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Abstract. The group G of unitary elements of a maximal abelian von Neumann algebra on a
separable, complex Hilbert space H acts as a group of automorphisms on the CAR algebra «/(H)
over H. It is shown that the set of G-invariant states is a simplex, isomorphic to the set of regular
probability measures on a w*-compact set S of G-invariant generalized free states. The GNS Hilbert
space induced by an arbitrary G-invariant state on .«/(H) supports a *-representation of C(S); the
canonical map of .2/(H) into C(S) can then be locally implemented by a normal, G-invariant conditional
expectation.

In this paper we shall define observable Fermion number densities on the
spectra of complete one particle observables and study the classical fields which
they generate.

Let .«/(H) denote the C*-algebra of the Canonical Anticommutation Relations
(CAR) over a complex, separable Hilbert space H. H will be fixed throughout and
o/(H) denoted by /. o is generated algebraically by the range of an antilinear
map f —a(f) of H into </ obeying the CAR:

a(f)ag)+alg)a(f)=0  a*(f)alg)+alg)a*(f)=(9.f) V/f.geH.

Let u be a unitary operator on H. Then the map a(f)—a(uf) extends uniquely
to a *-automorphism a, of <. o, is called the Bogoliubov automorphism induced
by u.

Let O be a self-adjoint operator on . ¢ shall be called complete if its spectral
family generates a maximal abelian von Neumann algebra % on H. Let (X, B, p)
denote the spectral measure space of ¢0. By the well known isomorphism theorem
(I§7andIII§ 1, Corollary 3 of Ref. [3]), completeness of ¢ leads to identification
of # with £*(X, B, p) and of & with (X, B, p).

When @ has discrete spectrum, the number density N on X is defined for each
x€X by N,=a*(,)a(d,) where 6, is the Kroenecker o-function at x e X. The
number density N generates a classical field which is isomorphic to the lattice
gas. One can also isolate the field and density by symmetry considerations (as
we have remarked before [16]).

An observable in .o is called (-diagonal if it is diagonal in the Fock representa-
tion with respect to the basis formed by anti-symmetric products of eigenvectors
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of @. The algebra of (¢-diagonal observables is, at once, the classical field generated
by the number density and the fixed point algebra for the unitary group G(%)
of % (which acts as Bogoliubov automorphisms): The ¢-diagonal part of a cor-
relation function is simply its average over G(%). Now, the (-diagonal part of
the one point functions a*( f)a(g) defines an operator-valued measure on (X, B)
which is continuous with respect to u, and whose Radon-Nikodym derivative
is N. That is, if D(a*(f)a(g)) denotes the diagonal part of a*(f)a(g) then

D(a*(f)a(g))= | f)F(x)N.du(x) Vf,ge L*X,B,p).

Thus, by focusing in the mean-values of correlation functions over G(%) one is
naturally lead to the number density and its field. This is also the case when @
does not have discrete spectrum.

Since the unitary group G(%) of an arbitrary maximal abelian von Neumann
algebra % may have poor ergodic properties even locally on .«/, we shall, in
effect, approximate G(%) by a net of compact subgroups, each of which has a
unique invariant mean or conditional expectation on /. In Section 2, we associate
to each partition of the spectrum of % a conditional expectation on &/ which
destroys the off-diagonal correlations between elements of the partition. Indexed
by the partially ordered set of partitions, these conditional expectations form a
net. In Section 3, we prove local convergence of the net in the representations
induced by G(%)-invariant states and isolate the local number densities and
classical fields. In Section 4, we prove the set of G(%)-invariant states to be a
simplex and characterize its extreme points. Then, using the global consistency
of the approximation scheme, we obtain the C*-algebra of observables of the
classical field over the spectrum of #.

The notation for von Neumann and C*-algebras follows that of Refs. [4]
and [5] with the following exceptions: If ¢ € &7* and S e, {(¢;S) denotes the
value of ¢ at S; if f,ge H (a Hilbert space), A(f, g) denotes the vector form on
B(H) defined by {A(f, g); S> =(f, Sg) VS € B(H); the o-topology of a von Neumann
algebra is defined in Ref. [16]. The closure of a set X in topology 7 is denoted
by X 77, the closure of the linear span of X by [X]~°. The symmetric group of
degree N is denoted by ¥y and sgn(p) denotes the signature of p e ¥y.

0. Conditional Expectations

In this section we recall the definition of a conditional expectation on a
C*-algebra and reproduce, for completeness, two theorems giving sufficient
conditions for its existence. These results are applied in § 2 to the definition of a
net of partial diagonal part operators.

0.1. Definition [13]. Let .« be a C*-algebra with unit. A linear mapping & on o/
is said to be a conditional expectation if the following conditions are satisfied:

1. &)=1

2. §20=6(S)=0.

3. 8(SE(T)=6(ES)T)=ES)E(T) VS, Te .

& is said to be faithful if £(S)=0, S=0=S5=0.

The following theorem is a slight variant of the principle result of [16.1].

The proof is in the Appendix.
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0.2. Theorem. Let of be a C*-algebra with unit, and let G be an amenable
discrete group of automorphisms of /. Denote by /¢ the C*-algebra of all fixed
points of of and by G the set of all G-invariant states on </. If there exists a C*-
subalgebra (with unit) /™ of /¢ which separates S, then

1. If §is a state on /™, there exists aunique G-invariant state ¢ on o extendingg.

2. AM=u/C.

3. If Se.of, there exists S® € o such that {S°}=./MnCo{gSlge G} N.

4. The mapping S—S€ is a conditional expectation on o/ satisfying,

a) S°=85 VSe./%,

b) (gS)¢=8¢ VgeG;VSe«.

0.3. Definition [9]. Let &/ be a von Neumann algebra on a Hilbert space H
and let G be a group of automorphisms of .«7. Let R™(«/, G) denote the set of
G-invariant, positive normal forms on 7. .o/ is said to be G-finite if for every
Se/t, S+0 there exists ¢ € R*(oZ, G) such that {(¢; S>=*0.

Kovacs and Sziics have obtained the following ergodic theorem.

0.4. Theorem. Let <o/ be a von Neumann algebra and let G be a group of auto-
morphisms of .. Let /¢ denote the set of all fixed points of .<«/. Suppose that o is
G-finite. Then, for every Te.of, there exists TSe.f such that {T®}=
A°nCo{gT|ge G} °. The mapping T—TC is a normal, faithful conditional
expectation on =/ such that

1. (gT)¢=T¢ VgeG;VTed.

2. T=T¢ VYTess/C.

The mapping T—T¢ is called the G-canonical map.

