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Abstract. We generalize some notions of probability theory and theory of
group representations to field theory and to states on the Borchers algebra <£.
It is shown that every field (relativistic and Euclidean,...) can be decom-
posed into a countable number of prime fields and an infinitely divisible field.
In terms of states this means that every state on ίf is a product of an infinitely
divisible state and a countable number of prime states, and in this formulation
it applies equally well to correlation functions of statistical mechanics and to
moments of linear stochastic processes over ^ ov@. Necessary and sufficient
conditions for infinitely divisible states are given. It is shown that the fields
of the 0 2 ' t n e o r y a r e either prime or contain prime factors. Our results reduce
the classification problem of Wightman and Euclidean fields to that of prime
fields and infinitely divisible fields. It is pointed out that prime fields are
relevant for a nontrivial scattering theory.

1. Introduction and Main Theorem

The motivation of this paper comes from quantum field theory although the
results have a wider range of applications. Let us consider, for example, two
relativistic scalar fields φ^x) and φ2(x) i n Hubert spaces § x and ξ>2, respectively,
satisfying all Wightman axioms, including uniqueness of the vacua Ωλ and Ω2.
We can then form the field

φ{x): = φ1{x)xi2 + i1xφ2{x) (1.1)

and consider it in the subspace § of ξ>x x $$2

 m which Ω. = Ω1 x Ω2 is cyclic. Then φ
again satisfies all Wightman axioms and is irreducible in § . Equation (1.1) is
analogous to the Kronecker product of Lie algebras, and we write

φ = φ1sφ2. (1.2)

It is natural now to ask the reverse question: Can a given Wightman field φ be
written as an s-product of other Wightman fields? Clearly a similar problem can
be formulated for other classes of fields.

Permanent address.
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We first of all note that there are always trivial decompositions in which

ψί = φ-Fu with1 Fί e ̂ '(1R4), § x = §, Ω1 = Ω, and φ2 = Fu $ 2 = <C, Ω 2 = 1. These
are of no interest.

To investigate the decomposition problem and to see that it is not restricted
to quantum field theory we work with states on the tensor algebra £? introduced
by Borchers [ I ] 2 and studied in [2, 3]. The elements of S? are finite sequences
of the form

with / 0 e <C, fk e S?(lRdk) where d is the space-time dimension. We put ^ k =
For fe^n and g e £fm one defines

,...,xn + m )-/(x n , . . . ,x 1 ) 0 r(x n + l v . . ,x n + m ) (1.3)

and for J,ge^ one defines/* xg by

One calls f̂ positive, g e 5^ + , if g is a square or a sum of squares,

^ 2 « i s the set of a\\g2ne <¥\n such t h a t {0,...,g2n9O...)e£9 + . L i n e a r funct ionals o n
¥ have t h e form

r=(ro,7ί,...)

with Toε(£ and TfcG Sf'k. (λ,0,0,...) will be denoted by λ. T is called positive if
it is non-negative on ̂  + . T is a state, Te £(«$*), if T^O and Γ o = 1. We denote by
Ex(6f) the set of all states T with 7^=0. The n-point functions of quantum fields,
the correlation functions in statistical mechanics and the moments of linear
stochastic processes over £f ± are components of states.

The s-product of linear functionals T ( 1 ), T ( 2 ) is defined3 by

(T^ sT<2%= Σn^NΣp^^Kx^. XO^T^ix^. Xj , (1.4)

where Pnm denotes a partition of {1,..., n + rn} into two complementary ordered
sets {ii<...<in}, 0 i < <Jm} The s-product is commutative ("symmetric"),
distributive, associative and continuous in both factors simultaneously. With
it one can define power series, in particular

eτ

:=Yιnnr1Tn

9 Tn=Ts...sT (1.5)

Translational invariance would imply Fι = const.
The algebra Q) was independently introduced by Uhlmann [22].
Cf. Ruelle [4], p. 86, Borchers [2]. We use the notation of Borchers.
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which converges for every Te^' [2]. If T0 = l one can define the truncated
functional V by 4

v.^Σi-iγ-1 n'1 (T -\γ=\o%τ. (i.6)

This converges since in this case only a finite number of terms contribute for given
fe^.WQ note that To

r = 0, and if Tx =0 then V2 = T2. Conversely, if T o = 1 then 5

T = eτ\ (1.7)

