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Abstract. The positive temperature Gibbs state of a scalar boson field with a relativistic local self-
interaction in two space-time dimensional Minkowski universe as constructed in [1] is not relativistic
invariant. We prove in this paper that the corresponding state in the De Sitter universe is actually

relativistic invariant if the temperature is given by T — where R is the constant radius of cur-
2πR

vature of the De Sitter universe. Moreover the construction gives that the Schwinger functions or
imaginary time Wightman functions are the moments of a generalized Markoff process on the sphere
of radius R.

0. Introduction

In a recent paper [1], a Markoff field approach has been applied to the study
of statistical mechanics for interacting bosons in two space-time dimensions,
without cutoff. The Gibbs state at positive temperature is explicitely constructed
and it is proved that for every positive temperature the thermodynamic limit
exists and is unique for the polynomial and exponential interactions. This is

achieved by showing that the Schwinger functions at positive temperature -

the imaginary time Gibbs states at temperature - are equal to the Schwinger

functions (in the usual terminology) for the interacting field in a periodic box of
length β. In turn this is proved expressing the functions Sβ by means of a F.K.N.-

type formula which links the Gibbs state at temperature - to a Markoff field

on the cylinder Sβ x 1R (Sβ is the circle of length β) which becomes the euclidean
Markoff field on R2 associated with the 0 temperature theory when the curvature
of the cylinder goes to 0, i.e. when β^oo.

The lack of relativistic covariance contained in the definition of Gibbs state
has, as an imaginary time counter-part, the lack of euclidean covariance of the
associated Markoff field and, roughly speaking, is measured by the magnitude

of - or, in other words, by the radius of curvature in time direction of the manifold

supporting the associated Markoff field. This suggests the possibility of carrying
out the construction of an invariant Gibbs state for a boson scalar field in a finite,
homogeneous, isotropic 2-dimensional universe with constant curvature in
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spatial direction (the so called De Sitter universe) by means of a Markoff field
on a sphere, at least if the temperature of this universe is chosen equal to (2πR)~l,
where R is the radius of curvature of the universe.

The symmetry of the structure of the De Sitter universe makes it easier to deal
with the difficulties arising from the lack of a global system of coordinates. On
the other hand, the De Sitter Universe presents the advantage of having finite
spatial extension and hence no infinite volume problems.

In this paper we develop this idea merely by adapting the results set up in [1]
to this case, showing that there exists the positive temperature state or the Gibbs

state at temperature -, for β = 2πR, for a boson field in two-dimensional space-

time with polynomial and exponential interaction and without cutoff and that
this state is invariant under the De Sitter group.

In this connection, the new results [2] on the removal of the momentum
cutoff for polynomial interactions in 3 space-time dimensions in the flat case
suggest that, hopefully, in a De Sitter universe, because of its finite spatial extension,
it will be possible to get the invariant Gibbs state in space-time dimensions higher
than two.

1. The Two Dimensional De Sitter Universe

The metric of the 2-dimensional De Sitter universe is

- ds2 = φ\x\

with

corresponding to a static, homogeneous and isotropic solution of the Einstein
field equations, with the condition

μ° + p° = 0 (c = l),

where μ° is the density and p° the pressure of the universe [3]. The two dimensional
De Sitter universe can be embedded in a three dimensional flat space. It cor-
responds there to the hyperboloid:

ξ 1

2 + ξ2

2-t32=R2 (i.l)
with

4R2

and the metric:

-ds2 = dξ1

2+dξ2

2-dξ3

2. (1.2)
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In turn by means of the <fs it is possible to define the Lemaitre-Robertson co-
ordinates x', £' which make the De Sitter universe's geometry more transparent:

(1.3)

f x'2 4

and

-ds2 = eR dx'2-dt'2. (1.4)

In this system of coordinates the scalar and vector potential of the gravitational
fields are 0. The trajectories of light rays are straight lines. Furthermore, for every
fixed time £, the metric is euclidean and the spatial distance from the origin of a
point of coordinate x' is :

ΐ'

l = e*x'. (1.5)

It is simple to verify that, because of this "expansion" the furthest place from
where an observer placed in the origin of the spatial coordinates (x' = 0) can "have
informations" (by means of light signals) is at distance which, for every ί', is equal
to the constant R, the so called horizon of the universe. From (1.5) it follows that
the visible part of the universe consists, for this observer, of the points that at

-f
time t' have coordinates x' whose absolute value does not exceed e R R.

