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Abstract. Using methods introduced by Furstenberg and Tutubalin we prove a
central limit theorem for the amplitudes of plane waves travelling in a semi-
infinite isotopically disordered harmonic chain. This theorem is applied to
the problem of heat conduction in disordered harmonic chains.

Fourier's law of heat conduction is that the steady state heat current is pro-
portional to the applied temperature gradient. It is observed to be true over a
wide range of temperatures in solids of any degree of purity. The ratio of the heat
current to the temperature gradient is the thermal conductivity, and at a fixed
temperature this is observed to depend only on the properties of the material.
The most convincing explanation of a finite conductivity has been given by
Peierls [21]. He showed that anharmonic forces play an essential role in establish-
ing an equilibrium distribution of the energy between the various normal modes
of the solid. Assuming the validity of the phonon gas picture he showed that this
tendency to equilibrium produces a finite thermal conductivity even for pure
crystalline solids. A rigorous formulation of these ideas is certainly the only really
satisfactory solution of the problem. It is so difficult however that we look for
other soluble models which contain a reflective mechanism and in particular to
disordered harmonic systems.

The model we use was first studied by Lebowitz [6, 7]. We take a chain of N
particles coupled to their nearest neighbours and connected at each end to heat
baths. The heat baths are modelled by white noise whose co variance is proportional
to the temperature of the bath and a Langevin damping term to represent the
ability of a heat bath to absorb energy. If x^t) and mi are the displacement from
its equilibrium position and the mass of the z'th particle the motion of the particles
is determined by the equations

< x j _ 1 - x ι / + 1 = 0 1<J<N ( 1 )

mNxN + 2xN - XN _ j + λmNxN = fN(t)

where fa (α=l, AT) is a Gaussian random process with variance 2Taλma. Casher
and Lebowitz show that in the steady state situation there is a steady flow of
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energy along the chain and that it is given by

JN(m1...mN) = 2(TN-Tl)λ2m1mNπ-1 $ w^w)'1^. (2)

where ZN = (1, - iλmNw)TN. . .
i w

a n d η = = Γ K ) . ( 3 )

The occurrence of the matrices Tt can be understood by looking at the equations
of motion for an isolated chain obtained from (1) by putting λ = 0 and fί = fN = 0.
The plane wave solutions to these equations are solutions of the type xk(t) =
Uk(w)eιwt. The equations for Ut derived in this way can be recast in the transfer
matrix formalism [7]

— T
-* H

VJtw)
— T T— ιn... i1

This suggests that we interpret (2) as summing the contributions to JN of each
frequency which is excited by the Gaussian driving terms. These individual
contributions reflect the ability of the chain to carry modes of various frequencies.

Periodic chains (m—nii + pp fixed) are unphysical because their perfect trans-
parency to frequences in the correct bands enables them to carry a finite heat
current even as N increases. One model in which the heat current decreases with
length is the disordered chain. In this the masses, m1...mN are independent,
identically distributed random variables. In this case we use the average heat
current carried by all possible chains viz.

and we want to decide if the limiting conductivity

lim NJN(AT)~^ is finite and non-zero.

There is a great deal of work on this problem and although no rigorous
solution exists it seems that NJN falls off as N~~* [8]. The present work was
motivated by an attempt to prove this rigorously. We cannot do this and have
only been able to prove that contribution to JN from frequencies above any non
zero frequency ε becomes exponentially small as N increases. The real difficulty
in this problem lies in treating the frequencies of order N~* and smaller - we have
not been able to handle these and non-trivial problems arise in this region.