If To

(1) = T 0

( 2 )= 1 then, by commutativity of the s-product,

It follows from Eq. (1.4), [2] that if φu φ2 correspond to states Γ ( 1 ), T ( 2 ),
then φγ s φ2 corresponds to Γ ( 1 ) s T{2\ and conversely. Thus we are dealing with
a decomposition of a state as an s-product of other states. The above trivial
decomposition of a field corresponds to the trivial decomposition T=T{1) s T{2)

where

. . . ) , (1.9)

(1.10)

States of the form (1.10) are called characters [2]; they give rise to 1-dimensional
representations.

Definition 1.1. A state Ton ξf is called a prime state if it has no nontrivial
decomposition of an s-product of other states and is not a character.

Definition 1.2. T is a Wightman prime state if it has no nontrivial decomposi-
tion as an s-product of other Wightman states and is not a character. The corre-
sponding fields are called Wightman prime fields. Similarly for Euclidean and
other classes of states (fields).

As in probability theory [5] and group theory [6, 7] one can introduce the
notion o£ infinite divisibility.

Definition 1.3. A state T on ϊ? is called infinitely divisible if for each neN
there is a state T1/M, the w-th root of Γ, such that

The corresponding fields will be called infinitely divisible fields.
By Eq. (1.8), the truncation of Tlln is n~ιV. Therefore, if T is relativistic,

Euclidean or Abelian, then so is Tΐ/n. We note that the free and generalized free
fields are infinitely divisible. Necessary and sufficient criteria will be given in
Section 2.

Our main result on prime factorizations is analogous to that of Khinchine
in probability theory6.

In probability theory this corresponds to going from moments to cumulants.
Again, for given / ε ¥ only a finite number of terms are non zero.
See [8], pp. 170-172.
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Main Theorem. Every state T on ξf is an s-product of two states, one of which
is either 1 or is the s-product of a finite or countably infinite number of prime states,
while the other is infinitely divisible with no prime factors.

Corollary. An analogous result holds for classes of states or fields (e.g., rela-
tivistic or Euclidean fields).

Remarks, (i) An infinite s-product of states is defined as a weak limit. If one
works directly with fields and Hubert spaces one has to use von Neumann's
incomplete tensor products.

(ii) T contains no prime factor if there is no decomposition of the form
T = PsR with P prime; this is not implied by infinite divisibility.

(iii) The separability of the underlying space ίf γ yields the countability of
the number of factors in a decomposition. The decomposition will in general be
non unique.

(iv) The theorem carries over to other tensor algebras, in particular to <3
and to (non completed) tensor algebras ϊt(£) where E is a locally convex separable
space and where the components of the elements of 9I(E) are in £(χ)...(χ)£, i.e.,
finite linear combinations of product elements.

The proof, which only uses positivity of T, will be given in Section 4. In Sec-
tion 3 we prove some auxiliary results on factorizations, in particular compactness
of a certain set of factors. In Section 5 we will discuss the existence of prime
fields and possible implications of the factorization for the ^-matrix of a Haag-
Ruelle scattering theory. A note on Fermi fields can also be found there.

2. Infinitely Divisible States

Proposition 2.1. The set of infinitely divisible states on ξf is weakly closed. It is
closed under the operation of taking s-products.

Proof. A net {T(α)} of states converges to a state, T, if and only if T(α)ί converges
and if so, T{a)t converges to V [2]. Let T(α) be infinitely divisible and T{a)-*T.
Since ( Γ ( α ) 1 / 7 = l / n Γ(α)ί, it follows that T ( α ) 1 /" converges to a state f{n) with
f{n)t = ί/n V. Hence f{n) = T1/n. The last statement follows from the commutativity
of the s-product. QED.

The next result is the analog of De Finetti's theorem [8].

Proposition 2.2. A state T on ££ is infinitely divisible if and only if there is a
sequence {αv} of positive numbers and a sequence {T(v)} of states on ξf such that

T = l i m e f f v ( Γ ( v ) - 1 ) . (2.1)
v-»oo

If Tγ = 0, one can choose T£v) = 0.

