the conditions (4.13) and (4.14) should hold.

A basis

Uly eeny Upy VY5 ey Up (4.18)

is called equivalent to (4.17) if it is related to (4.17) by a non-singular linear trans-
formation which expresses the u; homogeneously by the u;. The lower degree with
respect to a set u does not change if u is replaced by the set

=y, ..., uy) (4.19)

of an equivalent basis (4.18).

For the recursive derivation of the dimensional rules (4.13) and (4.14) it is
useful to employ special sets (4.15) of momentum vectors which refer to a family K
of disjoint subdiagrams of I". We can always find a basis equivalent to (4.17) which
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is of the form

u{, e uf(f), vf, oo vl‘j(f); (4.20)
ULy oo Ugey UTy ooos Upy s TEK, (4.21)
a=al)+Y,.xa(r), T'=TI/K, (4.22)

where the uf, v} are momenta (4.16) affiliated with lines of the reduced diagram T,
the 5, v5 are momenta (4.16) affiliated with lines of the diagram 7€ K.

In this section the infrared conditions (4.13) and (4.14) will be established as a
consequence of the inequalities

deg,rEr(k, p)+4a(l’)>0 (4.23)
(p non-exceptional)

deg,sEs(k, p)+4a(X) =0 (4.24)
(p arbitrary)

deg,sE;s(k, p)+4a(X)>0 (4.25)
(p arbitrary)

Wl =@, .. ulp), [ =I'/K,£=2/K
which will be derived in the remainder of the paper. (4.24) and (4.25) further imply

degufaEf +44(5)=0. (4.26)
- ap p=0

We now apply the rule (2.18) of Ref. [6] to the factorization formulae (4.2)
and (4.3). With (4.24)—(4.26) we obtain

deg,(R )00 +4a(1) 20, (4.27)
deg,o(R,,)o1 +4a(0)>0, (4.28)
deg,.(R}7)o1 +4a(0) 20, (4.29)
deg,,(Rb3**)go +4a(0) 20, (4.30)

by induction. In the recursive proof (4.2) is used for the factors (),; and (4.3) at
s=0 for the factors ()gq.

With this result (4.1) and (4.2) yield the infrared convergence conditions
(4.13) and (4.14). The inequalities (4.23)—(4.25), which we assumed for the functions
Es and E; will be derived in the work that follows.

5. Propagator Product Expansions

A useful tool for checking dimensional properties of renormalized Feynman
integrals is the method of propagator product expansions which will be developed
in this section. A representation

Eo’ = Za -oa

- 5.1
Es= njaéaaj(lj) ne HJ‘Q éaaej(Kf ) &b
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or
Fa=ZozFaa

Fa'ot = Hjafaaj(lj)l_[g njgfcagj(Kj)

will be called a propagator product expansion of E_ or F, if the factors

(5.2)

A zzaaj, Eo'agj or fdaj>fo'agj
of the argument w=1; or K¢ have the form

M
Aw)= (w2 +igw?) (5:3)
with M being a monomial in the components of w. The momenta [; and K¢ carry
the index j of the line L; of I' to which they are assigned. E,,, F, are called terms
of the propagator product expansion. We will construct propagator product
expansions of E,, F,, by using the recursion formulae (4.4) and (4.5). The propagator
product expansions thus obtained will satisfy certain properties, in particular,

degd <0 (5.4

for the factors of each term. For given decompositions ) ,;F,, of the factors

F,, the formula (4.5) induces a decomposition of E, by
E Z anF —ZaJ Q05
ﬂa—IaFQlal"'FQaaa 4 (55)

620/@1 “'Qa:a:(al’ ~--9an)‘

ajt @joy

If (5.4) is satisfied for the F, , it will also hold for E,,. The non-trivial step is to
construct the decomposition of a solution F, of (4.4) from a given propagator
product expansion of E,. As hypothesis of induction we assume that the propagator
expansion (5.1) of E, satisfies (5.4). Let the product [1js in (5.1) extend over all
internal lines L; of o for which the momentum [; depends on p°, i.e.

Then the product [ [, is taken over all self-energy parts of o, including ¢ itself.
The product [ [;, extends over some internal lines of ¢ with momentum K§. We
construct a propagator product expansion of a solution to (4.4) in two steps.
First we set up a propagator product expansion Y ;H,,, which is a solution of

(L= 150)E =Y s DiHlp - (5.7)
Then we construct a propagator expansion ) . F,.s. as a solution of

(1= t9e)Hs =3, P F g, - (5.8)
This implies

l—tld)z Eaa Zdﬁ}’pzp:Fg"v‘py (59)
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yielding a solution

ng:ZaBVFgovtﬂv (5.10)

of (4.4) in the form of a propagator product expansion.
We begin with the construction of H,; by applying 1 —§” to the p°-dependent
part

g=11e.41) (5.11)
of E,,. Each factor
M.