1. The CAR

Let H be a separable, complex Hilbert space, and let .«/(H) be the C*-algebra
of the Canonical Anticommutation Relations (CAR) over H [7]. As stated in the
introduction, .«/(H) is generated by the range of an anti-linear mapping a:H — .o/(H)
satisfying the CAR: a is continuous, with |[a(f)||=| f|| ¥V f€ H; and </(H) is the
closed linear span of the n-point correlation operators defined, for N, M eZ™,

{fn}ilv= 1> {gm}rjzl=1CH by
Anp 15 s SN 15 -0 G =¥ (fy)...a*(f1)algy)-..algyy) -

By convention, Ago=1, 41o(f)=a*(f), Ao1(9)=alg).
Let & be the set of all states on .o/(H). A state w € S is determined by linearity
and by continuity from its n-point correlation functions defined, for N,M e Z™,

{fn nN=17 {gm}%[zl CH> by
Wand(f1s s Sni 915 oo G) =05 Anpg(f15 o I3 G1o s Gt -

A state o is said to be a gauge invariant generalized free state if its n-point cor-
relation functions have the form;

Wasd 1 -os fi G1e - G) =Ong AW, 1 (fr g)} VN, M € Z* ;
{fn}rl:]=1’ {gm}%= 1 CH .
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F(H) denotes the set of all gauge invariant generalized free states on 7. If w is a
gauge invariant generalized free state there exists a unique operator 4 on H such
Wi (f;9)=(g,Af)Y f,ge H. It follows that 0=A4<1. Conversely, if 4 is an
operator on H such that 0< A <1, then there exists [2] a unique gauge invariant
generalized free state w, such that

Cwy;a*(Nag)) =9, Af) V/.geH.

Let u be a unitary operator on H. Then, there exists a unique *-automorphism
o, of @/(H) such that a,(a(f))=a(uf)V feH. The mapping a:U(H)—Aute/(H)
of the unitary group U(H) of H into the automorphisms group of «/(H) is a
strongly continuous homomorphism, when the former is equipped with its
strong operator topology.

If H' is a closed subspace of H, we shall denote by »/(H') the C*-subalgebra
of «/(H) generated by

{ANM(fla'”’fN;gla‘ 7gM)|N MEZ+ {f}n 1’{gm x=1CH/}'

2. A Net of Conditional Expectations

Let % be a maximal abelian von Neumann algebra on H, and let G(%) denote
the unitary group of #.

2.0. Definition. Let E={E_},.; be a family of non-null, mutually orthogonal
projectors in @ such that YE,=1,,. E is called a #-partition of H. Let I'(%) denote
the set of all #-partitions of H. ~ .

The set I'(%) is partially ordered by refinement. That is, E is said to refine F
if, for each E€ E and F € F, we have EF =0 or E. We write Egli" . One readily
verifies that (I'(%), =) is a partially ordered and directed set with E v F={E,F;}.

The directed set (I'(%), =) will serve to index a net of conditional expectations.
The remainder of this section is aimed at defining a conditional expectation for
each partition Eel(@).

Let E be a #¥-partition of H. We shall denote by G(E) the unitary group of the
abelian von Neumann algebra #(E) generated by E. G(E) is represented in Aut.e/
by o (see above). We denote the set of G(E) invariant elements of o/ (resp. &) by
9B (resp. S9B). If E= {1}, then G(E) is the gauge group 6.

2.1. Lemma. Let E= {E;}jes be a ¥-partition of H; let, for each je J, o/ (E;H)
be the C*-subalgebra of of generated by
{ANM(fla -nny;gl: . ,gM)lN MEZ+ {f}n 1 {gm m= ICE H}

and, let (X);/(E;H)" denote the C*-subalgebra of s generated by | );o/(E;H).
Then, (X);o/(E;H)® separates G°®.

Proof. Let ¢ and ¢'e G%D with ¢p+¢p!. There exists NuMeZ*, {f}N_,,

{Gmim=1CH such that {¢—¢"; Ayy(f1, ... [y g1, .- gy)> +0. By linearity, and
by continuity, there exists {j,,}ﬁ:;l, N CJ such that

¢ —(bl , ANM(Ejlfla ces EijN; Ei,gn ey EngM)> +0.
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Let, for each je J, N;=Card{n|j=j,} and M;=Card{m|j=i,}. Now, if N;,

for some j,elJ, G(E) -invariance of qS ¢! implies, with the ch01ce
14 [exp(II/|N;,— M, ) —1] EjOeG(E) that the LHS of preceding expression
vanishes. Thus, N;=M;V je J. But this implies

Anm(E; f1s - Ejy s EiG1s s EngM)C®j&7(EjH)9- O

Since G(E) is amenable, and since (X);./(E jH)egMG(E), Lemma 2.1 fulfills the
remaining hypothesis of Theorem 0.2. We have therefore the following:

2.2. Theorem. Let E be a Y-partition of H. There exists a unique G(E)-invariant
conditional expectation &( |E)on s/ whose range is (X).o/(E;H)" = o/,

2.3. Corollary. &(a*(f )a(g)lE) =X,a%E;f)aE}g) VYf,geH.

2.4. Corollary. Let E>F be two #-partitions of H. Then,
E(E(SIF)E)=&(S|E) VSe.

Proof. Since G(E )DG(F ) the result is immediate from Theorem 0.2 (3).

2.5. Corollary. Let E=F be two %-partitions of H. Then, &(oL|E)CE(L|F).

We have therefore defined a net {&/( |E~)}Ee,~(@,) of conditional expectations on
o/ with decreasing range (2.5) and the lattice property 2.4.
We now turn to the implementation of this net on some representations of .o/.
Let E be a %- -partition of H; let ¢ be a G(E) invariant state on .o/ let (m,, U¢,
H,, @) be the cyclic, covariant representation of (<, G(E)) associated to .« via
the Gelfand-Naimark-Segal construction [12,6.22]. Since ./ is sxmple [15], it
follows that m, is invertible. We can therefore define &j( |E)= T8 (m,! |E): Tyt )—
ny(s/°®). For each ge G(E) define the automorphism &, :my(sf)">my()" by
Gy S U d,(g)SUd,(g)*VSen («7)". The mapping &:G(E )—>Autn¢(&¢) is a homo-
morphlsm such that &,my(S)=m4(,S) V S € /. Accordingly, if we can prove that
my(f) is G(E)-finite (0.3), the G(E)-canonical map (0.4) will be a normal, G(E)
invariant conditional expectation on my(.e/)" whose restriction to my(./) is &y( IE)
By continuity, it will be the unique normal extension of &( |E) to m4(e/)" 1
that event we shall denote the G(E)-canonical map by é”‘q,( |E).

2.6. Lemma. Let E={E i}jes be a -partition of H, and let ¢ be a G(E)-invariant
state. Then with the above notation, n (/)" is G(E)-finite.