Proof. To show sufficiency we note that, for each positive p e IR,

is a state. Indeed, the s-product of two positive functionals is again positive [2],
so the last term on the r.h.s. is a convergent sum of positive functionals and hence
positive. The zeroth component of the l.h.s. is 1 and so it is a state. Thus T is the
limit of a sequence of infinitely divisible states, and Proposition 2.1 applies.
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Necessity. Let T be infinitely divisible. We claim that

T=\imeniTί/n-1}. (2.2)
n-> oo

Indeed, truncating the terms on the r.h.s. we get

n(T1/n-l) = n(eTt/n-l)

= τt+n-1Σ^2(v\nv~2y1{τty,
which converges to T* for n—>oo since for each /'e £f only a finite number of
terms are non zero. QED.

We now give another criterion for infinite divisibility, and in order to make
its formulation analogous to a criterion in probability theory7 we introduce the
following terminology.

Definition 2.1. A linear functional on ξf is called conditionally positive if it is
positive on positive elements in the subspace {g; go = fy 8

Clearly the set of conditionally positive functionals forms a closed convex
cone. If one considers / = (0,/ l J / 2 , . . . ) , then for # = / * x / one has the usual
positivity condition. This shows in particular that the even components, except the
zeroth, of a conditionally positive functional are positive. Note that all functionals
of the form (To, T1 ?0,...) are conditionally positive but not necessarily hermitian,
while

(0,0,T2,0,...) (2.3)

with T2 positive on £f\, is conditionally positive and hermitean. The truncated
functional of a free and generalized free field has this form (Gaussian case).

Theorem 2.1. A linear functional T on ^ is an infinitely divisible state if and
only if T0 = i and the truncated functional V is conditionally positive and hermitean.

Proof. The necessity follows immediately from Proposition 2.2 since in
Eq. (2.1) the exponent as well as its limit are conditionally positive and hermitean.
To prove sufficiency we use a result of Yngvason [10] which states that the
topology of ^ is generated by the family of semi-norms {ps} of the form

) = S(f*xf)112 (2.4)

where S is a positive linear functional on ξf Hence there is a positive S such that
V is continuous with respect to ps. Instead of V we now consider the functional

S(A)

: = pT f + λS, λ > O , p ^ O . (2.5)

This is again hermitean and conditionally positive, and on the subspace {g\ g0 = 0}
it defines a semi-norm

with respect to which S{λ)(g) is continuous, i.e.,

# o = o , (2.6)

7 Cf. [9] and [7].
8 This subspace is an ideal in &. If g ε 5^+ and g0 =0 then also grx = 0 since the lowest non vanishing
component is even [2].
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for some cλ > 0. Let g0 = 0. Then

xg) + S< V

for some Kλ^0 and all g with gr0 = 0. Hence, for arbitrary feSf,

S^(j*x_f)^-Kλ\f0\
2.

Thus, for n>Kλ, 1 +S{λ)/n is positive on ¥ + , as well as any power of it, i.e.,

n^0. - (2.7)

For n-*cQ this converges9 to es(λ) which is therefore also positive. Since now

λ->0

the r.h.s. is positive for every p^O and a state since 7 Q = 0 . QED.
Remark. It is natural to define Tp for p^O by epT£ if T is infinitely divisible.

Theorem 2.1 carries over to all tensor algebras 2I(£) over an arbitrary vector
space E. Indeed, the result of Yngvason [10] used above also holds for tensor
algebras over finite-dimensional vector spaces. Since any x e 9Ϊ(£) is contained
in a subalgebra of this kind positivity o n x * x x follows as before. For representa-
tions of Lie algebras a result analogous to Theorem 2.1 has been obtained by
Streater [24].

Corollary 2.1. A linear functional T on 9? is conditionally positive and her-
mitean if and only if it can be represented as

T = l i m α v ( 7 1 ( v ) - 1 ) + Γ o , (2.8)

where {T(v)} are states, α v ^ 0 and To is real. If T x =0, one can choose T/v) = 0
for all v.

Proof. T—TQ is hermitean, conditionally positive and has vanishing zeroth
component. Thus eτ~To is an infinitely divisible state, and Eq. (2.1) applies. QED.

We note that if a linear functional T is conditionally positive and T2m = 0 for
some m ^ 1, then Tn = 0 for all n>2; this follows from Schwarz's inequality. If no
T2m vanishes, m ^ 1, then it is easy to construct from T other conditionally positive
functionals in the following way.

