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Abstract. In this paper matching and junction conditions in the Einstein-
Cartan theory are presented. It is shown that a Weyssenhoff fluid sphere
collapses to a singularity.

Introduction

In the general relativity theory two types of singularities are of a relevant physical
interest. These are the singularities of cosmology and of gravitational collapse.
In the framework of the Einstein-Cartan theory [1-4], being a modification of
the classical theory of gravitation, cosmological models without singularities
were constructed [5—9]; the problem of singularities of the second type is not
clear. To solve this problem, as the first step, we investigate conditions which
gravitational fields on a star's surface should satisfy.

Initial sections of this paper have an informative character. Section I contains
a brief presentation of the Einstein-Cartan theory based on Trautman's approach
[3, 4]. In Section II, the investigation of discontinuities by means of differential
forms is considered.

In Section III the matching conditions and their general implications are
considered. We require the Einstein-Cartan equations to be satisfied in the
distribution sense. The matching conditions are formulated as follows: (a) the
metric tensor is continuous, (b) the spin tensor and (c) the energy-momentum
tensor have at most "regular" discontinuities. Due to the previous requirement,
condition (c) can be formulated in a form which is more convenient for applications:
the second fundamental form with respect to the dynamical, assy me trie, connection1

and the trace of the projected defect tensor2 are continuous. If spin vanishes,
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or if it is at least continuous, one can prove that the metric's first derivatives must
be continuous in an admissible coordinate system, as it is usually stated in the
general relativity theory [10]. The matching conditions imply the junction
conditions, being restrictions on the behaviour of matter tensor (energy-momentum
and spin tensors) on a match-hypersurface. In Section III, we formulate special
junction conditions which the matter tensor of an internal gravitational field
should satisfy to assure its prolongation into empty space. Whereafter, we show
that these conditions are sufficient for an external, locally unique, vacuum gravi-
tational field to exist. It appears that Prasanna's spherically symmetric static
solutions [11] are inconsistent with the equations of the theory because they
contradict these junction conditions.

In the last section, we apply the junction conditions in a special case of spherical
symmetry. We consider, as the internal gravitational field, the Friedmann-like
solution for the Weyssenhoff fluid found by one of the authors [12]. The junction
conditions and the energy domination condition (p^ε) imply that the gravitational
collapse of the corresponding star leads to a singularity. However, the case of
spherical symmetry is not physically interesting (at least, because of the fact that
the pseudovector of spin density has a radial distribution which gives a space-like
singularity [4]). To solve the singularity problem of the collapse type for Weyssen-
hoff fluid stars it seems necessary to construct a more realistic, non-spherical,
model of such a star.

1. The Einstein-Cartan Equations

In the Einstein-Cartan theory, gravitation is described by the metric tensor gtj

(we use the signature H ) and the metric connection ω'^P^dx1. The defect^
κlj = κι

jkdxk of the connection ω ι

7 is the difference

κ^ωtj-ώtj, (1)

where ώlj is the Riemannian connection associated with gtj. Due to the metricity
of ωιj, the defect is skewsymmetric,

The torsion 6 ^ = / ^ — / ^ of the connection ωlj is related to the defect by
the relation

Q1 jk~ κ*kj — χljk

The curvature Ωi

j = \Ri

jkιdxk/\dxι of the connection ω^ is defined by

It is convenient to use the following collection of pseudotensor differential
forms:

ηijk=dxιηijkι, ηu=i dxk Ληijk,

ηt= \dxj AKj, η= ^dxι Aηi9

3 Hehl [1, 2] uses the term "contortion".
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where ηijkι is the Levi-Civita completely skewsymmetric pseudotensor, ηol23 =
1 ' 2

The energy-momentum and the spin of matter are sources of the gravitational
field in the theory. They are represented by the 3-forms tt = tj^j and sij — sk

ijηk

respectively.
The relations

κι

jk = - 4πG(s ι

j / c + skj + sjk

ι - δi

ks
ι

jl + gkjs
l\), (2)

G^&πGtj, (3)

where Glj = Rkι

kj— \ δ)Rkl

kb are called the Einstein-Cartan equations. Equation (3)
are equivalent to

^ . / Λ Ω /

k = - 8 π G ί ί . (30

If the spin of matter is zero, the defect of ω^ vanishes and Eqs. (3) become the
Einstein equations. In particular, the vacuum field Eqs. (3) are the same as in the
classical theory of gravitation.

2. Discontinuities and Differential Forms

Let the space-time S be a differential manifold of the class C2, piecewise of the
class C 4 [10]. It means that there exists a family of isolated hyper surfaces in S
such that any transition function η°ζ~1 between admissible, local coordinate
systems ξ = (ξι) and η = (ηι) is of the class C2 everywhere, is of the class C 4 outside
of the hypersurfaces and its third and fourth derivatives tend uniformly to finite
left and right limits on the hypersurfaces. It is enough to consider the single
hipersurface Σ, given locally by the equation x = 0.