Proof. It suffices to exhibit a complete orthonormalset of simultaneous eigen-
functions for U 4(G(E)). To this end, let .4 = (J{E,fIfeH}, and let

M o=l Anpd 1 oS5 G 1o oo ) PRSI 1 {Gmd Mo C )

Clearly, the linear span of .# is dense in H,. Since Uy(g)P=PVge G(E), there
exists, for ge G(E) and ¥ e 4 # a unique 0(g, ¥) e [0, 2IT) such that Uyg)¥ =
exp[z(?(g, ¥)]¥. Two vectors ¥ and V' e .4 4 are said to be equivalent () if 6(g, ¥) =
0(g, ¥ )V ge G(E). M ¢ 1s thus divided into disjoint equivalence classes /3.

Let 6(g, 0)=0(g, ¥) for ¥ € 4", g € G(E), and let P denote the projector upon
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the closed linear span Hj, of .4j. One readily sees that P‘;;P“' =0Va+a, 2Py=1,
and

Uglg)=Zexpliflg, ) Py ¥ g € GE). O
From Lemma 2.6 and the preceding discussion we have the following.

2.7. Theorem. Let ¢ be a G(%)-invariant state on /. Then, with the above
notation and definitions, there exists a net {é‘?q,( |E)} Fer) of normal conditional
expectations on (/)" such that .

1. For each E € I'(%), &( |E) is a normal, G(E)-invariant conditional expectation
on my()" whose range is (my(#)")*®. 3

2. 8 |E) is the unique normal extension of & 4( |E).

3. If EZF, then

ENESSIF)E)=E ,(SIE)V S e my(l)" .
4. If ExF, then
Eymo(AY|E)SEy(my( ) |F) .

Remark. In the remainder of the paper we suppress the

-
W@

3. A Local Theory

In this section we investigate the convergence of the net {&j( |E)} Fer@) Of
normal conditional expectations on r,(.2/)" defined in Theorem 2.7 for a maximal
abelian von Neumann algebra % on H and G(%)-invariant state on .</.

Due to the totally dissimilar behavior of the net for the atomic and non-
atomic parts of # we make the following:

3.0. Definition. Let % be an abelian von Neumann algebra on H. A non-null
projector 4 €% is said to be an atom of % if for every projector P of % we have
AP =0 or A. Denote the set of all atoms of % by A(%)={A;},.;; let Y,= v A(%)
and Yy=1-Y,.

We remark that (1) since distinct atoms are mutually orthogonal, Y,=24,,
and (2) since H is separable, Cardl <X,

Let Qe H be a separating vector for the maximal abelian von Neumann
algebra % on H [4, 1§ 7]. For each element F of % we define the vector f =FQ e H.
The mapping F— f is an injection of % onto a dense subset of H. Throughout the
remainder of this section Q2 will denote a fixed separating vector for #.

Let Py denote the set of all projectors P of # such that PYy=P. Clearly Py
is a Boolean o-algebra; the mapping P—w(P)=(Q, PQ) is a finite positive measure
on Py; and (Py, w) is a finite, separable, non-atomic measure algebra. Therefore,
(Py, w) is isomorphic to ([0, o(Yy)], dx) [8, 41 C].

3.1. Definition. Let E°={Yy} UA(®).

An increasing sequence {E"}, of #-partitions of H is said to be dense if
1) E' > E°, and if 2) to every projector F € Py, and to every &> 0, there corresponds
a positive integer n, and a projector E which is a union of projectors of E™ and
is such that

o(F1—-E)+E(1-F)<e.
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Theorems 41 B and 41 C of Ref. [8] assure the existence of an abundance of dense,
increasing #-partitions of H.

3.a A Local Convergence Theorem

3.2. Theorem. Let % be a maximal abelian von Neumann algebra on H, let ¢
be a G(%)-invariant state on of ; let {&( |E)} gr@,) be the net of conditional expecta-
tions onn,(o/)" defined in Theorem 2.7. Then, there exists a unique normal conditional
expectation & ,( |%) on n,(of)" such that

o— limr(@)£¢(n¢(S)|E)= EymySN¥) VSeod.

Further, 0) & 4( |%) has abelian range.
1) EQUyg)SUH9)*|%)=84S1%) Vge G&).
2) Uy@)ESI#)VUHg)*=E4(SI1%) VSemnyL) .

3) Eom(Anpf1s - I G5 s YY)
=0a, N D pesrn SEND) [ A= 1 € 5(ms(A 1 1(fri Gp)|¥)
=331, WDeUE (ol A1y (fo: g W)} Y N M T ;
VA{fdh=1> Gmim=1CH.
4) Ey(my(A) 1Y) ={E y(ny(A1 ([ DN¥) [, g€ H}" .

The proof of this result is punctuated with several lemmas and propositions.

3.3. Remark. The proof of o-convergence of the nets of operators
{c§’¢(n¢(S)IE)}Eer(@), which results in Proposition 3.11, employs the following
artifice. Since, for each S € o/ and #-partition E, |(<5"¢(1t¢(S)|E)|| < | S| there exists,
by g-compactness of bounded spheres of my(/)’, a o-convergent subnet: We
chose one and denote its limit point by &3(m,(S)|%), finally proving that

EYmy(S)|%) = 0-limyp )& y(mH(S)E) .

This method of proof has the advantage that if P is a projector on H, and if the
net {Péad,(n(ﬁ(S)]E)P} Eerqw) €an be shown to be ultra-weakly convergent, then its
limit point is P&Y(m,(S)|%)P. We remark further that since the weak-operator
and ultra-weak operator topologies on B(H ) coincide on bounded spheres, weak
operator convergence of the required nets is sufficient to ensure g-convergence.

The following argument appears often enough to warrant abbreviation:
If two vectors ¥, ¥' € H,, are eigenvectors of a unitary operator g with different
eigenvalues, then they are orthogonal. We shall say “(¥,¥1)=0 due to
g-invariance”, leaving the task of verifying that ¥ and ¥! belong to different
eigensubspaces of g to the reader.

Preparatory to proving Proposition 3.11, we make the following definitions
and remarks. Let D e % be a projector; let G(D)={l+(g— 1)D|ge G(#¥)} CG(%);
and if ¢ is a G(%)-invariant state on <, let Hy(D)={¥ e H,|U ,(9)¥ =¥ ¥V ge G(D)}.
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Define the family of projectors {Q,(D);}{=, as follows (recall that d=DQ where
Q is a fixed cyclic vector for % in H).

Q4(D),H = [my(a(d)H4D)]~
Q4(D),Hy=[my(a*(d)H 4(D)]~
Q4(D)sHy=[ny(ald)a*(d)H 4(D)]~
Qy(D)sH = [my(a*(d)a(d))H4(D)]™ .

From the CAR and U ,(1—2D)-invariance it follows that these projectors are
pairwise orthogonal. Let Q,(D)=2Q (D).