Definition 2.2. A sequence ^ = (c0, cu ...) of real numbers will be called con-
ditionally positive if (c2, c3,...) is of positive type, i.e. a moment sequence.

It is easy to see that ̂  is conditionally positive if and only if

cn = cf

2δn2+$xndμ(x), π ^ 2 , (2.9)

where μ is a positive (possibly nonfinite) measure on 1R such that μ{0} = 0 and

9 This is seen by dividing Eq. (2.7) by its first component and then going over to the truncated
functional.
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Proposition 2.3. Let %> be a conditionally positive sequence. If TeSf' is con-
ditionally positive and hermitean, then so is

V T.McoTo,^,...). (2.10)

Proof. We can assume TO = TX = 0. Using Eq. (2.9) we consider the moment
sequence ^ ( ε ),

Using Eq. (2.8) for T with 7 ^ = 0 for all v, we find

V • T = lim lim αv(<<ί(ε) Γ ( v ) - c^) + (0,0, c'2T2,0,...).
ε-»0 v->oo

Now, ^ ( ε ) T ( v ) is positive [2], and therefore ^ T is a limit of conditionally
positive functionals. QED.

We close this section with a structural result which is the analog of a theorem
of Khinchine6.

Theorem 2.2. A state on ζf which contains no prime factor is infinitely divisible.

The proof will be given in Section 4. Note that if T is a Wightman or Euclidean
state and if it does not contain a prime state of that class then it contains no
prime state at all. Thus Theorem 2.2 also holds for classes of states. Its converse,
however, does not hold.

3. Auxiliary Results on Factorizations

We first introduce some notations and prove some auxiliary results some of
which are of independent interest.

Definition 3.1. Let Te E{ζf\ Then #XT) denotes the family of all factors of T.
If T = SsR then S and R are called complementary factors of T. If 7^=0, then

Lemma 3.1. Let {S(a)} and {R{tx)} be nets of complementary factors of a state T
on ξf. Then {S(α)} converges weakly if and only if {R(<x)} does. If so, their limits are
complementary factors of T.

Proof. We have T = S(a)t 4- R{oc)t. Convergence of S{a) and R{a) is equivalent to
that of S(α)ί and # ( α ) ί . If S* and R* are their limits one has T^tf + R1 and hence
T = SsR. QED.

The next result will play a central role in the sequel.

Proposition 3.1. Let Te E^ϊfl i.e., 7ί =0. Then #Ί(T) is bounded on bounded
sets and weakly closed, and thus strongly compact.

Proof. We first show that #Ί(T) is bounded. It suffices to show that, for each
m, the set of m-th components is bounded. We use induction. The statement is
true for m = 0; assume that it holds for m = 2n — 2. We will prove it for m = 2n,
2n-l.
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Let S e #Ί(Γ). There is an R e #Ί(T) such that T = SsR. From Eq. (1.4) we
obtain for Tm an expression of the form

Tm = Sm + Rm + remainder (Sa® Rm _ α ), (3.1)

where the remainder is a finite sum, and 2 ̂  α ̂  m — 2 since S1=Rί=0. Let B C 5^m

be a bounded set. Since ^fm is a Montel space, # is precompact. Therefore [11],
for each α, there are sequences {g jc^ α , {^}C^m_α, converging to zero, such that
for every feB there is a sequence {λt} of complex numbers, £ |Λ,f|< 1, with

Applying the induction hypothesis to the bounded sets {gt} and {/ιj one finds,
for some c>0, c = cβ,

Hence the remainder in Eq. (3.1) is bounded on B for m = 2n, In— 1, uniformly
for S e # Ί ( T ) .

Now let m = 2n and consider a bounded set J5+ C^Jn Then T2n, S2n, and K2n

are positive o n β + , and T2π is bounded on B+. Hence, by the boundedness of the
remainder, S2n is bounded on B+ uniformly for S e «^Ί(T). If now B is an arbitrary
bounded set in ^2n

 t n e n Eq. (3.2), with {gt}, {/ιf} C Sf n, yields boundedness of S2n

on β by Schwarz's inequality,

(3.3)

Se^y{T\ fε B, for some c = c(B), since {g*®g^ and {ftf (g)/ιf} are bounded sets
in ^ 2 n .