The De Sitter group is the group of transformations of the hyperboloid (1.1)
onto itself, which leave invariant the metric (1.2); in other words it is the group of
the orthogonal transformations in the euclidean space of the coordinates ξ l 3 ξ2,
and ξ'3 = iξ3. The induced action of a transformation ^-x^ of the De Sitter group
on the coordinates x' t':

leaves (1.4) form invariant, i.e. gik(x'9 t') = gik(x'9 t'\ This is obviously true for any
pair of generalized coordinates describing the De Sitter universe and in this sense
the transformations of the De Sitter group are said to link "equivalent systems".

In the coordinates £ l 5 ξ2, ξ'3 the generators of the De Sitter group are the
following well known generators

The one parameter subgroup of time translations should be of course a non
compact one dimensional subgroup of the De Sitter group. It is well known that
there is only one such subgroup up to inner automorphisms, and its generator
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is in fact J3 2. We therefore introduce the coordinates φ, t by

(1.7)

Ύ = φ=Ύ
to get the points in the De Sitter universe parametrized in such a way that the
transformation induced in the De Sitter universe by the translation t-^t + s in
the coordinates (1.7) is the action of the one parametric time subgroup of the
De Sitter group.

Actually these new coordinates do not cover the whole De Sitter universe,
but only the portion

However, they cover exactly the visible universe of an observer who is at x' = 0
when t' = Q (or equivalently φ = 0 and ί = 0). In fact we have already mentioned

that the visible world of this observer at "time" t' is |x'||x'|^Ke j , which just
by (1.3) implies (1.8). In the (φ, t) coordinates the metric reads

-ds = dφ2-cos2-dt2. (1.9)
j\
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The first drawing represents the visible world of an observer in the origin 0.

ξί = Λsin— ξ2 = Rcosh— cos— ξ3 = .Rsinh— cos —
R R R R R

The transformation t
sphere

- f?2 =

— it maps the imaginary sphere £ l 5 ξ2, £3 = ̂ 3 onto the

- -

2. The Hamiltonian of the De Sitter Scalar Field

Formally we can construct the invariant classical action for the classical
field φ

where L is a scalar lagrangian density and \g\ is the determinant of the metric
matrix. Let us choose the scalar field lagrangian

and the metric (1.9) so that

dφ
cos—dφdt

R

The in variance with respect to the translations of t provides us with the conserved
quantity

'\sφ. R
i vY1 A(cos-j dφ. (2.0)

For every arbitrary closed interval 7' = [α', &'] strictly contained in [— |K,f
the form (2.0) can be written

where ( , ) is the scalar product in L 2(/ ;, (cos— 1 dφ and A2 is the unique

strictly positive operator with fixed selfadjoint boundary conditions defined, via
the representation theorem, by the bilinear form

7φ du du
COS : —

R dφ dφ
ιΨ_ ψ_
RUV\\COSR

(2.1)
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The (2.1) can be put in more suitable form by means of the unitary transforma-
tion U

given by
/ x. π \

(Uv) (x) = v'(x) = v 12Λarctgέ?* - ~ *)> (2 2)

where / = [α,b] with a = R\ogtgl~ + ϋ and b = jRlogtg + On L2(I,dx)

we get from the form (2.1)

φ', !/)=!, (2.3)
dxdx \ R]

The following properties are well known and easily checked for any such form.
1) The unique strictly positive selfadjoint operator Aϊ associated with (2.3)

has discrete spectrum with eigenvalues λ1

 2 < λ2

2... < λn

2 < ... of finite multiplicity
and \imλn= oo with the same degree of increase as n2.

