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Abstract. The response, relaxation and correlation functions are defined for any vector state ω
of a von Neumann algebra 9Ji, acting on a Hilbert space Jf, satisfying the KMS-condition. An oper-
ator representation of these functions is given on a particular Hilbert space jj?.

With this technique we prove the existence of the static admittance and the relaxation function.
Finally we generalize the fluctuation-dissipation theorem and other relations between the above
mentionned functions to infinite systems.

I. Introduction

In conventional statistical mechanics an equilibrium state of a finite system
is given by a Gibbs state. It is well known that the states of infinite continuous
systems are no longer of this type. It has been suggested and now widely accepted
that an equilibrium state of an infinite system should be described by a state
satisfying the KMS-condition [1]. This is also the point of view of this paper.

The problem of non-equilibrium statistical mechanics is to explain the oc-
currence of an equilibrium state. This problem can be tackled in different ways.
There is a direction where people study the problem by placing the system in
a larger one. This leads to the study of open systems, where topics like the master
equation are widely studied [2,3], some aspects of the theory have recently been
made rigorous [4-6]. Also a lot of rigorous work has been done on models, such
as harmonic oscillators and lasers (see e.g. [7]). Another way of studying the
problem is to consider small perturbations of the system and to wait for the
behaviour after a long time (see e.g. [8, 9]). Linear response theory must be
situated in this direction and the principal purpose of the present paper is to
prove and generalize to infinite systems rigorously some aspects of linear response
theory, as introduced by Kubo [10] and Mori [11].

In Section II we introduce a new scalar product on the set of observables and
define a new Hilbert space jft, and construct explicity a unitary operator from J^
to the KMS-Hilbert space. We prove that it is equivalent with the scalar product
of the Kubo-Mori theory, and we give some other characterizations of this
scalar product.
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In Section III we define the correlation, response, relaxation and admittance
functions of linear response theory. We give an operator representation of this
functions on jft. This technique enables us to prove in an easy way the existence
of the static admittance and the relaxation function for all pairs of observables,
and also to give their explicit forms. Other results which we want to mention are
the proof of the fluctuation-dissipation theorem for infinite-system equilibrium
states, and the proof of other relations between the above-mentioned functions.
Finally we mention the proof of the Bogoliubov inequality for infinite system
equilibrium states, as a straightforward application of the techniques, which are
used.

The formalism developed here, for linear response theory is applied in a sub-
sequent paper [19], where the importance of this theory is indicated in the study
of cluster properties.

II. The KMS-Condition and the Hubert Space #

Let 9K be a von Neumann algebra on a Hubert space jff let t-+ Ut be a strongly
continuous map from the real numbers 1R into the group of unitaries on Jf, then
there exists a self-adjoint operator H on ffl such that Ut=εxpitH and let
xf = UtxUf\ furthermore let ω be any vector state on SCR i.e. ω(x) = (Ω, xΩ) for all
x e 501 with Ω a cyclic element of J f the state ω is an equilibrium state if it
satisfies the following definition.

Definition 11.1. The state ω on Sϋΐ satisfies the KMS-condition at inverse tem-
perature β= 1/kT if for any pair (x, y) of 9Jt, there exists a complex function FXty{z),
defined, bounded and continuous on the strip - β^ Imz^O, and analytic inside,
with boundary values:

Fx,y{t)=ω{xty),

Fxy(t-iβ) = ω(yxt).

Let us first quote some consequences of the KMS-condition [12]. If ω satisfies
the properties of Definition II. 1, then the vector Ω is also separating for 90Ϊ,
furthermore Ω is Ut-invariant i.e. UtΩ = Ω for all ίelR.

There exists an operator A = exp(-βH), given by

where E(λ) is the spectral family of H [12, p. 69].
This operator is called the modular operator. It can be written as Δ = FS

where S is the closure of the conjugate linear operator, mapping xΩ into x*Ω
with domain SEΓiΩ and F the adjoint of S. Let 5 = JΔ1/2 be the polar decomposition
of S then J is an anti-unitary operator and F = Δ~1/2J; furthermore JΔit =Δit3
for all ί e lRand Ut = Δu, JΩ = Ω, ΔΩ = Ω.

Finally we quote the following property which is used afterward:

FXty{βz) = {x*Ω,ΔizyΩ) if O ^ I m z ^ — 1 / 2 ,

if -
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In the following we will always assume that ω is a KMS-state and for notational
convenience we put β= 1.

Define the unbounded operator T by

) E(dλ).

