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Abstract. We consider the notion of dynamical instability of many-body systems wherein states,
which are arbitrarily close initially, are not close at some other fixed time. In controlling the dynamics
of interacting systems of identical Fermions moving on a lattice, we isolate a basic mechanism which
causes instability.

1. Introduction

There are few calculations which establish qualitative control over the dynamics
of interacting, many-body, nonrelativistic systems as a function of particle number.
We are particularly interested here in controlling the following “instability”
phenomenon: A many-body system, which we assume to be qualitatively inde-
pendent of its (large but finite) particle number n and volume V,, can admit a
naturally related family of initial states f, with the property that for each n there
is a well defined evolution of f, for all time, and yet for which there is an instability
in the finite particle system which is made manifest when the initial state f, =lim f,

n—o0

only has a well defined evolution for finite time. For example, one can easily set
up a classical mechanical system of n point particles, p',..., p", and an initial
state f, such that at time t=¢;=)]_,27" particle p’ hits the “target particle”
p* imparting a unit of momentum in a fixed direction. It is clear that for large
but finite n, something unusual occurs just before t=1 (p' attains arbitrarily
high momentum) which causes the breakdown of the evolution of f,, at t=1. We
emphasize that the “catastrophic” feature of the infinite particle system is only a
manifestation of a real instability of the n-particle system and not just an anomaly
of infinite particle systems. (We use the term “instability” because even though f,
and f,, are arbitrarily close, being close to f.,, their evolved states f,(t) and f,(t)
cannot be close at t=1 or else they would define a state, f (1), which we know
does not exist.) A parallel with the phenomenon of phase transitions is clear —
models of finite particle systems do not exhibit phase transitions in the sense of
actual discontinuity or nondifferentiability of thermodynamic functions of
temperature, but the inherent instability of the finite particle system is made
manifest by these features of the corresponding infinite particle system.
Instability seems to be a key obstacle in the dynamical control of continuous
quantum mechanical nonrelativistic many-body systems, though we are unaware
of any convincing proof that instabilities or catastrophies, of the type described
above, can actually occur in quantum systems; see [ 1—4]. The main goal of this
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paper is to attack the contrary problem, of whether the given mechanism (of
arbitrarily large momentum transfer by individual particles) is in some sense the
only possible mechanism for causing dynamical instability. We give evidence in
this direction by calculations of models which are otherwise quite general, but in
which this particular mechanism is removed in a natural manner: by replacing
the physical space R® by Z3, i.e. by working with n-body Schrodinger difference
equations. In this way the momentum of a particle is represented by a bounded
difference operator, thus naturally preventing any single particle from accepting
or transmitting a large transfer of momentum. To simplify our situation further
we only consider identical Fermions, so that we do not have to consider initial
states which could be in a sense “unstable after zero time” (e.g. infinite density
states).

2. Notation

Let Z3 be the infinite three dimensional lattice and e;, j=1,2,3, the basis
vector (6,(), 9,5(j), 95(j) where ,(-) is the Kronecker delta function. Let H™,
n=1,2,..., be the Hilbert space of complex functions f on the Cartesian product,
Xii-1 Z3, which are antisymmetric in the particle label k. We define H”=C and
H=@);. H".For each x in Z* we define the Fermi field operator a(x) on a general
vector f in the Fock space H, with components f,(xy, ..., X,,) in H™, by

(@) )1, s Xp) =+ 1 fa 4 (6, Xg, 0 X,).

We note that a(x) is bounded, with operator norm |la(x)||=1. We define F as the
family of nonempty finite subsets of Z* partially ordered by inclusion, and for
each W in F, P(W) denotes the (finite dimensional) operator algebra of polynomials
in a(x) and the adjoint a*(y), x,y in W. Finally we define the operator algebra
P= UWG rP(W), and its norm closure, 2, (the CAR algebra). For general orienta-
tion we refer to the texts [5—7].