Moreover e~sAl, s>0 is of trace class. (These are simple consequences of the
fact that on L2(7, dx)

for some c>0 and of the minimax principle [4].)
2) The square root Al of Aj2 is selfadjoint, strictly positive, with discrete

spectrum consisting of eigenvalues of finite multiplicity which grow to infinity at
least as n does; e~sAl, s>0 is of trace class. Furthermore D(AI) = D(tf) and D(A2)
is a core of Aj. To achieve the non formal Hamiltonian of the quantized theory,
let us consider the Hubert space ht of the real functions of φ belonging to D(Aj) =
D(t'} equipped by the norm:

where ( , ) is the internal product on L2(/, dx). Let L2(dμhl) be the space of the
complex functions square integrable w.r.t. the normal distribution on hj. L2(dμhl)
is isomorphic with the symmetric tensor algebra on /z/? i.e. the Fock space ^(hj)
constructed on hj [5].

We define Hj° as the selfadjoint generator of the strongly continuous group
of unitary operators Γ (eitAl) (the second quantization of eitAl) on L2(dμhl).

The property 2) stated above implies immediately that e~sΐll° is of trace class
and that

^γe-sHI

0_\^_e-sAI\-l _.£-trlog(l -e-sAj)

3. The Gibbs State for the Free Scalar Quantum Field

3.1. We can now define the Gibbs state at positive temperature T = -with

= 2πR for the free De Sitter scalar field of mass m by

ω j°(B) = (tr e ~ 2πRHl°) " 1 ir(Be ~ 2πRHl°) ,
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where B e B(L2(dμhl)\ the C*-algebra of bounded operators on L2(dμhl). To
construct it explicitly we have to state a lemma, proved in [1], which will provide
us with the main technical tool in the following. We need first to introduce some
notations.

Let Qj be the Hubert space of the functions ξ'(φ,t) with φ e /' = [α'? b'~] and
t e [0,2πjR] which are periodic in ί, satisfy for every t the boundary condition of
A2' and have the norm:

«-• cos-dφdt (3.1)
JR

finite.
Equivalent characterization of Qj are:
1) the Hubert space of the functions ξ(x,t), xe/=[α, b~] £e[0, 2πR] which

are periodic in ί, satisfy for every t the boundary conditions on A2 and have the
norm

lδ> £1 = ίoπ*ί/[ίf}2 + (rT + ίcosh-έΓ m2H dxdt (3 2)[\0ί/ \cbc/ \ KJ J

finite
2) the Hubert space of the functions η(t) from the circle of length 2πR in

L2 Γ9 cos — d(p equipped by the norm:
\ \ R i

where ( , ) is the inner product in L2!/', cos— dφ). Qj will indicate one of
\

the above representations equivalently. Let dμQl denote the normal distributions
over Qj and £/°( ) = j dμQl be the expectation w.r.t. dμQl. Ej0 can be as well
characterized as the expectation w.r.t. the generalized gaussian process Φ' on
[0, 2πK] x /' with mean 0 and covariance given by the Green function GΓ(φ, φ';
ί— ί') of the selfadjoint operator associated with the form (3.1) on the space of
the functions on the sphere cut along the "parallels" φ = af and φ = b', square

integrable w.r.t. the measure dω = cos—dφdt. Moreover E^ can be characterized
R

as the expectation w.r.t. the generalized gaussian process Φ on [0, 2πR~\ x / with
mean 0 and covariance given by the Green function G/(x, x' t — t') for the self-
adjoint operator

d2 d2 I x\- 2 d2

with the corresponding selfadjoint boundary condition. With respect to the
variable ί, it is then an ordinary homogeneous process and in particular the sharp-
time stochastic variables Φ(/, t) are well defined for t e [0, 2πR~\ and /e CJ(Int /)
by the covariance