If D and D’ be two orthogonal projectors of %, then [Q4(D), Q4(D')]=0. In
fact, let O4(D) [resp. O4(D")] denote the projector upon H (D) [resp. H,(D')]. Since
04D)e UyG(D))" and O4D')e Uy (G(D)" it follows that [04D), 04D')]=0.
From this, and the fact that 0 4(D") € ,(#(Cd)), 04(D')Q4(D)H ;S Q4(D)H ;. Hence
[04(D), Q4(D)]=0 and Q4(D)04(D)H,E0,4(D)H,. Consequently,

04(D)Qy(DVH ;S Q4(D)H, ,

proving the assertion.

3.4. Lemma. Let D be a projector of %. Then, with the above definitions and
notation,

strong limr(@/)Q(p(D)C’? ¢(”¢(N (d)),E)Q¢(D) = Q¢(D)Cg) 3(7r¢(N (d))|@)Q¢(D)
(N(d)=a*(d)a(d)).

Proof. We prove, for ii'=1,...,4, that each of the nets (*);=
{Q4(D);& y(n y(N(A)E)Q o(D);} geray 18 strong-operator convergent. However, by
U 4(1— D)+ iD)-invariance, the (i, i')-net vanishes for

i=1;i=23,4 i=3;i'=1,2
i=2;i'=1,3,4 i=4;i'=1,2.
Thus, the proof reduces to six cases:

Case 1. i=i"=1. We prove the bounded net of positive operators to be
increasing and therefore [4, Appendix 1] strong operator convergent. Let E>F,
and let Fy =2 ;4 E;, with the obvious notation. Let ¥ =m,(a(d))y with yeH 4D).
Then

(P, {8 ymyN@)F)— & my(N()IE)} )
= 241> mpla*( @) {a*(Frd)a(Frd) — Zjc o a*(Ed)a(E d)} ald) )
=20 myla* (A~ FJd){ = }a((1— F)d)]x)

+ 241 mla*(Fd){ — }a(Fid)]y)

+ 206 myLa*(1— F)d){ —}Ya(F,d)]y) +c.c.
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Now, (1) the first term on the RHS vanishes by U 4(1—2DE j)-invariance for jeJ(k)
and all k; (2) the third and fourth terms vanish by U,(1—2D(1—F,))-invariance
for all k; (3) since a(F,d)* =0, we are left with

= 241 mpla*(Frd){ Z e ypya™(Ed)alEjd)} a(Fd)]x) 20 .

Since ¥ emy(a(d)H,(D) was arbitrary, we have by continuity E>F=
Q4D),& ¢(7I¢(N (d))|E)Q¢(D)1 Qy(D)18 y(my(N (d))IF )Q4(D);.

Case 2. i=i'=2. We prove the net (*),, of positive operators to be decreasing
and therefore strong-operator convergent. Let E>F and let F,=2; jeamE; Let
¥ =n4(a*(d)y with y e HyD). Then, by an argument similar to that of Case 1,
we have;

(P, [&(myN(@)F)— & fmy(N()|E)]P)

= 50 mo[a(F ) Fodl? = 2 e yooa*(E dhalEsd)} a* (Fyd)]2) 20
since

Zjcsmlla(EDaEd)| S 2 00| Edll* = | Fid]® .

Since ¥ € my(a*(d))H 4(D) was arbitrary, we have, by continuity,
E2F=Q D)8 (1 ,(N@)E)Qy(D) < Qy(D),6 (my(N(@)F)Qy(D),
Case 3. i=i'"=3. We have (CAR),
a(d)a*(d)(N()|E)a(d)a*(d)= |d||* a(d)&(N(d)| E)a*(d)
—a(d)a*(d)Z ;| E;d|* .

Therefore,

Qy(D)36 (my(N(@)IE)Qy(D)s
=ld]l 72 QD)3 Ad)E y(my(N(@) E)y(a*(d)Q (D)5
— [l ~*Qy(D)smya(d)a*(@d)Qy(D):[Z /I E,d|*] -

Now, (1) since my(a*(d))Q4(D);=Q4(D),m,(a*(d)), strong-operator convergence
of the net of first term on the RHS follows from Case 2; and since the net in C,
{Z,|E;d||*} gerw) is positive and decreasing, the net of second terms is norm and,
a fortiori, strong-operator convergent.

Case 4. i=i'=4. By an argument similar to that of Case 3, we have

0yD)aé y(my(N(@)IE)Q (D)
=] ~*Qy(D)4my(N(d))Q (D)o (2| E;d||*)
+dil~ 2Q¢(D)4n¢(a*(d))g ¢(7T¢(N (d))IE)n¢(a(d))Q¢(D)4 .

Now, since 74(a(d))Q4(D)s=Q4(D)m4(a(d)), strong-operator convergence of the
net of second terms on the RHS follows from Case 1; (2) Convergence of the net
of first terms follows as in Case 3.
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Case 5. i=3, i'=4. We have (CAR)

04(D)368 ymy(N(A)IE)Q (D),

= [[dll~2Qg(D)smy[a*(Z|| Ed||*Ed)a(d)]Qg(D)s -
Now let, for each %-partition E of H,

f(d E)=2,|Ed|*Ed. Let f(d, %)=X| Ad|*Ad .

Let, for each M e Z*, E™ be a %-partition of H such that 1) EM>E°= A(@)u{Yy),
and 2) (2, DYyEYQ)=0 or (2, DYyQ)/M V j. Let F = E™ for fixed, but arbitrary,
M:E?lzzkel((j)Fk' N .

Wehave, | f(d, Y)—f(d,F)|? =~2k||FkYNd|]4ZZjZK(j)”FkYNd||4§Zj”E§'uYNd” =
(Q, DYyQ)*/M. Thus limy 4, f(d, E)= f(d, %), and consequently

limp @) Qy(D)38 o(ms(N(@)IE)Qy(D)s
=d|| ~2Q4(D)sms[a*(f(d, #))a(d)]Q4(D)s -
Case 6.i=4,i'=3. Case 6 follows from Case 5 by virtue of norm convergence. []

3.5. Lemma. Let D be a ¥ -partition of H; let {F,}\_, be a finite set of mutually
orthogonal  projectors of #(D) (ie. F,=ZX;,;,D;); and let PyD)H,=
[n(/([DQ] )]

Then

S-limy v Py(D) [TN= 1 & ymy(N(f)E"P (D)
=PyD)[ )= 1 E9my(N(L)IF)Py(D) .