For m = 2n—l one now uses an analogous argument with {g^C^n-i a n d
{hi) C 5^n. This proves that «^Ί(T) is weakly and thus strongly bounded.

Weak closure follows from Lemma 3.1, and thus also strong closure. Strong
compactness then follows from the fact that ¥ is a Montel space. QED.

Remark. The result does not hold for #"(T) owing to the unboundedness of
the first components. The result also holds for the tensor algebra S>. For a (non-
completed) tensor algebra 9ί(£) 1 0 one can show boundedness of ^Ί(T) on fixed
elements.

For repeated application we note the following simple lemma.

Lemma 3.2. Let {T{cc)} be a net of states which is bounded. If T2

(α)(/*(χ)/)1/2-+0
for f in a dense subset of£fu then T(α)-»1. - 1

Proof. By Schwarz's inequality and boundedness one has, for mΦO,

for some c>0. Hence T(α)-^1 on a dense set. From boundedness it then follows
that T(α)-+1 weakly. QED.

For the next result we introduce the following terminology.
Definition 3.2. A sequence {Γ(v)} of states is called factor-increasing if T ( v ) e

1)), and factor-decreasing if T ( v + 1 ) e ^(T ( v ) ) , v = l , 2 , . . . .

is defined in Section 1.
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Proposition 3.2. Let {T(v)} be a factor-deer easing or bounded factor-increasing
sequence of states on ξf > wίί/i T£v) = 0 for all v. Then {T(v)} converges weakly.

Proof. Let {T(v)}c£iG£O be factor-increasing and bounded. By precom-
pactness it has a converging subsequence, {T(Vi)}, converging to T, say. Suppose
that some other subsequence, {T("k)}, converges to some Y. Then each T(Vi) is a
factor of some T("k) and hence of Y. By Lemma 3.1 it follows that T is a factor of T
analogously one has that Y is a factor of T, i.e., T = Y s R' and T' = T s R for some
states R, R'. This implies T2 = Ti and thus R2 = R'2=0 since ^ = ̂  = 0. Hence
£ = # ' = 1 , by Lemma 3.2, and T=T\ proving convergence. If {T(v)} is factor-
decreasing, then the sequence {R(v)} defined by T(1) = T{V) s R(v) is factor-increasing
and bounded, by Proposition 3.1, and hence convergent since R^eE^ξf) for
all v. Lemma 3.1 then shows that also {Γ(v)} converges. QED.

We now consider a state TeE^) and introduce some notion of size of a
factor SeϊF^T). Let {hv} be a dense countable subset of ^ l 5 and let {ρv} be a
sequence of positive numbers such that

Σ (3.4)

If S e # Ί ( Γ ) 5 then S2 ̂  T2, and thus

d{S):= Σ*evS2(h*®K)^d0<co. (3.5)

Lemma 3.3. Let Te Eγ{ξf\ let S e # Ί ( T ) and let d(S) be defined as in Eq. (3.5).
if

then

d(S)=Σίd(S^). (3.6)

If a net {S(α)} C ̂ \{T) converges to S9 then d(S{a))-^d(S); the net converges to 1 if
and only if d{S(a))-+0.

Proof Since S^S^^O for all i, one has 5 2 = Σs<2 a n d E q (3 6 ) follows
immediately from Eq. (3.5). Now, if d(S{a))->0 then S(

2

α)(/ι*(g)/iv)-^0 for each v,
and hence S(α)-»1, by Lemma 3.2. Conversely let S(

2

α)^S2. Since S(

2

α)^ Γ2, a simple
ε/2-argument shows that d(S(α))-+d(S). QED.

4. Proof of Theorem 2.2 and of Main Theorem

We first turn to Theorem 2.2 and prove some preparatory lemmas.

Lemma 4.1. Let TeE^^) and let T have no prime factor. Then, for each λ,
l, there exists some SeάF^T) with d(S) = λd0, where d0 and d(S) are given

by Eqs. (3.4) and (3.5). As a consequence there are, for each π e N , states S{n'v) e ^ Ί ( T ) ,
v = 1,..., n, such that

*) = d0/n (4.1)

and

T = ^ = 1 S ( " V>. (4.2)
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Proof. For each K, 0 ̂  K < 1 we put

μ(κ) = inϊ{d(R); R e #Ί(T), d(R)> κd0].