From (2) we see that we must understand the asymptotic behaviour of products
of random matrices in SL(2, R). There is already considerable body of work on
the general problem of products of random matrices. To describe this work we
introduce a very useful factorization of the matrix Tn...T± [this is in SL(2, R)].

n T τ-(sίnθn -
Q"=T»-Tι-(cosθn

with — π/2^θn^π/29 tneR. θn is called the phase angle at the nth mass.
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Furstenberg [1] studied the general problem of random products in SL(m, R)
and proved, among many other results, a strong law of large numbers which
implies here that n~1logt*-+γ>Q9 with probability one. His methods have a
strong geometric flavour. Tutubalin [2] used more direct analytical methods to
obtain a central limit theorem for the analogues of n~^(\ogt2 — ny). However he
works with the probability distribution on SL(m, R) which is absolutely continuous
with respect to Haar measure on SL(m, R). In our case this is not so; the right
measure on SL(2, R) for our problem is concentrated on the matrices T(m).

Although Tutubalin's result is not automatically valid here we can use his
method and some ideas due to Furstenberg to obtain a central limit theorem for
the random variables n~^(logt2 — ny). Matsuda and Ishii were the first to realize
the relevance of Furstenberg's work to this problem. Their work, and a simplifica-
tion due to Yoshioka, is needed to show that γ is strictly positive. A comprehensive
survey of this problem and other questions in disordered linear systems is to be
found in the article by Ishii [9]. It is quite probable that these methods are also
applicable to the disordered Kronig-Penney model and the tight binding electron
model [9,16].

In the first section we discuss the asymptotic behaviour of θn. The ideas here
can be traced back to Schmidt [13] and there are also strong connections with the
work of Borland [14] and Halperin [15]. In the second section we prove a central
limit theorem for the random variables n~^(logt2 — ny). Finally we apply these
results to the problem of heat conduction in disordered chains and obtain our
main result, Theorem 6. This is that the contribution to JN from frequencies above
ε falls off exponentially with N for each fixed ε > 0. This applies to random chains
in which the common distribution of the masses has a C1 density with compact
support. Some suggestions are made for further work on this problem and in an
appendix some standard results on fractional linear transformations of C1 are
summarized.

1. Asymptotic Behaviour of the Phase Angle

We consider a semi-infinite chain of masses, m^j^. 1. The masses are independent,
identically distributed random variables with a distribution dp. A transfer matrix
Tj is associated with the jth mass using (2) and Qn is the product of the first n
transfer matrices (this is at a fixed frequency w). Using the equation Qn +1 = Tn + ±Qn

we can obtain recurrence relations for the parameters θn and tn introduced in (4).

tanθn+1=ianΦ(θn,mn+1)

t2

n+, = tl [_sm2θn + (xn+1 sinβ, - cosθj2]

where tanΦ(θ, w) = 2-raw2-cotθ (6)

and xn = 2 — mnw
2. The initial values are θ0 = π/2 and ί0 = 1.

Since m1...mn are random variables, θn is a random variable lying in / =
[ —π/2, π/2]. If its distribution is Pn we have

)] (7)
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for each open set A in /. Here Ψ( 9 m) is the inverse function to Φ( , m). It satisfies

tanθ = 2- nw2 - cotΨ(θ, m) . (8)

We introduce the space P of continuous functions / on / which are periodic
with period π so that /(π/2) = /( — π/2). P is a Banach space in the sup.norm.
We define an operator T on P by

Tf(θ)=Sdp(m)flΦ(θ9mϊ]. (9)

The dual space P* is the space of Borel measures μ on / for which μ{π/2} = μ{ — π/2}.
If T* is the adjoint of T, (7) can be written as

For every value of m, we have Φ( ± 0, m) = + π/2 and for each non-zero value
of θ there is a spread of values for Φ(θ, m). Thus Tf(θ) is a weighted average for
0ΦO and T2f(θ) is a weighted average for all values of θ. In fact when we assume
that dp has an integrable density, T2 is a compact operator on P and we can
prove that the measures Pn converge weakly to a limiting distribution v.

Theorem 1. We assume that dp(m) = μ(m)dm with μeL1(R+). Then
(i) T2 is a compact operator on P whose spectrum lies in the unit disc. The only
eigenvalue on the unit circle is at i and it is simple.