It is convenient to describe the differential properties of geometrical objects
on S using the local admissible coordinate system (x, xα), where (xα), α = l , 2, 3,
defines a local coordinate system on any hypersurface of constant coordinate x,
in particular on Σ.

We say that the function /:^->IR is of the class C~ ι (g^4), if the function
f\sc-Σ is of the class Cq and its derivatives, from the zero to the q—th inclusive,
tend uniformly to finite left and right limits on Σ. If, moreover, f is of the class
Cp(p^2) everywhere, we say that this function is of the class Cp

q. The function/of
the class C\ defines on Σ the functions / + , / _ and [/] of the class C 4 :

Let us consider derivatives in the distribution sense of the function / which
is of the class C" 1 , where q^\. The derivatives df/dxa are regular distributions
(functions) of the class C~}1 and the following relation holds:
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The derivative Bf/dx is, in general, a singular distribution of the <5-type, whereas

df/dx(x,x«)-in(x*)δ(x) (5)

is a regular distribution of the class C~lv

We say that a geometrical object (like a tensor field and an affine connection)
on <3C is of the class Cp

q (where l ^ p ^ — 1, 3§:g^0), if its coefficients in any ad-
missible coordinate system are of the class C\. In particular, this definition can
be applied to differential forms. If φ is a differential form of the class C~ \ the
properties (3) and (4) may be transferred as follows:

dx A \_dφ~\ = dx Λ d\_φ~\

and

dφ(x, xa) = dxΛ [φ] (xa)δ(x) + ψ(x, xa),

where ψ is a regular distribution of the class C~}1.
We see that the condition <ixΛ[φ]=0 is necessary and sufficient to assure

regularity of dφ.

3. The Matching Conditions

We assume that:

(a) The metric tensor gij is of the class C°

From this assumption, it follows at once that the Riemannian connection ώιj is
of the class C~\.

Further on, we shall assume that the hypersurface Σ is timelike. The function x
defines the local vector field nt = dtx/\ Vx\, which is orthogonal to Σ and normalized,
n fn

ι= — 1. This vector field is of the class C°. Let us define the operator h) (of the
class C3) of the orthogonal projection on the family of hypersurfaces x = const,

If T is a geometric object defined in a neighbourhood of Σ, f denotes its projection
on the family x = const.

In particular,

ω j — fyrij nkι mnax

is the Riemannian connection on each of these hypersurfaces associated with
g'ij = hij. The Riemannian connection ώlj is algebraically dependent on dgΊj/δxa

and gip so it is of the class C°,

W = 0. (6)

We also assume that:

(b) the spin tensor sk

ij is of the class C~\.

The conditions (a) and (b) imply that the defect κιp the torsion Qι

jk and the connec-
tion ωlj are of the class C~\. From Eqs. (1) and (6), we get

[ ω ^ L κ 4 , . ] . (7)
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The formula

Λ/\ = V^dx3 = drii — ωkιΠk (8)

defines the second fundamental form N—N^dx3 of any hyper surface x = const
with respect to the connection ω^ . A^ is related to the Riemannian, symmetric,
second fundamental form JVf = JV̂ -dx-7' by the equation

N^Ni-κ^n^ (9)

Let us assume that:

(c) the energy-momentum tensor tJ\ is of the class C~\

If the Einstein-Cartan field equation (3') are satisfied in the distribution sense,
(c) is equivalent to

H/ΛdxΛ[αΛ] = 0. (10)

Let us decompose the form dx A ωι

7 as

dx A ωlj = dx A (ωιj — ωkjnkn
ι — ω^rfrij + ωk

ιnkn
ιnιnJ)

and observe that the form

dx A (ω o + (ϋβ) = dx A dg^

is continuous. As a consequence of this, condition (10) reduces to the following
two conditions:

^ηij

kAdxA[ώj

k] = 0,

\ γ\{

k A dx A [ωι

knιn
J~\ = 0 .

Taking into account Eqs. (7) and (8), we can write the above conditions as

\γ\^ Adx A [κJh] = 0

or equivalently

[M = 0, (11)

[ N f i ] = 0 . (12)

If spin vanishes, condition (11) becomes trivial, whereas condition (12) assures
regularity of the curvature Ωιj. However, in general, regularity of the energy
momentum tensor tJ\ is insufficient to assure regularity of Ωιp because the form

dx A ωlj

is continuous if and only if Eq. (12) and the equation

instead of Eq. (11), are satisfied.
In the special coordinate system (x, xα), the continuity condition of the sym-

metric part N{ij) of the second fundamental form reduces to
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Because the derivatives dg^/dx7 are continuous and the derivatives dgOi/dx
can be made continuous by a convenient (and admissible) choice of a coordinate
system, one can say that Eq. (13) determines discontinuities of first derivatives
of the metric tensor.