Then there is a sequence {JR(i'κ)}?L! C#Ί(T) such that κ<i0 <d(R ( i κ)) for each i and
d(Riι>κ))-*μ(κ) for i-+αo. By going over to a subsequence, if necessary, we can
assume, by Proposition 3.1, that R{i>κ) converges to some R{κ)e^x(T) as i->co.
By Lemma 3.3, d(R{κ)) = μ(κ). We first consider the case κ = 0. We claim that
R{0)=l so that a state without prime factors contains arbitrarily small factors.
Indeed, if # ( 0 ) Φ l there would exist Qe #Ί(K ( 0 ) )C#Ί(T), Q φ l , with 0 < i ( β ) <
d(jR(0)) and thus μ(0) would not be the above infimum.

Now let κ = l We claim that d(R{λ)) = λd0. Indeed, assume d(R{λ)) = {λ + a)d0

with a>0. Since Riλ) contains arbitrarily small factors one can write R(λ) = R' sR'
with 0<d(R")<ado/2. But then λdo<d{R')<μ(λ), a clear contradiction. Therefore
we can choose S = R{λ).

Thus, for each n e N , there exist some S^e&^T) with d{SinΛ)) = d0/n. If
S ( M has already been defined for f^v</ι such that d(Sin'()) = d0/n and such that,
for some jR(v)

then d(^ ( v ) )-( l-v/π)ί i 0 ^^ 0 /^. Therefore, there exists some S{n>v + 1) e ^^R^)
with d(S ( n > v + 1 )) = d0/n. If v + l = n one has s(».n) = JRC-1) and the construction
terminates. QED.

Lemma 4.2. Let Te E^^) have no prime factor, and let S{n>v) be as in Lemma 4.1.
Let {hjc^i be the functions used for d0 in Eq. (3.4) and let H be their linear hull
Then, on 5 I ( # ) C ^ one has

] i m ^ = 1 ( 5 ( " ' v ) - i y - 0 , J = 2,3,. . . . (4.3)

Proof. Since the first 21— 1 components of (S("'v)—1)' vanish, it suffices to
prove convergence for elements of the form f = (0,...,0,hKί®...®hKm,0,...),
m^2l Then, for finite n, the l.h.s. of Eq. (4.3) is a finite sum of terms of the form

where, by Eq. (1.4), α f ^ 2 , ^ af = m, and where the number of such terms depends
on / and m only. Using Schwarz's inequality twice, |Sα| ̂  S\l2Sy^ 1 } and S^α-1 } ^

(α-i)-i)? e a c n factor is estimated by

where we have used boundedness, Proposition 3.1.
For z'^3 we estimate this by some constant independent of n and v. Inserting

this into Eq. (4.4) and applying the usual Schwarz's inequality to the sum over v,
we obtain an estimate of the form

where we have used Eqs. (4.1) and (3.5). For n-+co the last expression converges
to zero which proves the lemma.
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Lemma 4.3. Let T,S(n'v\ and Hd^i be as in the preceding lemma. Then, on
SΆ{H)C? one has

r = i i m χ ; ; = 1 ( s ( w ' v ) - i ) . (4.5)

Proof. One has, for each n,

If one applies the r.h.s. to some / e ¥, only a finite number of terms in the sum
over / contributes. I f / e 5 ί ( H ) and if n->oo, only the term with 1=1 remains,
by Eq. (4.3). QED.

Proof of Theorem 2.2. After making a trivial decomposition of T, we can assume
Ti = 0. Then, by Eq. (4.5), V is positive on {ge^ + ;go = 0}n(Ά(H). Since this
set is dense in {ge^+;go = 0}, it follows from the continuity of V that V is
conditionally positive, and Theorem 2.1 applies. QED.

We now turn to the Main Theorem. We will denote by 0>(T) the family of all
prime factors P of T and by ^\(T) those with Px = 0.