(ii) There is a unique probability measure v so that

\\T*nσ-v\\^c-ρ"

for any probability measure σ on I. Here ρ is the radius of a disc containing all the
spectrum of T except ί ana c depends only on T. The norm is the total variation
norm.

(iii) v is absolutely continuous with respect to Lebesgue measure on I. If μ is a
continuous function with compact support and dv = Fdθ, then F is a continuous
non-negative function.

Proof. We begin by assuming that μ is continuous. For each / in P, Tf(θ) is
an average of/ over a non-empty open interval when θ is not zero. In fact T maps
bounded sets of functions which are uniformly supported away from zero into
compact sets in P. To prove this rewrite T as

Tf(θ) = f μ[Γ(*> β)](δΓ/3α)/(α)dα (10)

where

m = Γ(α,θ) if α = Φ(θ,m)

i.e. 2 — mw2 = tanα + cotθ.
Then

Tf(θ)= JJgJS μ[Γ(α, Θ)]w-2sec2α/(α)^α (11)

where

= [m l ϊm2].
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For each positive ε we can find a δ so that \θ\<δ,

π/2-ε>Φ(0,m)>-π/2 + ε

for all mesuppdp. We define

Pδ={feP:f(θ) = 0 if \θ\<δ}.

If θ and φ lie outside the interval ( — δ, δ) and fePδ have

Tf(θ)-Tf(φ)= JI'̂ J μ[Γ(α,θ)]w-2sec2α/(α)dα

μ[Γ(α,θ)]w-2sec2α/(α)dα

0)]w- 2sec2α/(oe)Jα . (12)

Because φ is bounded away from ±π/2, sec2α<sec2ε in these integrals so that

\Tf(θ)-Tf(φ)\

||μ|| \Φ(Θ, m2)-Φ(φ, «2)| + πsup|μ[Γ(α,0)]-μ[Γ(α,θ)]|} . (13)
α

So TPδ is an equicontinuous set of functions in P. In general / will not vanish
near the origin. To handle these functions choose two functions g± and g2 in P
so that

#2=0 when \θ\>2δ

= 1 when \θ\<δ.

Then for any /in P,fg1 and T(fg2) are in Pδ so that T2Pζ TPδ. So T2 is a compact
operator on P.

If μeL2(RJr\ then we can approximate it arbitrarily closely in L1 by a con-
tinuous function and so the corresponding T2 can be approximated in norm by
compact operators. Thus T2 is compact if μeZA

Suppose that T2f = eiθfanά that max|/| = |/(α)|. Then

|/(α)| = I f dp(m1)dp(m2)/[Φm2ΦWl(α)]| .

This can only be true if

/[*»,**,(«)] = ̂ l/(«)l for all m l 9m2esupp(dp).

Repeating this argument implies that f = einθ\f(oι)\ on the set

To study this set it is helpful to view the transformation Φ( , m) = Φw(.) in another
way. In terms of the variable z = tanθ, Φm yields a fractional linear transformation
Γ(m) defined by

2-mw2-z~1 . (14)
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So products of the maps Φm yield products of the fractional transformations T(m)
(information on these is in the appendix).
If at least one of the transformations T(w) is hyperbolic the sequence {Φr

m(oc)}
converges to the attractive fixed point β of T(m) and so eirθ\f(tt)\-*f(β) as r->oo.
This is only true if 9=0. In this case /is real and we can apply a similar argument
to the sets on which / = max/ and / = min/ and find that / is a constant. So in
this case the only eigenvalue on this unit circle is simple and is at 1.

If on the other hand, all the transformations T(m) are elliptic we have for each m

The set S = {Φr

m(a) : r even} is dense in / and so \f(φ)\ = |/(α)| for all φ in L However
T2/ is a weighted average of/ and the weighted average of vectors on a circle
will only lie on the same circle if all the original vectors are parallel. Hence / is
again constant on / and Θ = Q.