Proof. Let Qyn)=]];csQs(D)). It follows from Lemma 3.4 that, for each
finite subset J,(n)<J(n),

S-limp ) Q (M 4y (N(Z e 5o D1/ NE)Q 4(1)
= QyMEYMH(N(Z jesom D fNPNQ (1)

Since, for E ;ﬁ, we have
104(n) {& o y(N(SNE) — & y(my(N(E jesomDi SNE} Qo)
S L= ZjesumD) Sl

it follows that
1Q4(1) {E3 A NS DY) = EYmy(N(Zcs oD SN Q)]
SN0 —ZjesmP) Sl -

It then follows, by the triangle and Schwartz inequalities, from the above remarks
that

S-1imy ) QM6 (T (N(LIIE)Q (1) = Qu(mEGmy(N(£)I1Z)Q(n)
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By joint strong-operator continuity of products on bounded sets, and by virtue
of the fact that, for n$n’,

0=[04(n), Q1 =[& y(ms(N(f,)IE), Qy(n)]
=[EymyNFIIE), & fmy(N(fF)],

we have
S'limr(@)N l—m: 1 Q¢(”) n]:= 1 € ¢(7T¢(N (f, n))lE") nnN= 1 Q¢(n)
=[D-10,m] D=1 EomyINUN [N= 1 Qom) -

However, since P¢(5)§Q¢(D DV js it follows that []-, Q4n)=P4(D): This, and
the preceding statement, proves the lemma. [

3.6. Lemma. Let {F,}N_, be a finite family of mutually orthogonal projectors
of ¥. Then,

S-limpgy [ TN 1 & fma(N(ED =] Th= , EYmy(N(LIID) .

Proof. Let I(#\{F })={D e [(¥)|F,c D" ¥ n}. Clearly, ['(%|{F,}) is a directed
set and cofinal with I'(%): thus, since [ 13, 1.3.1 and Remark, p. 46] the linear span
of the projectors of % is norm-dense in %, since Q is cyclic for % in H, since @ is
cyclic for m,(«/) in H, and since the n-point correlation operators {Ay,} are
continuous and multilinear, it follows that

S-limy g p, ) Po(D) =1.

The result then follows from Lemma 3.5 via the inequality, valid for
Del(#@{F,}),
I, [T Th= 1 € gmaINDED = TTN= 1 E3@ma (NS
<|(PyD)Y, [—1Py(D)P) + 2] TN= 1 1 £3ll* 11— P,D) |
-QIYI+IA~PyDYP. O
3.7. Lemma. Let {S,} be a Cauchy Sequence in </ such that
W-litm g o 1S, E) = 635,

for eachneZ™. Then, if S=1}‘—_1'ioronS,,,
Wiy 6 o (S E) = E3(7,(9)9) =n-lime §(m,(5,)19)

The proof is immediate from linearity and uniform boundedness (ie.

16 o(mg(SIE) S| ¥ E€ I(@)) of the maps {&( |E)} perey)-
3.8. Lemma. Let Ny M eZ™, and let {f}N_, {g}M_, CH. Then,

W-limp )€ o (o (Anp( 15 - N5 G5 - os gM))|E~)
=53(7T¢(ANM(f1» . ‘>fN; 915 ens gM))lqy)
=0mn Zpey’N sgn(p) n:I;J: 1 éag(%(/l 11/ ) ¥) .

As implied by the notation, the order of the product is unimportant.
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Proof. Let D={D,} be a @-partition of H. Let, for each 1=<n<N (resp.
1<m=<M), D, (resp. D, ) be chosen from D D; let f,= d, Y1=n<N (resp.
Im=4d,, V1<m=<M). By the familiar mvarlance argument (e.g. Proof of 2.1)
we have Eomo(Anp(S1s - In3 915 - ’gM))ID)

[0 if (1) k,=k, for n£n’
or (2) K, =k, for m+m’
= or (3) {kn=1F {Km=1
sen(p) [ [3- 1 Ey(ny(A11(dy,; dk,,))lﬁ)a where
— otherwise

| p is the unique permutation such that k, =, V n
=0pm,N ZpeyN sgn(p) Hﬁ: 1 (564,(7%(14 11(fs gp(n)))[ﬁ) .

Taking into account the orthogality of the {D,}, one has, by operating on both
sides by &( |E), the above equality for D replaced by E>D. The result then follows
for this special case from Lemma 3.6. Clearly, the order of the product is irrelevant.
Since the linear span of the set of all projectors of % is norm dense in % [13, 1.3.1],
and since Q is cyclic for % in H, the general case follows from linearity and con-
tinuity (3.7). U

3.9. Definition. Let D (%) [resp. D4(% ,), D4(# y)] denote the C*-algebra on H,,
generated by

{E5(mp(a*(fa@N@)\f, g € H (resp. Y, H, YyH)} {1} .
We remark that (2.3) Dy(%) is generated by Dy(% ,)uD 4 (¥ y).

3.10. Lemma. Let Z,=mny () nny(A). Then Dy H\)CZ, and Dy (%) is
abelian.

Proof. Since, by Lemma 3.8, D,(%y)Cn,(</)", it remains to prove that
Dy(#y)Cnyf). It suffices to prove that [my(a(f)), &Y msa*(g)a()|®)]=
O0VfeH;V g leYyH. Since Q is clearly cyclic for Yy% in YyH it suffices by
linearity and continuity to prove that, if F,G,K be projectors of %, then

[mpa(f)), EYmy(Ay1(Yag; Yyk)I#)=0; or,
w-limp [ 4(a(f)), & J(my(A1 1 (Yag; Yxk)IE)]=0.

In fact, let F > EN with the notation of Lemma 3.4, Case 5 but with D= Yy. It then
follows, by an elementary calculation, that |[mg(a(f)), & s(mg(A;:(Yng;
YOI TI2 (R, Y, v8)*/N. This proves the first assertion. To prove that Dy#) is
abelian, it remains only to show that D4(%# ,) is abelian. But, since &%Y(n4(4, (Y, f;
Y ) ¥)=Znya*(A;f)a(Ag)), it follows that D 4# ,) is generated by {m,(N(a;)}u
{1} and these clearly commute. [

We now put together the results obtained so far.

3.11. Proposition. There exists a unique linear, continuous mapping é"g( |%):
o) > my(of)" such that

EYmHS)Y)=0-limp g6 y(mHS)E) VSes.
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Further,
0) &31|1%)=1.
1) |63 1#)|=1.
2) SZ0=E9(n,(S)%)20.
3) EYnmySHNY)=EYmyS)¥)* VSeoA.
4) Eg(U fg)m o(SYU J(9)*|¥) = & (1 4(S)|¥)
=UN9EJmySNY)VUHN9)* VSest;VgeGP).
5) For N M eZ", {f,}i=1, {gn}m=1 CH, we have

52(n¢(ANM(f1, N G 9N Y) = 5MNdet{é"3(n¢(Au(fn; 9N} .
6) EY(ny/)¥)CD (@)

Proof. Since o/ is the closed linear span of the n-point operators {Ayl,
existence of &3( |%) follows by linearity and by continuity (3.7) from Lemma 3.8:
uniqueness is immediate. 0), 1), 2), and 3) follow from the properties of the con-
dltlonal expectations {&( IE)} It follows from the G(E)-invariance of Sy IE) for
Eer (02/) that 4), holds for g e G%(%)= U my)G(E) Since G%(®) is norm-dense in
G(#@) (by trivial modification of the proof of [13, 1.3.1]), and since « and %, are
strongly continuous, 4) holds for all g € G(%). 5) follows from 3.8, and 6) from 5). [J

3.12. Proposition. There exists a unique normal conditional expectation Ey( |%)
on (/)" which extends E¢( |%). Further, & y(m,(A)"|%)=D4%¥)".