Byl deg?, <0,
9T yplzyen (RS

may be written as a product of factors
1 l L1

juy JuiTI, 5.
F+iely” 17 +iel}” or 12 +iel? (5.12)

Substituting these products for e, into (5.11) we find
g=I1x19:

where each factor g, is of one of the forms (5.12).
We now apply the formula

Ag=A49,-g5..-9u+910892°93---94
+ ... +g10--9a-1,0494 (5.13)
Gio="1%g; A=(1—12) .
For working out Ag; we use (5.6), (5.12), and the identities
1 L L+KY),
1, TP WYKK)
Lo 19w Kll.+K),
[ [l_lf (U YKK,) }
A @zpi [g,mlv L 9uky K,Jv(ls+K£)}
Il I, T KK,  (L)KK,)

with the abbreviations

A (5.14)

r,=0° (1—ie)f) for a 4-vector r=(r 7, (515)

x=x;,p=p°, K=KJ,I=l;=x,p"+KJ. '

Thus, in each of the three cases,
Agl=p;ZBtfﬁ(1p Kt;)a (516)

where each t}; is a product of propagators of non-positive degree.
Inserting (5.16) into (5.13) we obtain a solution ) , H%,; of (5.7) in the form of
a propagator product expansion

Hpp= njhaa/fj(lj)na nje NoupoiK5) (5.17)
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where again
degh,,p; =0, degh,,p,; <0. (5.18)

Applying this construction once more we find a solution of (4.4) in the form of
a propagator product expansion

F, =Zaﬂv Fdaﬂv
Foupy =1 Lifoups) ] Lo LioS oapyer K9

which again satisfies (5.4).

(5.19)

6. Recursive Derivation of Dimensional Rules

We begin by introducing some useful definitions. Let w be a diagram obtained
from I' by forming subdiagrams and reduced diagrams. In particular, w may be
one of the diagrams ¢ which are self-energy parts of A=I"/K. I, is the space of
all linear forms

I=%¢;K$+2dpy

Ko=K9(ky, ... ky) 6.1)
p;":p?’(kl’ ceey km’ Pis o5 pN)

The notions of linear dependence, basis etc. in L,, refer to the (in K¢) homogeneous
parts of the vectors (6.1) considered as linear forms in kq, ..., k,,,

S is the set of all momenta [; or K§ which are linear combinations of the
variables u, ..., u, which occur in the infrared convergence conditions. S,, is the
set of all internal momenta [; or K¢ (¢ self-energy part of w) which are affiliated
with w and belong to S.

For any @ we choose a set of (in L,) linearly independent momenta

u?=(us, ..., gy) (6.2)

in S, such that any momentum of S, is a linear combination of them. By adding
other elements

v =07, ..., Vyg))
of S, we extend (6.2) to a basis
UT, o5 Uiy UTs -+ o> Ui (6.3)

of L, We finally form the set S, of all internal momenta affiliated with o which
are linear combinations of uf, p® only.
In this section the following dimensional rules will be derived:

deg,opoF ;o +4al0) 20, (6.4)
deg,opoEpp+4a(0)22, (6.5)
deg,oF,,+4a(0)20, (6.6)

deg,.F,,+4a(0)=2. 6.7)
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The lower degrees are applied to the functions F,, and E,, in which the momenta
are expressed in terms of u°, v%, and p°. On account of the relation

li=x,p°+ K¢ (6.8)
there are only two possibilities

K%eS,, l;es,
or

KS¢S,,1;¢8S,. 6.9)

The relations (6.4)—6.7) will be derived recursively. We first show that (6.4) implies
(6.6). For this we need only verify

dig_w’Fo'azg degu"p"’Fooz . (610)

F, is of the form

Fo’aznjfaaj(lj)ngnjgfa'agj(Kf) . (611)
Let A(w) be any of the factors with w denoting [; or K¢.
w=xp°+U+V, (6.12)

where U is a linear combination of u, ... and V a linear combination of v, ... .
Then

deg,.A(w)=qdegd if x=V=0
0 if x=0,V=*0
0 if x=+0,V=0,
deg o - A(w)=qdegd if x=V=0
0 it x=0,V+0
(degd if x=+0,V=0.