(ii) T2 is a positive operator on P and so we can apply Theorem 6, page 714
from Dunford and Schwartz [4] to obtain

\\Tnf-<v,fye\\ίc ρ"

40) = 1, for all θ in/.
c is a constant, depending on T but not on / So

| |Γ*"σ-v| |=sup<T*»(j-v,/>^cρΛ.
/eP

(iii) For any a in / it is not hard to check that T*2(5α has a continuous density
(wodθ) and so all the measures T*"<5α also have continuous densities. Convergence
of the measures in the total variation norm is equivalent to convergence of the
densities in Ll and so v is absolutely continuous, (dv = Fdθ). When μ is continuous,
F is also continuous. If one of the maps T(m) is elliptic (i.e. 4>mω2>0) a direct
argument shows that F does not vanish on /. If all the maps T(m) are hyperbolic
then F will be supported on the interval covered by the attractive fixed points of
{T(m):mesupp(dp)}. F will then vanish outside this interval.

Remarks, (i) v is called the stationary measure for T* since T*v = v.
(ii) It is not clear if a unique v exists for more general mass distributions. The

rather pathological behaviour of the examples given by Schmidt suggests that it
need not be unique when just two masses can occur.

2. Asymptotic Behaviour of log2

We imitate the method of Tutubalin [2] and Nagaev [3] and compute the charac-
teristic function of the random variable logί2. From 4,

Iogί2

+! = logί2 + a(mn+1, θn) (15)

α(m, θ) = log sin2θ - log cos2Φ(θ, m)

- Iog[sin2θ + (x sinθ - cosθ)2] . (16)
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The asymptotic distribution of θn is v and so the mean value of 1/n logf2 con-
verges to y — Ep x vα(m, θ). We define new random variables by

Xn = logt2

n-ny. (17)

Then

Xn + 1=Xa + A(mH+1,ΘJ (18)

9θ) = a(m,θ)-γ. (19)

If Ω is the underlying probability space on when each m^ is defined, Xn+ί is a
random variable defined on Ωn+l and its characteristic function is

φn+1(λ) = E^<fλx»"

Ξ E E e1 nel ^m n + ι ' n>
Ωn p

= E J dp(m)eiλA(mMeiλXn(θn, mί...mn)
Ω"

= E [_eίλx»A(λ)e(θn}]
Qn V^W

where

A(λ)f(θ)= J dp(m)eίλA(m>θ)flΦ(θ, m)] . (21)

So

φn(λ) = A(λ)ne(π/2) (22)

since

X0 = Q and Θ0 = π/2.

The characteristic function of the normalized random variable n~^Xn is

Theorem 2. We assume that dp(m) = μ(m)dm and that μ is a continuous function
with compact support.

(i) A(λ) is an analytic family of bounded operators on P.
(ii) A(λ}2 is a compact operator on P and when λ is small its dominant eigenvalue

θ(λ) is simple.
(iii) When λ is small

(iv) lim
n->oo

Proof, (i) To show analyticity it is enough to check that if cn = sup f dp(m)\a(m, θ)\n

Θ
then c\ln is bounded. In fact

a(m, 0) = log[ 1 + x2/2 - (*2/2) cos20 - x sin2θ]

with x = 2 — mw2 and so
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C depends only on w, m1? m2 and so if m1 ^ w2

(ii) We can show that A(λ)2 is compact by imitating Theorem 1. (A(G)=T).
Since the eigenvalues of A(ty2, other than 1, lie inside the circle |z|^ρ(w)< 1 then
for small λ the eigenvalues of A(λ)2 other than θ(λ) are inside the circle |z| ̂
(l + ρ)/2 = ρ1. There is only one eigenvalue outside this circle and if e(λ) and v(λ)
are the eigenvectors of A(λ)2 and A(λ)*2 associated with θ(λ) and θ(λ)* we can
expand them in a Taylor series around λ = Q,

)= 1 + iff(Q)λ- i#W2 + 0(/l3) . (23)

The Feyman-Hellemann theorem [20, p. 125] gives

= E
p X V

2 "We put σ2 - 0"(0). (iv) follows from

so that li
«— > oo

The next theorem imitates an argument of Tutubalin [2] and shows that σ2 > 0,
i.e., the limiting distribution of the random variable n~*Xn is a non-degenerate
Gaussian.