As is easily checked T is a positive, self-adjoint operator, and as, for λ-+ —

~λ\112 ί-e~λ\1/2
» ι e \

the domain ^(zl 1 / 2) of A112 is contained in the domain &{T) of Γ and
We define the following sesquilinear form on 9JΪ:

( x , ^ = ( 7 x 0 , TyΩ) x,yeWl.

Lemma Π.2. The sesquilinear form ( , )~ on 3DΪ is non degenerated.

Proof. Let (x, X)L=O then Tx£2 = 0. If we prove that zero is not an eigenvalue
of T9 using the fact that Ω is separating for 9M, it follows that x = 0.

Let W(λ) be the spectral family associated with the operator ( - T). Then [18].

for any Borel subsets of the real line, where ψ~1(S) denotes the inverse image

of S under the function ψ(λ)= - f
λ

In particular W({ — ε,0]) = E((b9 oo]), where ε>0, and b is the inverse image
under ψ of — ε. Clearly

then

lim W{{ - ε, 0]) = lim £((&, oo]) = 0.

So that, 0 is not an eigenvalue of T, because it is not an eigenvalue of (— T).
Q.E.D.

It follows from this Lemma that the closure of 9K with respect to the sesqui-
linear form ( , )L is a Hubert space, which we denote by 3$.

Following Ref. [12] let $ be the linear space spanned by elements f*g, where
/ and g are continuous functions of a real variable with compact support, and
where

(f*g){t)=^f(s)g(t-s)ds

is the convolution product.
Denote by S the subalgebra of SOΪ generated by the set

{f(H)x\feί,xeW.},

f(H)=^a>f{λ)E(dλ) [12, p. 67].
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93 is called the set of analytic elements of SCR and has the following properties
(i) 93 is invariant under zΓ, α e <C (complex numbers),

(ii) 93 is dense in the Hubert space 2{Δa\ αeC.

Theorem Π.3. The operator U from £ into Jf, defined by Ux=TxΩ for all
x G 90Ϊ, extends to an unitary operator from jft to Jf.

Proof From the relation

||l/x|| = ||TxQ|| = ||x|L for xe9JΪ

it follows that U has a continuous isometric extension from J# into Jtf. We
denote this extension by the same symbol. If we prove that the range, R(T\ of T
is dense in Jf and that R(T)QR(U) where R(U) is the range of U, the theorem is
proved. First we prove that the range, R(T), of T is dense in Jf.

As T is selfadjoint

(R(T))λ = N{T) [14, p. 267],

but JV(Γ)= {0}; hence (R(T))1 = {0}, i.e. #(T) is dense in Jf. Now we prove that
R(T)QR(U): let i; e #(T), then v= Tu for some u e 9{T\ as SΩ is a core for /(if),
where f(λ) is a continuous function of a real parameter [12, p. 67], there exists
a sequence {xj belonging to © such that limxπί2 = w and limTxπΩ = iλ

n n

Hence ||TxπΩ— 7xmί2|| = ||xπ —xJU tends to zero for n and m large enough.
As $ is closed there exists an element x e J$ such that x = limx^ and v = lim TxnΩ =

n n

lim Uxn= Ux. The last equality is valid because U is bounded. Q.E.D.
n

Theorem II.3 describes completely the Hubert space Jf\ We notice finally
that the algebra 93 of analytic elements of 9JI is dense in J#. This can be seen as
follows: let x be any element of J>f, then there exists a sequence {xn}n in 9JI such
that l imx^x. As 9Jϊί2C^(T), there exists a sequence {ynj}ι in 93 such that

(i) UmynflΩ = xnΩ,

(ii) UmTynJΩ=TxnΩ.

Let ε>0 be any positive number, choose n such that ||x —xM||̂ <ε/2 and / such that

then

\\x-ynj^ | | x - x χ + ||xΛ-yπ>I|L<fi

In the following theorem we prove that the scalar product which we introduced,
is equivalent with a scalar product widely used in linear response theory (see
e.g. [11]).

Theorem Π.4. Let F(y, x) for x, y e SDΪ be defined by
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where Fy*x(ίt) is defined in Definition I I.I then:
(i) F(y, X) = γj2 dφΩ, ΔcxΩ) + (x*Ω, Δ'y*Ω)}

= \l12 dt{(yΩ,Δ'xΩ) + (Δll2yΩ,Δ-tΔ1'2xΩ)},

(ii) F{x,y) = (x,y\.