(6.13)

Since degd <0 the inequality
deg,.4(w) = deg,o o A(w)

follows and thus (6.6). Similarly (6.5) implies (6.7).
As hypothesis of induction we now assume that (6.5) has been shown, and
prove that (6.4) follows. To this end we show

deg,opoH sy = deguopoEpy— 1, (6.14)
deg o oF pupy 2 deguopeH pup— 1 . (6.15)

We begin with (6.14). The factors e, ,;,(K%) and some of the factors g,(I;) of E,,
appear unchanged in H,,; and need not be checked. If the factor g,(l;) appears as
g{K?$) in H,,; we have [note (6.9)]

ge_gu"’pagi(lj) = (_1_ngt = Sle_gu”pagi(K(;)
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if
l;eS,,Kj€eS,
and
dﬁuapvgi(lj) =0= d_eg,u“p"gi(K;)
if
LS, K¢S,
If g,(1;) becomes replaced by one of the terms t,, in (5.16) we have
deguopoliplliKF) =deg,epogil) — 1
if
l;,KieSs,
and
degurpogillj)=0=deguepetuylls, K7)
if
l, KS ¢S, .
Since the replacement g;—t,; occurs once in going from E,, to H,,; we find (6.14).
Similarly (6.15) is derived.

In order to complete the induction proof we have to show that (6.5) follows
from (6.4). From (4.5) we get

deg,opo b,y =deg,s,515
+Y adeg, F,, +> 2deg,,Fo, .

The sums extend over all maximal self-energy insertions t of ¢ with the restriction
p'¢S, for Y .. and p'eS, for Y .. ¢ denotes the diagram obtained from ¢ by
reducing the maximal self-energy insertions. Using

a(o)=a(G)+ Y . a(t)+ ) 2 a(7)

the relation

(6.16)

deg o o E,,+4a(0)=deg s 515+ 4a(5)
+ i (deg,F,, +4a(1)) (6.17)
+) e (c_i_;g,,t poF . 1+4a(t))
follows. According to the hypothesis of induction
deg,epeF o, +4a(1) 20
for any t. This implies
deg,.F, +4a(1)=0.
Hence

deg oo, +4a(0) 2 deg,s ol 5 +4a() .
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Each factor of I corresponding to an internal line of ¢ is of degree — 2, therefore
deg,s,ol; = —deg[ |53}

with the product extending over all momenta belonging to the set S;. Also a(@)=c¢
where ¢ is the number of linearly independent (in L) internal momenta of S;.
Hence

Sl_e_guapal;, + 40(5')

6.18
>4c—deg[ [s: 2 =dimJgi5" . (6.18)
a/Q is the diagram obtained from & by reducing the set Q of all lines of ¢ which
do not belong to S;z. Combining (3.7) with (6.4), (6.17), and (6.18) we find the
desired result (6.5). This completes the proof of the relations (6.4)—6.7).
Using (2.18) of Ref. [6] we obtain

deg,o,oF,+4a(0) 20, (6.19)
deg,-,0-E,+4a(0)=2, (6.20)
deg,.F,+4a(0)=0, (6.21)
deg,.E,+4a(0)=2. (6.22)

With ¢=E=2/K the inequality (6.20) implies condition (4.23) for self-energy
diagrams. Condition (4.22) follows from (6.19). We finally derive (4.21) for A=T"/K
where I' is not a self-energy part. (4.6) implies

deg,E =deg Ja+) i deg,oF o+ ) ndeg, o F..
The sums extend over all maximal self-energy parts © of A with the restriction
p ¢S, for) . and p'eS, for ) .. With
a=a(A)+Y . at)+) . a(x)
we find
deg,E;+4a=deg, 4+4a(A)
+ Z,; (deg,-F, +4a(r))
—+ th (deg,-p-F . +4a(7))
= 4a(/f) + d_Cg_uI,{'.

(6.23)

Here
deg,l = —deg] [s57

and a(A)= ¢ where c is the number of linearly independent internal momenta of
S Hence
da(A)+ deg, 1

6.24
>4c—deg|[s; 17 =dimJ¥5" . (624
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Q is the set of all lines of A which do not belong to Sz Since all elements of St
are linear combinations of u, ..., u, the external momenta of A/Q vanish. Further
assuming non-exceptional momenta p;, ..., py we obtain (4.21) by combining
(6.23), (6.24), with (3.6). This completes the check of the infrared conditions.
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