Theorem 3. We assume that μ is C1 and has compact support. Then σ2(w) is
strictly positive when W Φ O .

Proof. The spectral integral representation for functions of a compact operator
is especially useful in this proof. We write A(λ) — θ(λ)P(λ) + B(λ) with P(λ) being
the projection e(λ)®v(λ) associated with eigenvalue θ(λ). The spectrum of B(λ)
lies in a disc |z|^ρ(w)<l when λ is sufficiently small. Then we have

2πiφn(λ)= Jy z
n~^z- B(λ)T1e(π/2)dz + 2πiθ(λ)\e, v(A)Mπ/2, λ)

[Ύ is a closed contour lying between the circles |z| = l and |z| = ρ(w)]. The first
term is uniformly bounded for all small λ. Then

- 2πE(Xn) = 2πίnθ'(0) + 2πfe'(0)(π/2)

Abounded terms . (24)

Similarly VarX2 = nσ2 + bounded terms and so if σ2 = 0 we can choose a constant
C so that for all n

Pr(\Xn-EXn\>c)<l/2. (25)
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We will obtain a contradiction by showing that for large n

Pr(\Xn-EXn\^c)<l/2, (26)

= (2πΓ* JJ eίM

When /IΦO, ^4(/l)2 has no eigenvalues on the unit circle and so φn(λ)-*Q as
rc-xx). We can split the region of integration into three regions.

(i) m^(5, \φn(λ)\^ί so the integral here is less than 2<5.
(ii) δ^\λ\^A9 the dominanted convergence theorem combined with </>n->0

shows that this integral goes to zero as n increases.
(iii) \λ\ ^A, the integral is bounded by a multiple of e~*A2.
So as n->oo, E(έ?-**»)-*0, and Prt\Xn\<LC)^E(e-**n)e*c2^Q as n-*oo. So for

w large enough (26) is true and the contradiction forces σ2 to be strictly positive.

Corollary to Theorem 2. Asymptotically Zn and θn are independent

It Eίf(Z
n~>oo

for any feL2(R\ geP where n is the density of Gaussian random variable with
zero mean and unit variance.

Proof.

= E \dp(myλz»eiλA(mMg\Φ(θn,m)-]
Ω»

= E [_eiλz"A(λn--)g(θn)-]

The next theorems show that γ is strictly positive when wφO. The first is due
to Furstenberg and is just Lemma 8.9 in his paper [1].

Theorem 4. y = E a(m, θ) > 0 when w > 0.
pxv

Proof. We are still assuming that dp = μdm with μ continuous. Hence dv = Fdθ
and F is non-negative. Using (16) we can write

a(θ,m)=-log(dΦ(θ,m)/dθ)

We define a measure vm by vm(A) = v[Φ(A,m)]. Provided that F(θ)>0 we have

θ, m)/dθ) .

Since F might vanish it is possible that both sides of this equation are identically
+ 00 on an open interval. In this case we can replace v(dθ) by vb(dθ) = (F(θ) + b)dθ
with b > 0. Using vb if need be instead of v the argument below applies and finally,
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using the boundedness of F logF the same result applies. With this proviso we
obtain

-γ=$dv(θ)dp(m)log(dvjdv)

- J dv(θ)dp(m) log(F[Φ(0, ro)]/F(θ)) .