Proof. We first prove existence of a, necessarily unique, normal linear map
extending &Y( |#). To this end, let Hj= {ny(L(Y H)®}", and let M H,=
[Dy(#y )Hﬁ]' Since M, e Dy%), and since n¢(,;z¢(YNH))CD¢(@) [recalling that
Gy y)EZ 4], the central support of M, in G4(#)" is 1 (i.e. [Dy(H)MHy]™ 2
[n¢(d( YyH ))Dd,(@ WA (Y H)DP]™ 2 [nd,(;zi(H)d?] ~=H,). Therefore, the restric-
tion map

R:Dy(#)'»Dy#%)'M, is an isomorphism [4;1,§2, Proposition 2]. On the
other hand, if S € .o/, we have

U f9)8 o S)NEVU (g)* = 1+ Yy(g — D) ymy SN EVU (1 + Yylg — D)¥

VgeG.

Further, since % 4(G(Yy))S{Dy(¥y)n,((Y,H))}, it follows that %y g)M,=
M,V g € G(Yy). Combining these two observations, we have

M 2 ()6 J(my(SNEVU (g)* M y= M 48 (e y(SIEOYM , ¥ g € G(@) .
Recalling 0.2(3), it follows from linearity and continuity that

M 48 (8 y(my(S)IEONCIM y= M 48 y(my(SNEOM ¥ C e (@) .
Therefore (2.7(4)),

My E3my(SIH)M y=M 46 y(ny(SEYM,V S € of .

This proves that &9(ny(S)|%)=R™'(M ¢za@¢(n¢(S)[E°)M ¢)VS e o/. Now, since the
mapping S(e ny(-f))—>M ¢<§’¢(S|E )M, is ultra-weakly continuous it follows that
Md,é“’(,,(SlE YM,eDy(H)'MyV S eny(f)'. Wedefine &,( |%)=R™ (M8 |E°)M¢)
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on my(f)". E4( |%) is clearly a normal linear map extending & |%). To prove
é4( |%) is a conditional expectation only (3) of Definition 0.1 remains.
We have,

EHSELNTIWNY)=R™ (M y&, (Sé’q,(Tl@)\EO)Md,)
=R™Y(M 46 (SIE®) M,& (T|%)M,
=R (M 46 JSI%)& (TI%)M ;)
=E4SIY)E 4(TI%) VS, Teny,(),
where the second equality follows from G(E°)-invariance &4(T|%). It is clear,

from 3.11 and normality, that E,(n,(.«/)"|%)SD4(%)". On the other hand, if
Se D,y (%), we have

EJSI%)=R™Y(M,& ,SIE®)M,)=R™1(SM,)=S5 .
Hence
Eymy(A)|W)=Dy¥y . O

The proof of Theorem 3.2 is immediate from Propositions 3.11 and 3.12.
We shall need the following modification of 3.2.

3.13. Proposition. Let {E}* | be a dense, increasing sequence of -partitions
of H; let ¢ be a G(%¥)-invariant state on /. Then,

6-limé y(my(S)E) =& y(nSI¥) VSe.d .

Proof. Let F={F 72 12 E° be a @-partition of H ordered so that {Q, YyF;Q)}
is decreasmg For every 31>0 there exists J(e;) (finite) such that (Q, Yy(1—

1F )Q)<e,. Furthermore, since {E"}¥_, is dense, we have for arbitrary ¢,,
an ng such that, for each 1 <j<J, there exists a projector G which is the sum of
orthogonal projectors of E™ and which satisfies (2, G1— F DHF(-G)Q)<e,.
Let, for each 1<j<J, G;=G(1—\/,<;G); then (1) G; CG’ 2 GG 0Vi%j,
3)Y,;G6,=\/;G}, and (4) G is the sum of orthogonal projectors of . Tt follows
directly that

(QF(1-G)+G1-F)Q<e,J 1=5j<J.

For arbitrary n=n,, and projector D € %, we have
|1E(N(@)F\/E— EN@IE| =Y, <, {E(N(F )| E")
—E(N(GA)EN}+EN(A—=Y; <, F)d)|E"\/F)
—EN(A=Y;<; G)DIEM| <Y<, IN(Fd)— N(G )|+,
+(Q,(M=Y;<;G)DQ)<2e, +J%, +2J32 | Qled/? .

To sum up, if F is a #-partition of H, and if D is a projector of %, then for
every ¢>0 there exists n, such that n=>ny=

IEN@IF\/E—S(N@IE| <.
The proof is then completed by simple modifications to 3.7, 3.8, and 3.11. [
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3.b Consequences of Local Convergence

The next lemma aims at establishing (Theorem 3.15) the map Q,:% . — D ,(%)".

3.14. Lemma. Let ¢ be a G(%)-invariant state on of . Then, there exists a unique
mapping K, :(Dy(#%)"),—% such that

(9, Ky N)= w3 6 y(my(a*(NlalgN¥)) Vf.geH.
Further, K is positive, linear and contracting.

Proof. Since, for each ye(D 4(#)"),,, the mapping (g, f )= {y;& ,(n(a*(f)a(g)|¥)>
is, by Theorem 3.2, a continuous sesquilinear form over H, there exists, by Riesz’s
theorem, a unique bounded linear operator, K4(y) on H such (g, K4y)f)=
s & y(ny(a*(fa(g)|?)>. By (1) of Theorem 3.2, hK¢(w)h‘1=K¢(1p)VheG(@).
It follows that K,(yp)e %' =%. This proves existence and uniqueness. Linearity
and positivity are immediate. Finally,

1K 4)ll = Sup, [<y; & y(mp(@*(Na@) NIl . O
Nr1=1lgll=1

To each A €%, we can now assign a mean number operator.

3.15. Theorem. There exists a unique map Q4:% ,—D 4%)" such that

Qy(Alg, f) =& y(my(a*()al@)|¥) Vf.geH.

Further, Q, is positive, linear and norm-reducing.

Proof. Uniqueness is immediate. Existence follows from Lemma 3.14 by
defining QyA)=K3(MN)VAe¥,. [

We can now make contact with the discrete case.