Proof. Take F(y, x) as above, from a consequence of KMS-state and per-
forming some substitutions we get subsequently

F(y, x) = f-1,2 dtFrx(it) + ί- \'2 dtFytχ(it)

= J° 1 / 2 dt{yΩ, Δ ''xΩ)+ j l ψ dt(x*Ω, Δ1 +'y*Ω)

= II12 dt(yΩ, Δ'xΩ) + | ί / 2 dt{x*Ω,Δ1~ty*Ω)

= \y2 dt{(yΩ, Δ'xΩ) + (x*Ω, Δ'y*Ω)}.

The second equality of (i) follows from

(x*Ω, Δ'y*Ω) = (JΔll2xΩ, Δ'JΔ ll2yΩ)

= (JΔ'JΔll2yΩ,Δll2xΩ)

= (Δ-'Δll2yΩ,Δ1'2xΩ).

Now we prove (ii). For any element xeSB, one easily checks that

xΩ,\ydtΔxΩ

W2dtΔ-<xΩ=l £ xΩ.

Hence for y e 9JΪ and x e 93 from (i)

= lyΩ, ̂  xΩ] = (TyΩ, TxΩ) = (y, x^.

Now we prove the equality for x and y in SDΐ.
As 23Ω is dense in Q)(A112) for any xeSDΪ there exists a sequence {xn}n in 33

such that xnΩ tends to xΩ and Δ1/2xnΩ tends to Δ1/2xΩ, hence x*Ω tends to
x*Ω. We show that \imF(y,xn) = F(y,x). By formula (i)

limF(y, %„)= lim j j / 2 Λ ^ ' y β , xnΩ) + (x*Ω, Δ'y*Ω)}
n n

= \y2 dt{{Δ'yΩ, xΩ) + (x*Ω, Δ'y*Ω)}

= F(y,x).

Finally

F(y9 x) = lim F(y9 xn) = lim (y, XJL - Cv, x)L,
n n

because T is relatively bounded to A1/2. Q.E.D.
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In the following theorem we give another characterization of the scalar prod-
uct, by establishing a differential equation for it.

Theorem Π.5. For all x, y e $R we have

Proof. For x, y e SCR by definition:

(x9ytl=(TxΩ9TytΩ)

Define :

-e~
λ \ 1 / 2

^H E(dλh

A is a bounded operator, hence

(x, 3>f).= μ ( l + J) 1 / 2 xO, A

- ((1 + A)ll2xΩ, eitHA\\ + Δ)ll2ytΩ).

It is clear that the range of A2 is contained in the domain of H, hence

A1'2 Δ112

(ί+Δ)1'2Ω

= {xΩ, ytΩ) - (A 1/2xΩ, A 1/2ytΩ)

= ω ( [ x * , Λ ] ) . Q.E.D.

III. Operator Representation of Linear Response Theory

Linearized non-equilibrium statistical mechanics, usually called linear re-
sponse theory, is studied in terms of the following functions:

— the correlation function Ψxy(t): where for x, y e ΪR, t e IR

ΨJt) = ω{{xt9y}+)9

— the response function φxy(t); where for x, y e SOΐ, t e IR

— the relaxation function Φxy(t); where for x, y e $R, t e IR

Φxy{t)=\imi\?φxy{t')e-*'dt\

if the limit ε ^ 0 + exists,
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— the admittance χxy(z)\ where for x, y e 9JΪ, Imz^O

All these functions not only depend on the time but also depend on the observ-
ables x and y, and as some properties, in particular the ergodic properties, of the
system are reflected in particular properties of these functions valid for all ob-
servables, it is natural to look for the basic quantities behind these functions.
Especially we associate an operator on the Hubert space J# with each of these
functions. This is what we call the operator representation of linear response theory.

Once done this, the study of linear response theory is reduced to the study
of these operators. Moreover all this operators are functions only of the Hamil-
tonian on jft, whose spectrum is, in view of Theorem II.3, unitarily equivalent
with the spectrum of the original Hamiltonian H on J"f. Another advantage of
this operator representation is an easy proof of some known and unknown
relations between the functions of linear response theory. Maybe, however, the
most interesting result is the proof of the existence of the relaxation function and
the static admittance and their explicit form.

We constructed in Section II, the Hubert space jft. It was proved that j f is
unitarily equivalent with jtf*, and the unitary operator U is defined by

Ux=TxΩ for all xeSR.

Consider the orbit {xJίelR} in £ with xeWl then

xt=U-1TxtΩ=U-ιTeitHxΩ

= U-1eitHTxΩ=U~1eitHUx, telR.

Let H=U~1HU then

hence H is the Hamiltonian on $. The action of the new Hamiltonian is deter-
mined by the following theorem.