Proof of Main Theorem. After making a trivial decomposition we can assume
rγι — 0. We can also assume that T is not prime and, by Theorem 2.2, that T
contains prime factors. Let d(S), S e ^ Ί ( T ) , be defined as in Eq. (3.5). By induction,
we are going to construct a finite or infinite sequence of prime states ^ e&γ{T)
and states R{i) e ^γ(T) such that, for each k,

T=]sIf= s lP
( i )sR ( k ) (4.6)

and such that either, in the finite case,

sup{d(P); PE ̂ ^R^)} = 0 , (4.7)

where n0 is the highest index of the sequence, or, in the infinite case,

lim sup{d(P);PG^1(R ( n ))} = 0. (4.8)

We choose some P ( 1 ) e ^ ( Γ ) with d(P ( 1 ) )^d 1 /2 where

We define # ( 1 ) by T = P{1) s R{1\ For induction, we now assume that P ( m ) and R(m)

have been defined for m^n.n^l. We then proceed as follows. Let

If dn+ι=0, we terminate the construction. Otherwise we select
with d(I*n+1))^dn+1/2 and define R{n+i) by

Then, Eq. (4.6) holds. If the construction does not terminate for a finite n0 we have,
for each n,
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Hence dn-*0 as n-+co so that Eq. (4.8) holds. Furthermore, by Proposition 3.2,
the limits

S = l im]sί7 = 1 P ( i )

R=YιmR{i)

rj-> oo

exist and, by Lemma 3.1,

T=SsR.

We claim that R or JR("O), respectively, contains no prime factor. This is clear in
the terminating case. In the infinite case assume that there exists some PE^(R).
We can assume P 1 = 0. By Proposition 3.2 and Lemma 3.1 we have, for each n,

Hence Pe&^R^) and thus d{P)<,dn, for each n. Therefore d(P) = O and P=ί.
By Theorem 2.2, R or R{n°\ respectively, are infinitely divisible. QED.
The corollary to the Main Theorem follows immediately if, in the above proof,

one replaces the expression "prime factor" by "prime factor with respect to the
class considered". The "new" prime factors only can become larger.

5. Existence of Relativistic and Euclidean Prime Fields. Discussion

The Main Theorem reduces the classification problem of Wightman fields to that
of prime fields and infinitely divisible fields11. Classification of the latter seems
not quite hopeless. There are strong indications that Wick products of free fields
are again infinitely divisible. If so, one can construct new infinitely divisible fields
from them by multiplying their truncated π-point functions by a conditionally
positive sequence of real numbers (cf. Proposition 2.3). By analyticity the truncated
functions can also be multiplied by the π-point functions of an arbitrary Wightman
field12. Nonrelativistic examples of such fields are well-known, e.g., the field of the
ultralocal models [12, 13] are infinitely divisible.

Relativistic and Euclidean13 Prime Fields. Since the fields of the ^-theory [12,
13] are not generalized free fields they are either prime or contain prime fields.

1 1 In the theory of representations of simple compact Lie groups and Lie algebras one finds a similar
situation. There every irreducible representation is obtained from the highest weight in the Kronecker
product of fundamental representations. E.g., the irreducible representation Dj of SU(2) can be obtained
from the two-dimensional representation by restricting the 2/-fold Kronecker product to the symmetric
subspace. Thus for SU(2) there is only a single "prime" representation.
1 2 This was suggested to me by H. J. Borchers.
1 3 In this context we mean by a Euclidean field an Abelian Euclidean covariant field whose n-point
functions can be analytically continued to complex times to yield the rc-point functions of a relativistic
Wightman field [14, 15]. It is conceivable that a Euclidean field is prime while the associated relativistic
field is not, simply because the factors of the relativistic might only correspond to Euclidean Green's
functions [16] but not to Euclidean fields.
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Indeed, the truncated 4-point function of the corresponding Euclidean field
satisfies [17,18]

^ ( x l v . . , x 4 ) ^ 0 . (5.1)

If the equality sign holds everywhere then the field is a generalized free field
(Gaussian) by a general result of Borchers14. Since this is not the case the
Euclidean field is not infinitely divisible, by Theorem 2.1 and Euclidean prime
fields exist, by the Main Theorem. In this case neither the truncated relativistic
4-point function Uf\ can be positive since then one would have [20], for