Using the stationarity of v i.e.

v(A)=\dp(m}v\_Ψ(A,m)]

means that the second term vanishes and so

-y=$dv(θ)dp(m)\og(dvjdv).

Using Jensen's inequality gives

dvm(θ) = V (29)

and so y>0 unless dvm/dv = l for all mesuppμ. I.e. unless v is invariant under all
the transformations Φm on /. [We will say that a measure v on / is invariant under
a transformation T:/-»/ if v(A) = v(TA) for each measurable set A in /.]

It is helpful to view this more generally. Any matrix g in M(2, R), g =
\c

maps the line {λn:λ>0} into another line {λgn:λ>0} and so induces a trans-
formation of the circle S1 into itself given by

g:θ-*θ

when

n = (sinθ, cosθ), gn = fc(sinθ, cosθ)

i.e.

~ αtanθ + fc
tanθ= - T— - (30)

ctanθ + d v '

i.e. tanθ transforms under the fractional linear transformation associated with g.
So we want to know when a measure on S1 can be invariant under the action of a
subgroup of SL(2,R).

The next theorem shows that there is no measure on S1 which is invariant
under the action of the subgroup G of SL(2, R) generated by the transfer matrices
Tm and so we can conclude that y > 0.

Theorem 5.

(i) // H is a subgroup of SL(2, R) so that
(Fl) H is not compact.
(F2) No subgroup ofH with finite index in H is reducible in its action on R2,

then there is no measure on S1 which invariant under H.
(ii) The subgroup G of SL(2, R) generated by at least two distinct transfer

matrices obey (Fl) and (F2).
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Remarks. The criteria (Fl) and (F2) are due to Furstenberg [1, Theorem 8.6].
Matsuda and Ishii [8] were the first to prove that G obeyed F. Their proof is
rather difficult. Recently it has been greatly simplified by Yoshioka [11]. The
proof given here is entirely due to him and is repeated for completeness.

Proof, (i) Any matrix g in SL(2, R) has a non-unique decomposition g = 0ld02

where 0^^ and 02 are orthogonal matrices and d is diagonal with positive entries
t and t~l (we can start with the polar decomposition g = so, s symmetric and
positive, o orthogonal and then diagonalize 5 by an orthogonal matrix OJ. Thus
g is specified by two angles φ, θ and a positive number ί. Since H is not compact
it is possible to choose a subsequence hn whose parameters are θn, φn, and tn and
as n increases, θn-*θ, φn-+φ, and ίπ->0 or oo. In either case these two subspaces
V1 and V2 so that if xφV1 then hnx-+ V2. e.g. if ίn->0 the angle between the vectors
gnv and (cosφ, — sin</>) tends to zero except perhaps if v is parallel to (cos#, — sinθ).

So if v is a measure on S1 which is invariant under H it will be concentrated
at the four points of S1 determined by V1 and V2. Any heH will then have to
permute the subspaces Vi and V2 and since some of them will preserve Vγ and V2

we can find a subgroup of H with finite index which has non-trivial invariant
subspaces. This contradicts (F2). Thus if (Fl) and (F2) hold there is no measure
on S1 which is invariant under H.

/x _ n /y —1\
(ii) To show that G is not compact take A = and B = with

xή= y and from (A~1B)n= \ , , I. Thus G is not compact. Now notice that
\n(x-y) I/

AB ~1 = I . If G0 is a subgroup of G with finite index in G there are integers

m and n so that (A~1B)m and (AB'1)" are in G0. Thus G0 contains two matrices

of the type C= i i ^= (n w^ & 9^®- The algebra generated by C,

D and the identity is M(2, R) so any subspace invariant under G0 is also invariant
under everything in M(2, R) and so is either 0 or R2.

Thus G obeys (Fl) and (F2) and so y>0.
Finally we remark that we have mostly suppressed the dependence of the

random variables Zn and the constants y and σ on the frequency w. They are of
course dependent on w and in future we will write y(w) and σ2(w) explicitly.