Ej°(Φ(f, 0)Φ(g, ί)) = (/, (2AI(ί -e-2"1"'))- V'Xl + «~(2"*~'Ml)0) ,

where ( , ) is the scalar product in L2(I, dx).
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Finally we note that the unitary transformation ξ'(φ,f)-+ξ'(φ,t + τ) on β7

induces a dμQl-measure-preserving transformation and hence an isometric
transformation on every Lp(dμQl), 1 ̂ p^ oo, that will be indicated by 0Γ

With these definitions we have :

Lemma 3.0. 7/F0, F lv.., F m _ t are in Lco(dμhl) andO = s0^sί...^sm = 2πR then

tr(F e~SίHl°F e-(s2-^)H^ p -(2πR-Srn-,)H^\
V 0 1 * " * m 1 / / / 3 ' 3 \

Hi-β-2"™r%°[Π%J0.Λ]
Remark. The lemma remains true if, instead of Ft 's in L™(dμhl) we put in the

left hand side of (3.3) the time zero relativistic fields φ(f& /feCJίlnt/), i.e. the
linear functionals on hr space given by [φ(/)](^) = (^,/) where ( , ) is the scalar
product in L2(7, dx).

In fact, in this case, in the right hand side of (3.3) will appear just the m-th
momentum of the sharp time stochastic variables Φ(/f, st).

3.2. We define now the C*-automorphism on B(L2(dμhl}}

For B and C in B(L2(dμhl)) the Gibbs state has the following properties:

a) ω^B - α/

0[ί](Q) = ωJ

0(α/°[-ί](B) C) . (3.4)

b) (3.4) is analytic in t in the strip — 2πR<Imt<0, continuous and uniformly
bounded in the closure of the strip.

c) (3.4) satisfies the KMS condition on the boundary

ωj°(B - otI°lt-i2πR~](C)) = ωI

Q(C αΛ-fP)) -

d) If F0...FmeLCG(dμhl) then ωI

Q(FQaI\t^(F,}...^tm\(Fm)) is analytic in
— 2πR<lmtm< ...Imt1 <0, continuous and uniformly bounded in the closure
of the hyper strip and its value at imaginary points tk= —ίsh sfceIR and 0 = s0^
s1...^5m + 1 =2πR, is given by

ωA^/

0[-^J(FJ...α/[-/5j(FJ) = £/°(Π"=oQkFfc). (3.5)

As in the remark of the Lemma 3.0, the property d) extends to the case in which
F0...Fm are substituted by the fields φ(fo)...φ(fm). We will call the quantities

W,°(/o, 0 . . -fm, ί J = ωΛ^/oKVi MΛ) - .

the Wightman functions for the free De Sitter scalar field in the volume I. The
corresponding imaginary time quantities will be called Schwinger functions for
the same field.

Let now Ω be an open interval Ωd and V(f\ U(f\ fε CQ (Ω) the standard
unitary representation of the commutation relations in Weil form on L2(dμhl).
Explicitly, V(f) can be taken to be the operator of multiplication by ei(ψ'f} for
ψehj and U(g) defined by U(g)F(ψ) = F(ψ + g) for every FeL2(dμhl). Let us
introduce the definitions:

j/0(£2) is the smallest norm closed algebra in B(L2(dμhl)) which contains V(g)
3ndU(g)9geC$(Ω).
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j/0(β) is its strong closure in B(L2(dμh$.
j/o denotes the norm closure of Uβ[j/0(Ω)|ΩClR].
As in the flat case the two following properties hold:
1) j/0(Ω) does not depend on the choice of the interval / as far as ΩcL
Because jtf0(Ω) is a norm closed algebra faithfully represented in every