The continuity condition of the skewsymmetric part N[in of the second
fundamental form can be written, due to Eq. (9), as

[*vΛϋ-]] = 0 (14)

Using formula (2) one can check that conditions (11) and (14) are equivalent
to the equation

We have reduced assumption (c) to the relations (13) and (15). Equation (15)
gives a restriction on possible spin discontinuities, while Eq. (13) expresses dis-
continuities of the metric tensor derivatives by spin discontinuities. When the spin
tensor is continuous, we obtain Lichnerowicz's matching conditions [10]. If
Eq. (13) is satisfied, the symmetric part t{ij) of the energy-momentum tensor is a
regular distribution. Its skewsymmetric part t{ij] is regular, if Eq. (15) is satisfied;
this can be easily seen from the generalized angular momentum conservation
law [3,4].

On the other hand, from the generalized energy-momentum conservation
law [3, 4] the following equality can be deduced:

δπGCn/J + \κjkr\n^jk + Ί nlxjklx
lk*] = 0. (16)

We say that a gravitational field given in the region x < 0 matchs a gravitational
field given in the region x>0, if conditions (a), (b) and (c) are satisfied in any
admissible coordinate system. These conditions imply that the matter tensors t\
and skij, being sources of those fields, satisfy the junction conditions (15) and (16).
One can prove that the junction conditions are the only independent restrictions
imposed on the jumps [V ] and [s\j] of the matter tensors by conditions (a),

4. The Junction Conditions as Boundary Conditions for the Vacuum
Einstein Equations

Let the metric tensor gtp corresponding to the matter tensors t\ and sk

ί7 , be
given in the region x<0, limited by the hypersurface Σ. To assure existence, on
the other side of Σ, of a vacuum gravitational field matching this internal metric,
the matter tensors must satisfy the special junction conditions:

and

δπGw/il _ + \ ΠiXj^l _ = 0. (18)

These formulae follow from the junction conditions (15) and (16).
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Let us suppose that Eqs. (17) and (18) are fulfilled. Then one can solve the
Einstein vacuum equations,

&—0, for x > 0 ,

with the boundary conditions

9ij\+=9ij\-, (19)

dgaβ/dx\+ = dgΛβ/dxU -2x\P)/g00\- , (20)

because the constraint conditions, G° ί |+=0, are satisfied. Due to Eqs. (17), (18),
(19) and (20) the above constructed external metric matchs the internal metric.
Moreover, this external metric is a (geometrically) unique vacuum metric, de-
termined in a neighbourhood of Σ, matching the given internal gtj [10].

5. Collapse of a Weyssenhoff Fluid Sphere

The energy-momentum and spin tensors of the Weyssenhoff fluid [13, 14] are
defined as follows:

The vector ut is the fluid velocity. The vector Pj and the pseudovector Sm

represent the energy-momentum density and the spin density respectively. The
scalar p is the pressure of the fluid.

In the case of the Weyssenhoff fluid the special junction conditions (17) and (19)
take on the form

^ - = 0 , (21)

p |_=2πG(n i S
ί ) 2 | - . (22)

Condition (21) is the same as in classical relativistic hydrodynamics, while con-
dition (22) is different from that case. The pressure p on the surface of a Weyssen-
hoff fluid star does not necessarilly vanish; it can be zero only if the pseudovector
Sι is orthogonal to this surface. One can check that in this case the curvature of
the connection ωlj is continuous across the star's surface.

Let us apply conditions (21) and (22) to the simple case of spherical symmetry.
As the internal gravitational field, the solution of the Einstein-Cartan equations
reported in [4, 12, 15] and generalized to the case of nonvanishing pressure,
is taken. The metric tensor of this solution is of the Robertson-Walker type,

as1 = dt2 -R2(ή ((1 - kr2yιdr2 + r\dδ2 + sin2<M<p2)),

where fc = 05 ± 1. The pseudovector Sι has only a radial component. The spin
density S = ( — SiS

ι)1/2, the energy density ε = uιPι and the pressure p depend only
on the time t. The Einstein-Cartan equations give:

8πG(ε- 2πGS2) = 3(R2 + k)R"2 ,

8πG(p - 2πG52) = - 2RR'ι - {R2 + k)R"2, (23)

SR3 = const,

where a dot denotes differentiation with respect to t.
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The quantities [15, 16]

εeff = ε - 2 π G S 2 ,

play the same role in Eqs. (23) as ε and p play in the equations of the Einsteinian
cosmology. The junction conditions (21) and (22) imply that

so we have to solve the modified Friedmann equations (23) with vanishing effective
pressure. The first integral of these equations is well known,

-k/2, (24)

where the constant M is defined by

If M > 0 , or if M = 0 and jR(ίo)φO, the solution R(t) of Eq. (24) must reach zero.
We conclude that the gravitational field of this collapsing Weyssenhoff fluid
star must be singular if εeff g O or, equivalently, if ε^p.
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