3. Particle Lattice Models and Their Stability

Schrodinger mechanics for n identical spinless Fermions in the “box” V in F,
interacting via the two-body potential @(x, y), is given by

0fn

o X1y oo X)) =EHS(X 5 ooy X)) fil X 15 o es X))

where H}, = Hy + Sy, ®(x, y)= ¢(x — y) for some real function ¢ in [, (Z?), and
Hy=—3%) vy =1 a*(x)[a(x +2e)+ a(x —2e;) — 2a(x)]
T3 ) per O(X — Y)a*(y)a*(x)a(x)a(y)
Sy=%4Y3_, [erv a*(XJa(x+2e)+Y oy a*(x)a(x—2e))].

x+2e;¢V x—2ej¢V



Dynamical Instability of Many-Body Systems 167

If we define the function E on Fu@ by
E(W)=0, when the cardinality, |W|, of WisOor =3,
E({x})=3a*(x)a(x),
E({x, y})= =% ) }= 1 [0,(x +2e) +.(y+2e)][a*(x)a(y) + a*(y)a(x)]
+2Lp(x = y) + oy —x)]a*(x)a*(a(y)alx),  x+y

then we may write Hy =Y ., E(W). It is clear that the restriction of E to F is a
function from F to P with the properties:
i) if Aisin P(V,) and VNV =0, then [E(V), A]=0
i) Yilosup Y wer  exp(IEW)|=|E]<oo.
yeZ3  yeW
Wl=k+1

Therefore a simple variation of the proof of [5; 77.6.1] gives a norm bound on
the n'™ order commutator [Hy, A]™:

ILHY, ATV < Al exp(V )2 E])",  forany Ain  P(V,),

where here |[E|<10+3) . ,sl¢(y)|<oo. Therefore given A in P and real t,
lt|< 1/ E|)=ty, there is a unique element «},(A4) in A such that

. (l )"
H(XV A) Zn O[HS ]( ) [!moa (1)
uniformly in |t| < T <t; and umformly inVeF.
Clearly,
ot (A)=exp(itHy)Aexp(—itHy) (2

which we use to extend the domain of the map o}, from P to U, and to all real ¢.
Since [HS, A]™ converges in norm, for fixed n, as ¥ —Z>, and the convergence
in (1) is uniform in V, we may define, for each A4 in P, and |t]<tg, the element
B'(A) of A by the properties:

15(A)— 03 (A)|5=5z20, uniformlyin [T <ty.

Clearly o, and j8 are linear maps from P into 2. Furthermore for 4 in P, ||oit.(4)] =
|4 for all ¥, so ||f(4)] =] 4], and we may extend f' to a linear isometry on 2.
Next we show that in fact, o}(4) converges in norm for all 4 in 2 and all real .
Given A in U, [{|< T <tgand ¢ >0, choose a fixed A" in P such that |4 —A4'|| <¢&/3.
Then

o () =B (AN = N (A — A + [ (o — B) (A |+ [1B(A" = A,

which shows that of,(4) converges [to f'(A4)] as V—Z3, for all A in 2, uniformly in
t<T <ty Then

oty Lot ()] = B LA (AN = lloty { Lot — BAAM + [ oty — BB (AT

implies that o'(A4) = o, [oc},(A4)] converges in norm (to B[ B'(4)]) as V —Z3, defining
an element o*(A4) of 2. By iterating this argument one sees that of,(4) is Cauchy
in norm for all 4 in A and uniformly for ¢ in compact sets, defining o'(4). Further-
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more, it follows very easily from the corresponding properties of {o}|t € R} that
{o/|t € R} is a strongly continuous one parameter group of *-automorphisms of 2.
Finally we note that «'(4) is independent of the specific surface term S, used in
defining H},. We summarize our argument in the

Theorem. The family {o}|V € F} of *-automorphisms of the CAR algebra
defined in (2) is strongly Cauchy in V, uniformly for t in compact sets. The limits,
{d|t e R} form a strongly continuous one parameter group of *-automorphisms of .

(Note: It is easy to see that, at the expense of doubling our notation, we could
establish the same results for identical Fermions with spin — in other words these
“particle lattice models” are just a generalization of the spin lattice models of
Streater [8] and Robinson [9] obtained by allowing the spins to move on the
lattice, i.e. to possess and transfer momentum.)

Although for different purposes one may wish to use different C*-subalgebras
of A as an algebra of observables, one would expect any such choice to remain
invariant under each o}, and thus under . (This is clearly the case for the “even”
and “gauge-invariant” subalgebras, for example.) Therefore we have the

Corollary. Noinstability occurs for these models, in the sense of the Introduction.

4. Summary

We have considered “particle lattice models” of n identical Fermions moving
on a finite subset ¥ of the lattice, Z3, with rather general interactions, and have
shown that the dynamics of such systems stabilizes as n and V are made large.
For reasons detailed in the Introduction, we feel that this should be of value in
controlling the dynamics of similar systems, where Z* is replaced by R>. As a
by-product, it is hoped that, as these models allow a transfer of momentum (unlike
the spin lattice models), they will provide more realistic examples in which to
investigate the qualitative dynamical (and nondynamical) features of nonrelativ-
istic many-body systems.
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