B(L2(dμhl)\ it does not depend on the interval /, for ΩcL To see that J/0(Ώ), too,
does not depend on /, we have to show that if Ωd± CI2 the strong topologies in
B(L2(dμhlJ) and in B(L2(dμhl2)) induce equivalent topologies on j/0(£2). In turn
it is enough to prove that the measures obtained conditionating the generalized
gaussian process of mean 0 and covariance given by the Green functions of the
operators A^ and Al2 with respect to the σ-algebra generated by φ(f)9 with
/eCo^Ω) are equivalent. This is so because in the representation (3.2) we have

fl2

— ̂ ~2

as the selfadjoint operator on L2(7, dx) with some selfadjoint boundary condition
at the endpoints of /. So we see that our free Hamίltonίan is the same as the flat

/ x\~2

Hamiltonian with a quadratic perturbation. Since cosh— is bounded below
\ RI

by a positive constant on the finite interval /, we get the equivalence from the
corresponding equivalence in the flat case.

2)_We have also the classical result about the finite propagation speed, i.e. if
B e j/0(Ω) then α/MW e J/0(Ωt) where Ωt = {x|dist(x, Ω)< f}.

In fact the proof [6] in the flat case is based only on the abstract Fock structure
and on the property of the fundamental solution of Klein-Gordon equation to
propagate inside the light cone, that is a general property of any hyperbolic
equation and applies as well in our case where the K.G. equation for the field is
substituted by

x^-2

-J J φ ( x , t ) .

So αj°[ί] is independent o f / as far as ΩtCL Let us denote this independent value
by oct°(B). at°(B) is then a C*-isomorphisrn_ from s/0(Ω) into J/Q(Ωt) for any Ω,
hence it extends to a C*-automorphism of<stf0. We define now the local algebra j/0

for the free field. Let ^(Ω) be the class of functions in L°°(dμΛι) that are bounded
continuous functions of a finite number of fields φ ( f 1 ) . . .φ(fn) with/ t.. ./„ e C£(Ω).
j/o will be the smallest norm closed C*-algebra in j/0 containing all the operators
of the form at°(F\ V F e ^(Ω). ja/0 is obviously invariant under αf°.

3.3. We are now in condition to state the main theorem on the existence of the
limit state ω°. Moreover we want to show that the infinite volume limit Wightman
functions have co variance property with respect to the De Sitter group.

Theorem 3.1. // j/0 is the local algebra for the free field and α,0 is the C*-
automorphism defined above, then on jtfQ there exists a state ω° with the following
properties:
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ii) ω°(B ct,t°(C)) is analytic in the strip — 2πjR<Imί<0 and uniformly bounded
in — 2πR ^lmt^Q and satisfies the KMS condition on the boundary

Furthermore if FQ...FnE^(Ω) then ω0(F0αf

0

1(F1)...αt°π(Fll)) is analytic in 0>Imί1>
. . . > Im tn > — 2πR, continuous and uniformly bounded in the closure of this hyper-
strip and at imaginary time tk = — isk, Q = s0^s1...^sn+1 = 2πR its value is given by

ω°(Foθc0-ίsι(Fι)...α0-ίJFn)) = £0(Π"k=oOSkFft). (3.6)

Here E° is the expectation with respect to the generalized gaussian process with
mean 0 and covariance given by the Green function G(φ, φ' t — t') for the operator
— As + m2, where —As is the invariant laplacian on L2(dω) the square integrable

functions on the sphere of radius R w.r.t. the invariant measure dω = cos--dφdt.
R

iii) if BE j/0 is in jtf0(Ω) for some open bounded interval Ω, then

ω°(B)=limωI°(B).
J— * IR

iγ) tf /Oί/iJ •••>/« e ̂ (Ω) for some open bounded interval Ω then the limit

W°(fo, 0,/ι, ti .../» U= limωΛΦ(/oKWι).. •«?>(/„)) (3.7)

exists and is invariant under the De Sitter group.