3.16. Corollary. Let A(%)={A;},.; denote the atoms of ¥ define for each
iel, A;e¥, such that A(A;))=0;;. Then, Q,(A)=mnya*(f)a(f;) where f; is any
normalized vector in the range of A;. Hence Q,(A,) is a projector and D4 (¥ ,) is
generated by 1, and {Q,(A)lieI}.

We now obtain the operator-valued, number density over the spectrum of %
attached to the representation , (cf. 1, § 7, Theorems 1 and 2 and IIL § 3, Corol-
lary 1 of Ref. [4]).

3.17. Theorem. Let (X, B, i) be a totally o-finite measure space; and, in the
preceding discussion, let H=%*(X, B, i), % = #“(X, B, u) and ¥ ,= %'(X, B, ).
If ¢ is a G(%)-invariant state on o/(H), there exists a p-a.e. unique, g-measurable
mapping N 4( |%): X —>Dy¥)" such that

3 QD =[10x) w3 No(xl¥)pdp(x) YV e(Dy®)), ;¥ fe L(X,B, 1.
Further, 0< N 4(x|%) =1 p-a.e.

Proof. Separability of H implies that of .«/(H), H, and hence of (D 4%)"), and
of (D¢(Q?/)”)* [the normal positive linear forms on D¢(@)”] let DY be a countable
dense set of (D4(#)"),, such that DIN(D,(#)"); in dense in (D¢(@)”)*, and let D¢
denote the set of all finite linear combinations of elements of D2 with coefﬁcients
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in Q+iQ (Q =rationals). It is clear that D is itselfa countable dense set of {D ,(#)"),,
such that {DIN(D,(¥)")} ™ = (D¢(@)”) . We now prove umqueness Suppose that
N¢( |%), N4( |%)are two such mappings. It follows from the uniqueness of Lemma
3.14 that for each ye(Dy(#)"),, Kyw).=<w; Nyx|¥))=<yp; N¢(x|@)>u a.e.
There exists, then, a measurable set X,CX such that u(X,)=0 and such that
XEUy,=>

;s Ny(x1%)) =<p; N(x|%)>V peD.

Since DY is dense in (Dy(%)"),, it follows that x € X 0= Ny(xI%)= N 4(x|%). This
proves essential uniqueness of N4(|%). We now prove existence. There exists by
Lemma 3.14 for each y € (Dy(%)"), a p-a.e. unique essentially bounded function
K () such that

$w; Q) =[x (K W) du(x) ¥ f € (X, B, ).

We have, for 4,y €R and y, v’ € (Dy(%)"),.

(1) K(Ap +yy),=AK (), + 7K y(v') k-ae.

Q) Kyl = [wllu-ae.

() p=20=Ky(),=0p-ae.

There exists, then, a measurable set X,CX such that u(X,)=0 and such
that (1), (2), and (3) hold everywhere on X — X, for y, A € Q +iQ and for all p, p 'eD.
Define Kd,(lp) ¢(zp) X(X —X,) where X(X — X ) is the characteristic functlon
of X—X,. K,, mapping D? into the Banach space of bounded B- measurable
functions M(X, B), extends by continuity to a complex-linear mapping K¢ of
(D¢(@)”)* into M(X, B). Thus, for each xe X, w—+K¢( ). 1 a positive, linear
mapping of (D4(%)"), into € bounded by 1. There exists therefore, for each x € X,
a unique operator N 4(x|%) € D 4(%)" such that {y; Ny(x|¥)) = K¢(1p) Vye(Dy (%)),
One easily verifies that N ( |%) satisfies the requirements of the theorem. [

3.18. Theorem. Let ¢ be a G(%)-invariant state on </, and let P denote the
cone of G(#)-invariant normal positive linear forms on m(of)". Then, with the above
notation and definitions, the restriction map R:P3®—(D4(#)")} of P3™ into the
cone of normal positive linear forms on Dy%)" is a bijection.

Proof. Let p be a normal positive linear form on D4(%)". The form y defined
for each S emy(#)" by ;8> =<{P; & 4S|%)) is clearly a G(%)-invariant normal
positive linear form on my(«/)” extending . R is therefore surjective. Now let
p+y e P§™ with R,=R,,. Then, there exists S € o/ such that 0= (p —y/'; m,(S)).
This, however, results in the contradiction:

0=<R,—R,; & y(my(SNU)> =< —y'; & 4y(my(S)¥)>
= limr(@/)<w -y’ g¢(n¢(S)IE)> ={y—y'; T4(S)) .

R is therefore injective. [

3.19. Remark. It follows from the proof of 3.18 that if ¢ is a G(%)-invariant state
on .o/, and if p is a G(%)-invariant normal positive linear form on m4(.«/)", then

;8 y(my(S)W)) =<p; ny(S))V Se .
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4. Global Theory

In the present section, we focus on the global consistency of the local results
obtained in the preceding section. We first show (4.2) that the set of all G(%)-
invariant states on . is a simplex and give a characterization of the set of extreme
points, showing it to be weak® compact. The set S(#) of extremal G(%)-invariant
states supports the global extension we are looking for (4.3—4.5).

The next lemma follows easily from Moore’s theorem.

4.0. Lemma. Let A€ B(H) be such that 0 A<1. Let w, denote the unique
gauge invariant generalized free state on of such that {w; a*(falg)>=(g, Af)V
f.ge€H. Then, the map w:B(H){ —F(H) is a homeomorphism when the former is
equipped with the a-topology, and the latter with the weak*-topology.

4.1. Definition. Let % be a maximal abelian von Neumann algebra on H. Let
S(#) denote the set of all A €% satisfying 0<A<1 and 42Y,=AY,. Let S@)=
o(S(#%)). We remark that S(%) is a o-compact subset of %; therefore S(%) is w*-
compact.

4.2. Theorem. The set S of all G(%)-invariant states on </ is a (Choquet)
simplex, and S(%) is the set of extremal G(%)-invariant states on /. For each G(%)-
invariant state ¢ on </, there exists, by Choquet’s theorem [cf. 12, A.5], a unique
regular probability measure p, on S (or &) such that

(1) u(S@)=1.

(2) {¢; Ay=[<o; A)duyo) VAesd.