. (5.2)

which is in contradiction to Eq. (5.1)15 unless the equality sign holds.
Unίtarίty of S-Matrix. It has been shown by Rinke [21] that if a field φ

describes a particle of mass m > 0 and satisfies the assumption of the Haag-Ruelle
theory, then the field l/j/2 φ s φ has a unitary S-matrix if and only if φ has S-
matrix i, and it satisfies asymptotic completeness (§,•„==-£> = -£) out) if and only if φ
is a free field. The factor l/]/2 merely normalizes the two-point function. The
argument of [21] can be reversed to show that if a field ψ satisfies the Haag-Ruelle
assumptions with unitary S-matrix and if ψ=lf\/2φ sφ for some Wightman
field φ then ψ belongs to S = 1. This shows that infinitely divisible fields can only
have a trivial scattering matrix 1 6. The question under what conditions this
reasoning can be carried over to other factorizations and under what conditions
unitarity and nontriviality of the S-matrix are related to prime fields is presently
under investigation.

Multicomponent Fields. The results of this paper all carry over unchanged to
multiple-component fields, only the underlying space t5^1=ί^(IRd) has to be
changed to a space of vector-valued functions.

1 4 Lemma (H. J. Borchers, Vorlesungen ϋber Quantenfeldtheorie, Gδttingen 1966/67, unpublished):
Let Λ(x) be a Wightman field in a Hubert space with a unique vacuum, and assume that the truncated
Wightman function W2n vanishes for one n>\. Then Λ(x) is a generalized free field.

Sketch of Proof. One first shows that the vacuum expectation value of any m-fold commutator
Kni = [...[/4(x1), A(x2)~]..., Λ(xmy\ can be expressed by W^. From this one gets (Kfl(x1,...,xfJ)Ω,
Kn(yi>' ->yn)Ω) — (Kn(yu >yr)Ω> ^ i , , xn)Ω) = 0. Using the spectrum condition with respect to the
centre of mass variables ξ = 1/n £ xv, γ\ — 1/n £ yv one finds that(KM(x l v . ., xn)Ω, U(η — ξ)Ku(yι,...,yn)Ω)
does not depend on η — ξ. The uniqueness of the vacuum then implies K n (x l v . . , xn)Ω =
Ω(Ω,Kn(x1,...,xn)Ω). Local commutativity together with analyticity shows that Kn{xί,...,xn)A(z1)...
A(zm)Ω—A(z1)...A(zm)Ω(Ω, KnΩ) vanishes identically in z l v . . , zm which implies that Kn is a c-number.
Therefore Kn+li Kn + 2,... all vanish. Since either n + 1 or n + 2 is even one can repeat the argument
which ends with K2 being a c-number. Thus A(x) is a generalized free field. QED.

By analytic continuation the same result holds for Euclidean Schwinger functions. A result in [19]
is a special case of this.
1 5 For zj = (ίx(jix)) and z^zk one has Sn(xu...,xf) = Ψ'n(zli...,zr).
1 6 This is correct if one sticks to usual statistics. It was pointed out to me by H. Araki that this con-
clusion is possibly not valid in the parastatistics approach of Doplicher, Haag and Roberts [23];
it is tempting to speculate that infinite divisibility might be connected to infinite parastatistics. To
settle this question one should try to classify infinitely divisible Wightman fields.
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Note Added in Proof. If ψί and ψ2

 a r e Fermi fields then their s-product as defined in Eq. (1.1)
will not satisfy the original anticommutation properties oϊψ1 and ψ2. Therefore for Fermi fields the
definition in Eq. (1.1) is not very appropriate. If the mapping ψi^ — ψi can be unitarily implemented,
by Uθ say, then ψ defined by

ψ(x): =ψ1(x) x C/fl + l i x ψ2(x) (5.3)

is again a Fermi field if ψt and ψ2 are. In particular, if the rc-point functions of ψ2 vanish for
odd n then Uθ exists and can be chosen to leave Ω2 invariant. In this case it is therefore natural
to choose Eq. (5.3) for the definition of a modified s-product; in Eq. (1.4) for the functional there will
appear minus signs. Truncation can again be defined by Eq. (1.6), but with the new s-product. It seems
that all previous results carry over to this case. We note that for representations of canonical anti-
commutation relations (CAR) Eq. (5.3) has been used in [25] to define the concept of an infinitely
divisible representation of the CAR, and it was shown that this class coincides with the quasi-free
(Gaussian) representations; for more general anticommutation properties this is no longer true.
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