Theorem III.l. The set 23 is contained in the domain &)(H) of H and Hx = Hx
for x e 8 . Moreover 93 is a core for H.

Proof AsH=U~ ιHU, x e 9{H) is equivalent with Ux= TxΩ e ®(H).

Now let x e δ , then xΩ e Q){T) and as xΩ belongs to the domain of the operator

~λ\1/2

J E(dλ)

then [13, p. 1199]

Analogously 93ΩC^(T#), hence for x e<B:HTxΩ=THxΩ. If we prove that Hx
belongs to © for all x of 93, then

Hx=U-1HUx=U-1HTxΩ=U-1T{Hx)Ω = Hx.

Now we prove that x e 93 implies Hx e 93.
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If x e 8 , then there exists an element j/e$R and a function feS such that
x = f(H)y, where f(λ)=^O0fx(s)f2(λ — s)ds for some continuous functions / x and
/ 2 with compact support.

As λf{λ)=$fί{s)(λ-s)f2{λ-s)ds + $sfί{s)f2(λ-s)ds also λf{λ) belongs to <?.
As f{λ) and Λ/(/l) are bounded functions

Hf(H)=^o0 λf(λ)E(dλ) [14, p. 358]

and Hx belongs to 23.
Finally xe@{H) is equivalent with TxΩe@(H) i.e. xΩe^(HT). As 23Ω is

a core for HT there exists a sequence {xnΩ}n, x w e 8 such that xnΩ tends to xΩ
and HTxnΩ tends to ΉTxΩ. But as T is HT-bounded we have also that TxnΩ
tends to TxΩ.

Hence ||xπ — x||~ tends to zero and \\Hxn — Hx||~ tends to zero, i.e. 23 is a core
for H. Q.E.D.

Theorem III.2. (i) For x e @(H) and y e SOΪ we have

{y,Hxί=ω([y*x]).

l + e~λ

(ii) Let C(λ), where λ is a real parameter, be given by C(λ) = λ ^ , then

for all x e @(C(H)) and

{y,C(H)xί=ω({y*,x}).

Proof, (i) As xt = eitήx for all xe@(H) and yeWl by Theorem II.5 one gets

1 d

7 Jt ^ ' X ί ^ = ^ ' Hx^= ω ^y* ? xj)

(ii) Remark that x e 9>{C{H)) is equivalent with TxΩ e 2{C{H)). Then

= (T~ x Tj Ω, T~ x TxΩ) + (4Tyί2, /ITxΩ)

where
/ - λ ; \ l / 2

Because TxΩe^(C(ί/)) = ^ ( / l 2 ) n ® ( Γ - 2 ) for all xe@(C(H))
(y, C(H)xl. Q.E.D.

In Theorem II.2 we prove that the response function φ*,.(0) for ί = 0 cor-
responds to a self-adjoint operator H on the Hubert space jft. Then for ίφO it
corresponds to the operator e~u^H, such that for each pair of observables (x, y)
we have 0 y ϊX(ί) = O>> e~itAHx\.: ^

We call the operator e~ιtHH the response operator. It is clear now that the
study of the response function is reduced to the study of the response operator.
As by Theorem II.3 the operators H and H are unitary equivalent we proved,
how directly the study of the response function is related to the study of the
Hamiltonian H.
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Also, we proved that the correlation function Ψo* 0(ί) corresponds to the
operator e~itΆC(H\ called the correlation operator, such that for each pair of
observables Ψy*tX(t) = (y, e~uiiC{H)xX.

In the following theorem we give the operator representation of the admittance.

Theorem III.3. For Im z φ 0 and x, y e 9JΪ:

where R(-z) = (Hj-z)'K
The operator HR( — z) is called the admittance operator.

Proof. By Theorem II.5 for Imz^O

χy,x(z)=-$dte+ίztjt(y*,x\.

By partial integration:
+izt

χytX(z) = {y*,x\,+ iz$ dt{y*,xU

= G;*,(l-zΛ(-z))x).

= (y*9HR(-z)xί. Q.E.D.

In physics the so-called static admittance, i.e. limχx y(z) where the limit is

taken in some sense, is widely used. In the following theorem we prove the exist-
ence of the static admittance operator as the strong limit of the admittance
operator, where the limit is taken in a sector of the complex plane.