3. Conductivity of Disordered Chains

We can now use the results from the last section to show that the bulk of the heat
current JN comes from low frequencies. First we look at other ways of writing
(2) which are useful. Casher and Lebowitz [7] derived the expression

jN(^) = 2mίmNλ2vV

2+KlN + λ2w2(m2KlN + m2^

(31)
Here

l .ΛΓ-1 ~~Λ2,ΛΓ-1
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The notation K1N comes from a representation of this function as an N xN
determinant depending on the masses mί . . .mN; in general Kitj depends on mt. . .m y

In terms of tN and ΘN we have,

K1>N_ί=tNcosθN. (32)

We then have two lower bounds for jN(w);

jN(w)^2m,mNλ2w2 (33)

jN(w) ̂  t2(sm2θN + λ2 w2m2 cosθ2

N) (34)

and so w2/^)"1 is bounded either by a constant or a multiple of i^(w)~2-
max[w2, m#2/l~2]. We introduce the notation JN(a, b) for the contribution to JN

from the frequency interval b^w^a and we also normalize the masses so that

Theorem 6. // the common distribution of the masses in a random chain has a C1

density with compact support then for each ε > 0 and λ>0 there are constant C(ε, λ)
and a(s) so that

< JN(s, oo)> ̂  C(ε, λ) exp[ - λa(ε)N^ (35)

for N sufficiently large. a(ε) is strictly positive.
Proof. The intervals [2 + (5, oo] and [ε, 2 + δ] can be treated separately. Since

each mass is greater than 1 plane waves with frequencies above 2 are exponentially
attenuated by every chain. Using Rayleigh's theorem [18] we get

where w2 = 2 + 2 cosh(p) and so for each chain

JN(2 + <S, oo) ̂  const exp[ - ±Nδ*] . (36)

At frequencies below 2 4- δ the randomness of the masses is important.
We write T(w) and A(λ, w) to show the frequency dependence of these operators

explicitly. It is only a matter of some messy algebra to check that T(w)2 can be
written as an integral operator with a kernel depending continuously on w. So
T(w)2 is norm-continuous with w (and so is uniformly continuous on any finite
interval [w0, wj, w0>0). The same is true of A(λ, w) and in particular we have

(i) A(λ, w)2 is norm continuous in λ and w when λ lies in a small neighbour-
hood A/Of 0 and we [w0, wj.

(ii) y(w) and σ(w) are continuous functions of w and so have strictly positive
lower bounds on [w0, H^].

(iii) θ(λ, w) and e(λ, w) and their derivatives are continuous in w and λ.
(iv) We can find a number ρ< 1 so that the spectra of all the operators B(λ, w)2

lie inside \z\ = ρ. ρ will of course depend on [w0, w J.
(v) If C is a closed curve lying between the circles \z\=ρ and |z| = l we can

find a uniform upper bound on || [z — A(λ, w] ~ 1 1| when ze(, AeΛΓand we[w0, wx].
This upper bound b depends on w0 and W j .
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Combining these with the spectral integral representation gives

EeλZn(w) = θ(iλ/(σ]/ή), w)ne(iλ/(σ]/n)9 w)

+ (2π/Γ1 ^zn-\z-B(iλl(σ\Γn\^]\-leάz.