The proof of i), ii), and iii) is contained in [1]. It follows from the finite propaga-
tion speed property, from Lemma 3.0 and from the convergence of the Green
function of the operator associated with the form (3.1) on the cut sphere, with
some selfadjoint boundary condition on d and br, to the Green function of the
operator —As + m2 where — As is the invariant laplacian on the whole sphere when
/'->[ — ξR,jK]. The proof of the in variance of the Wightman functions requires
only a slight modification of the Nelson's proof [6]. We already know that the
limit (3.7) exists and is analytic in 0>Imί1> ...ImίΠ> —2πR.

Let S°(/o,s0; /,*,•.. tn,sn)=W°(f0, -w0;/Π, -isάO = s0£Sl...£sn+1 = 2πR9

be the corresponding infinite volume limit Schwinger functions. By (3.6) they are
expressed as the momenta of a generalized gaussian process with covariance
G(φ, φ'\ t — t') which is invariant under orthogonal transformations of the sphere.
Hence they are all invariant under the same transformations.

<Pl

Let η\=Rsin-- i = 0...n
R

sl ωl

—cos-^
R R

be a cartesian coordinatization of the sphere of radius R.
By the euclidean covariance :

(3.8)
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Because the S° are analytic for Q = Res0<Resί <...Resfl<2πR and the η's are
entire functions of st , the last equality (3.8) remains true for complex sh sk = εk + itk

Q = £Q<£I... <εn<2πR .

Taking now the limit εk->0, 0 = e0<e1... <εn and noting that n^ξ^ nτ^ζ^
η3->ξ'3 we get the invariance of the Wightman functions under the De Sitter
group.

Until now we have obtained a sequence of distributions W%(xί . . . xn) associated
with the observer in the origin, well defined if xl ... xn are in the visible universe
of this observer and invariant under De Sitter transformations that do not take
the points out of the visible universe of the observer in the origin. But because of
the symmetry of the De Sitter universe under rotations around £3 axis, we can
associate with any other observer, displaced from the origin by a rotation 0, a set
of Wightman functions defined by

W0

n>θ(θx1...θxn)=W°n(xί...xn)

that is

This definition is perfectly consistent and, as a matter of fact, independent of the
observer. In fact, if the points χ1 . . . xn are in the intersection of the visible universes
of the two observers (that is necessary to compare experimental results), by the
invariance property

we get

So actually we have got a sequence of general Wightman functions W^x^.-x,,)
that are well defined as long as there exists some observer s.t. xί...xn are in his
visible universe and that are invariant under every transformation of the De Sitter
group.

4. The Gibbs State in the Interacting Case

In two space-time dimensions, following the Markoίf approach, we have only
to construct the suitable multiplicative functional on the sphere of radius JR,
such to guarantee the invariance of the infinite volume limit Gibbs state.

Let H® be the free Hamiltonian and let us put α= —b so that / is symmetric
w.r.t. the origin.

Let us choose / e 1R such that 0 < / < b. Let us define the interacting Hamiltonian

HJ = if? + JL,: V(φ(x)): cosh-J dx , (4.1)

where V(s) is, as usual, either a bounded below polynomial or an exponential
function of the type



276 R. Figari et al

where dμ(a) is a positive measure with compact support contained in the interval
(-2π,2π).

The definition of the interacting term in (4.1)

* dx

requires some care. The reason is that the co variance operator for the free vacuum
I d 2 I x\~2\~*

is given by — — ̂  + m2 cosh — and since we want to define the Wick

ordering: V(φ(x)): independent of any space cutoff we have the problem that the
/ x\~ 2

function cosh— is not bounded below by any positive constant. In fact the
\ 8

Wick ordering with respect to the free vacuum leads to infrared divergences of the
same type as for the corresponding mass zero model in the flat case.