Theorem III.4. Let Eo be the orthogonal projection on the null space of H, then

l - E 0 = s-lim HR(-z)
0 ±

Proof. The proof is based on the proof of Lemma 1.9 of Ref. [15]. As HR( — z)=
1 — zR( — z), we have to prove that lim zR( — z) = E0. We give the proof for Im z > 0.

z-^0±

zeC±

By the spectral theorem for ξ e J"f

For z tending to zero, the integrand z/λ + z tends to the Kronecker (5-function δλ0.
The convergence of the integral is dominated since

for zeCt
" smω

and by the Lebesgue dominated convergence theorem

z->0 +

z e C - Q.E.D.
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Remark now the explicit form of the static admittance, as defined in Theo-
rem III.4 and denoted by χxy(0); it is given by: for x,

where Eo is the orthogonal projection on the null space of the Hamiltonian H,
hence also

XxJ0) = (Tx*Ω, TyΩ) - (x*Ω, EoyΩ).

We stress here the fact that this quantity is always finite, for each pair of ob-
servables x, y of 9JΪ.

As the last function in the series we treat the relaxation function.

Theorem III.5. The relaxation function exists for all x, y of SOt, and is given by

We call e~ιtH(l — E0) the relaxation operator. In particular ΦXiy(0) = χxy(0).

Proof By Theorem II.5

ΦJC,^)=-lim lrUi^,y)~)e-a'dt'

= lim+ [(x*, y\e-εt-ε(x*, ^ e-
ivή-εt'j/)J

= lim
β->o

And analogous as in the proof of Theorem III.4 we get

ΦXJjtt) = {x*9e-uίi{l-E0)yl.

= (Tx*Ω,{l-E0)TyΩ).

It follows now from this and Theorem III.4 that

Φxy(0) = χxy(0). Q.E.D.

In Theorem III.5, we derived a first relation between two functions namely
the relaxation function at ί = 0 and the static admittance. In the following theo-
rems we generalize other relations between the functions to infinite systems.

Theorem III.6. For all x, y of SOΪ and t e IR, we have

i-Φxβ)=φxy{t).

Proof. By the previous theorem
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or

Φxy(t) = (x*,yl-(x,Eoyl

hence

ijtΦxγ(t) = ijt(x*,yl=φxy{t)

where Theorem II.5 is applied. Q.E.D.

Theorem III.7. (Fluctuation-Dissipation Theorems), (i) For all y of 9JΪ and
x e Q){H) we have

1-M

where A—e~H.

(ii) For all x, y of sDί we have

where P stand for the principal values of the integral.

Proof (i) is an immediate consequence of the definition of the correlation,
and is an operator representation of the well-known fluctuation-dissipation
theorem [10].

To prove (ii) use the following formula [16, Lemma 2.3]

where the integral and the principal value are taken in the strong sense on
For any pair x,y of 501 we have

Furthermore,

+ Δ)ll2yΩ,
Δ + l

A1'2 , A112

-(yΩ,xΩ)

= (Aιl2yΩ,Aιl2xΩ)- (yΩ, xΩ) =
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and

«i. + zl)"2>

- ί l

1(1 +
= {yΩ,

+ z
Δ)

Δ~

Δ"(l+Δ)

in yΩ >Δ

[txΩ) + {A

Hi

(1

1/2

xΩ)

+^>

yΩ,

j

1/2

A~

. Naudts βt al.

xΩj

-uAll2xΩ)

and the theorem follows. Q.E.D.

As a by product we give a proof of the Bogoliubov inequality for infinite
systems. For finite spin systems the proof can be found in Ref. [17]. Here we give
a proof of this inequality for KMS-states, in order to point out that this inequality
corresponds to Schwartz's inequality applied to the scalar product of J^, con-
structed in Section II.

Theorem III.8. For all y of 9CR and elements x such that xΩ e Q)(H) and
x*Ω e ^(//), we have

\ x])|2 S τω({y, y*})ω([[x, H], x*]).

Proof. First we prove that xe^(H): x*Ω- JΛί/2xΩ, and JΛιl2xΩeΘ{H\ as
HJ=-JH this implies that xΩeS){HΔιl2)CΘ{HT) i.e. xe2{H).

From Theorem III.2

By Schwartz's inequality

Now

where we used the inequality

1 — e ~λ

A

Hence

Also

\\Hx\\2=\\HTxΩ\\2 = μ(l-e-λ)d\\E(λ)xΩ\\2

= (xΩ,HxΩ)-(A1/2xΩ,HAll2xΩ)

because xΩ e £}(H)n9{HΔ112).
Finally ||Hx||i = (xΩ,HxΩ) + (Hx*Ω,x*ί2) = ω([[x, iί],x*]), where we denote

ω([[x, H], x*]) = (Ω, [[x, H], x*]Ω). Q.E.D.
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