= e^λ2 (uniformly bounded term) + error smaller than bρn .

where ZΛ( w) = n ~ * σ ~ 1 3fn( w).
So for any finite /I, it is possible to choose n so large that

2 (37)

uniformly for we[w0, wj.
If x is negative we have for negative λ,

Pr[ZN(w) ^ x] g e " λ*2e*λ2 (38)

for AT sufficiently large, uniformly in [w0, u^]. So

^ C(λ) exp[ - (λ/2)ΛΓMwo)] (39)

since where a(w0)= min{y(w)σ(w)~1 for we[w0, wj} (by (ii), it is strictly positive).
Using (39) and the upper bound (34) gives

< JN(ε, 2 + δ) > ̂  2 exp[ - ΛΛ^φ)]

+ Jε

2 + * exp[ - i AΓy(w)]dw ̂  C(ε, λ) exp[ - UVtyε)]

for any fixed λ and JV large enough.
Clearly these limit theorems must be supplemented by careful error estimates

if we are extend Theorem 6 to cover frequencies which are closer to 0 and especially
those of 0(JV~*). We summarize below some accumulated intuition on disordered
chains which suggests the kind of results one might try to prove.

A simple mixed view of heat conduction is that the heat baths excite a chain
to vibrate in a superposition of plane wave vibrations. While only a few of these
plane waves are actually normal modes of the free chain it is plausible to suppose
that they resemble the normal modes whose frequencies are near. Many numerical
calculations have been made on the shapes of the normal modes of a disordered
chain [8, 9, 16, 19]. It seems that in most chains of length N the modes with fre-
quencies vv = O(N~^) fall away exponentially from a region of maximum amplitude
(i.e. they are localized). Those with frequencies w = o(ΛΓ~*) tend rather to resemble
the sinusoidal forms of normal modes in periodic chains. So we expect that plane
waves with frequencies O(N~^) will trap energy in the interior of the chain and
those with frequencies o(N~^) will act as efficient carriers of energy along the
chain, (the frequencies between o(N~^) and O(N~^) do not exhibit a sharp pre-
ference for either type).

This suggests that three steps are needed to complete this analysis.
1. The central limit Theorem 2 must be strengthened by explicit error estimates.

The spectral integral representation suggests estimating [z — A(λ}]~1e when |z|
is close to 1. A special case of this arises when we try to find the frequency de-
pendence of v or σ2 (this involves [1 — T]"1).
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We expect that σ2(w)~w2 and since it is known that y(w)~w2 [8, 12], we
expect Na(w)2 ~ Nw2 for small w. (This particular combination of N and w is
suggested by the natural dividing line w~JV~A)

2. For very low frequencies, w = o(N~*), one must prove that the plane waves
are insensitive to the individual masses but rather depend mainly on averages of
the mass over long subchains.

3. To bridge the gap from o(N~*) to 0(N~^) perhaps a theorem analogous
to the large deviation theorems for additive random variables will suffice [17].

If (2) is true we expect that the contribution to JN from these frequencies will
be of the same order as the contribution they make to the heat current through
a chain of equal masses. This is 0(N~^) (using the method of [7], Section 3).

Finally we remark that (1) is analogous to the classical theorem of Berry and
Esseen [17] and a result of Nagaev [3] for additive functions on stationary
Markov chains.

Appendix 5

Here we summarize some well known results on bilinear transformations of C1.

The matrix A=\ Ί in SL(2, R) induces a bilinear transformation
\c d)

T:z-*w = (az + b)/(cz + d) on C1 .

T, in general, has two fixed points z+ and z_ and with these we can rewrite T as

If |tr/4|>2, T is hyperbolic and the fixed points of the form λ and Λ,"1, λ is real
and \λ\ > 1. If z is different from Λ,"1, Tnz converges to the attractive fixed point λ.

If \trA\ ^2, T is elliptic and the fixed points are of the form elθ and e"lθ. m is
actually of the form eίa and if eia is not an integral root of unity the successive
images of any point in Rl form a dense set in R1.

Lemma. Suppose U is an open set of elliptic transformations in SL(2, R). Then
for any xeJR 1 the set S = {gnx:gEU, n=l,29 ...} is dense in R1.

Proof. Associated with each g there is a phase factor m = eίΰί (40) which depends
continuously on g. Since α is not a constant it cannot always be a rational multiple
of 2π and so S will be dense in Λ1. In fact it is enough that there are an uncountable
number of elements in U.
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