We shall therefore define the Wick ordering in (4.1) to be the Wick odering

with respect to the free Gibbs state at temperature T = - with β = 2πR. We have

already seen that this Gibbs state restricted to functions of the time zero fields
is actually the restriction of the Gaussian generalized process on the sphere of
radius JR with co variance function equal to the kernel of ( — z^ + m2)"1 as a self-
adjoint operator on L2(dώ) where dω is the invariant measure on the sphere
and — Δs is the invariant laplacian on the sphere. By exhibiting the singularity
of the kernel of ( — z^ + m2)"1 which is actually of the form

d(ωί,ω2)

where d(ω1,ω2) is the geodesic distance on the sphere between the points ω1

and ω2, we immediately get that (4.2) is a well defined function of the generalized
process on the sphere which is actually measurable with respect to the subalgebra
generated by the fields at time zero and between — / and /.

H\ is essentially selfadjoint and bounded below. Moreover, as / is finite, we
also have that H\ has discrete spectrum (bounded below) and e~βHl* is of trace
class. The computation of the trace tre~βHl1 gives for β = 2πR

lγe-2πRHl! _ M _e-2nRAT\-l £θ/^-^πR J?- , :F(Φ(x,ί)):(coshf- ) - 2dxdt\

= \l-e~2πRAl\~1 E°(e-tiπRLί.R+ε

ε V(φ'(<p>t» cosh$d(Pdt) ?

where [— f# + ε,f.R — ε] (ε>0) is the transformed by unitary operator L/" 1 of
the interval [ — /,/]. Φ'(φ,t) is the generalized gaussian process with covariance
given by the Green function of the laplacian on the cut sphere and Ej is the
associated expectation.

Let us define for every B e B(L2(dμhl))

and
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As in the free case, for B e j/(Ω) and Ωt C [ — l,ΐ] C / α/[ί] is independent of / and /
and gives a group of C*-automorphism in si . We call at this independent value.
We now state the main result.

Theorem 4.1. Let stf be the local algebra for the interacting field. There exists a
state ω invariant under αf

for any B and C in j/. ω(B - at(C)) is analytic in the strip — 2πR<lmt<Q and
bounded and continuous in — 2πR ̂  Im t rg 0, and satisfies the KMS condition on the
boundary

for real t.
Furthermore if B is in the subalgebra generated by operators of the form ut(F)

where t belongs to a fixed finite interval and F e ^(Ω) for a fixed bounded Ω then

ω(B)=\im\imωlr(B).
/->oo J-»R

Moreover ω is also invariant under the induced action of the De Sitter group on <$/.

This theorem is proved in the same way as the corresponding theorem in the
flat case [1]. The convergence /->IR goes exactly as in the free case and the con-

x~2

vergence /->oo is actually trivial due to the cutoff function cosh — in (4.2).
\ RJ

By what we have said above we also got the following theorem

Theorem 4.2. The Wightman functions Wn(xi...xr^ for the interacting scalar
field on the De Sitter universe of radius R in two space-time dimensions are well
defined for all the events x t ...xn in the De Sitter universe that are simultaneously
within the visible universe of some observer. Wn(xί...xn) are invariant under the
De Sitter group and with xt = (φi9 tt) they are analytic in the hyper strip 0>lmt1 . . . >
lmtn>-2πR.

Let the Schwinger function Sn(ωι...co^ be the values of Wn at the imaginary
time axis, then Sn(ωί ...ωn) is defined for any ω1...ωnonthe sphere of radius R and
Sn(ωί...ωn) is actually invariant under rotations of this sphere. Moreover

$Sn(ωl...ωn)f1(ωί)...fn(ωn)dω1...dωn

where the expectation is taken w.r.t. the generalized Gaussian process Φ(ω) with
mean zero and covariance given by the kernel in L2(dω) of ( — As + m2)~1. —As is
the invariant laplacian on the sphere, dω is the invariant measure on the sphere and
:V(Φ(ω))\ is the Wick ordering with respect to this gaussian process on the sphere.
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