Proof. We show that the cone P%® of G(%)-invariant positive linear forms
on o is a lattice. For this it is sufficient to show that, for each G(%)-invariant
state ¢, the cone P§® of all G(%)-invariant normal positive linear forms on
n4(f)" is a lattice. Indeed, if , v’ € P9*), then y, y' € P§® for ¢ = (p + ")y +
y';1). Since P§® is, by Theorem 3.18, order isomorphic to the set of normal
positive linear forms on the abelian von Neumann algebra D,(%)", and since
this last set is a lattice, it follows that P$® is a lattice. Hence, ©® is a simplex.
We now characterize the set of extremal G(#%)-invariant states. Since P§® is
order isomorphic to (Dy(%)");, a G(%)-invariant state ¢ on .« is extremal G(%)-
invariant if and only if @|p 4y is @ character (the distinction between ¢ as a state
on </ and its extension to a normal state on 7,(/)" is not made explicit). It follows
from Theorem 3.2 and Remark 3.19 that if ¢|, (4 is a character, then ¢ is a gauge
invariant generalized free state. Since every gauge invariant generalized free state
is a factor [11,5.1], it follows from Lemma 3.10 that Dy(¥ ,)" = D4%)". Now, if
®lp, @) 1s a character, we have (with the notation of Corollary 3.16),

(foo @™ NPV L) =L s mgla*(f)al1))> =< ¢ mola*(f)al f))*>
=(fp 0 NP f)*=0 or I.

Thus, Yo~ }($)=21,4; with 1,=0 or 1, proving that Y, !(¢) is a projector.
Conversely if Te%{ we have: w; is G(#%)-invariant, D,, (¥)'=D,, (¥ ,)" and,
for i+j,
{or; n, (a*(fal fa*(falf)) = ar; (@ (fla(f)))
Lo T (a*(fal 7)) -
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If, further, Y, T is a projector we have, by reversing the above argument, that

Cor; Ty (@*(f)al(f)))* =or; n, (@ (fa(f))*> Viel.

Since D, (¥ 4)" = {n,, (a*(f)a(f))}ic1» w7 is a character on D, (%) and is therefore
an extremal G(%)-invariant state on .o/. Assertions 1 and 2 follow immediately
from Choquet’s theorem, bearing in mind that S(%) is compact and & is metriz-
able. [

4.3. (a) Definition. Let D(%) denote the C*-algebra of continuous, complex-
valued functions on the compact Hausdorff space S(%). Let &( |%) denote the
canonical map of .«7 into D(%). That is, for each T € o, §(T|%)(6)={0; T)V o€
S%).

We remark that since (3.19 and 3.15) for f, g € H and ¢ € S(%) <o ; a*(f)alg)) =
{o;Q,(Alg, 1)), and since ¥, consists of vector-forms, we can add:

4.3. (b) Definition. Let Q:% ,— D(%) be defined, for each 6 € S(%) and A ¥,
by Q(A)o)=<0a; 2,(A)).

44. Remark. It is clear that &( [%)isa positive, *-preserving, linear map of
norm 1: we show in 4.5 that it is “almost” a conditional expectation.

It is also clear that Q:% ,—D(%) is a positive, linear, contractive injection
which satisfies the formula:

E(ANm(S15 -5 I3 G15 -0 G| Y) = Oy det{ A A(G s )} -

4.5. Theorem. Let ¢ be a G(%)-invariant state on /. There exists a unique
*-representation 7t,: D(%)—B(H ;) such that

&y y(SIY)=1,8(S|%) VSe..
Further, T (QA)=Q4A) VAeY,.

Proof. Uniqueness would follow by continuity from norm density of &(.<Z|%)
in D(%). Since &(/|%) is a self-adjoint, linear subspace of D(%), separating S(%)
and containing the unit, density will follow from the Stone-Weierstrass theorem
if £(/|%) ™ can be proven to be an algebra. It is sufficient to show that U, V € .«/ =
EV|#EU %) e 8(/|%)~N. We have, for arbitrary o € S(%),

E(V|%)-£UI%) (o)

=(0; & (VY& [ U)W)) = 0; m,(V)E o(mo(U)|¥))

= lim (o VE(U|E") = lim (VE(U|EM|¥) (o),

where {E"} is a dense increasing sequence of #-partitions of H [by 3.2(2), 3.13,
3.19, and the fact that ¢ is a character on D (%)"]. :
Consequently, [6, IV.6.4] &(V|%)&(U|%)=weak- lim &(VE(U|E")|%) (the con-

tinuous function on the left is the point-wise limit of a bounded sequence of
continuous functions). By [6, V.3.13] &(V|#)&(U|%) e &(A %) V.

This completes the proof of uniqueness; we now prove existence. Let S € .o,
p e S, and gy, 9, be the unique maximal measure on S** representing &3(y|%),
where &§(y|%) is the G(#)-invariant, normal state on m,(«/)" defined as
EFw|Y); S)=<y; &4(S|1%)). We have

$; 6 y(my(SIY)> = 5W|D); Sy = [S(SI1Y) (0)d s 10)(0) -
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We can now define, without ambiguity, #9:6(+/|%)—>B(H,) by #3(&(S|%))=
€ y(14(S)|%)V Seof . It is clear that 74 is linear and *-preserving. Let again U,V e/;
then, by the weak convergence proven above, we have

3 Egmy(UND)E (V)W) = lim (E3(p|2); US(VIEN)
= lim [ S(UE(VIED|Y) (0) ditsyp10(0)

=[6UIMEWV|Y) (0) dits 3 a0 -
Thus, for each V €.o/ we have,
16 o(mes(V)9)||?
= Hgllllgl(é, & JmfVWE y(m s VNZ)E) ZNEVI) | dap-norm -

Therefore, 7%3 extends by continuity to a continuous, *-preserving, linear map
ity of D(¥)=&(oA |%)~~ into G4(#). 1t is clear that, for each normal form y on
mo( ) 3 2y(T)>= [ T(0)diteyp1o(0) ¥ T € D).

Hence, for U, V € .o/, we have

RN EUIDNEV ) =R, EUIY))  RHEV|Y)) .
Hence, 7, is a *-representation of D(%). The remaining assertion is immediate. [

4.6. Corollary. Let S(%) denote the set of regular probability measures on S(%).
Then, the map &*( |¥): S(¥)—S?) defined for each pe S(%) by

(E(D): Sy = o0 (SI¥) (0) du(0) ¥ S € o

is an affine, bijective map.

Discussion

In Theorem 3.2, the net of conditional expectations is proven to converge
only on m,(.e) (not on n,(.27)"). If ¢ is the Fock state and if % is non-atomic, there
exist elements of m,(.e/)” on which the net does not converge. By restricting our
attention to m,(2/), we have been able to treat those cases when my(.2/)” is not
G(%)-finite.

We remark that Corollary 4.6 is the natural generalization of the work of
Shale and Stinespring on states symmetric about a basis [14]. Araki [1] has
generalized Theorem 4.2.

On the physical side, we have isolated a classical field of number densities on
the spectrum of an arbitrary, complete one-partical observable @. When ¢ has
discrete spectrum, the field is simply the lattice gas [3]. When @ has continuous
spectrum, the field is macroscopic (i.e. centre-valued [10]). This results from the
coarseness of the CAR-algebra description of a Fermi field on a continuous
physical space; coarsness which is preserved by normality of the projector upon
the classical field.
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Appendix

Proof of Theorem 0.2. We give a sketch. See 16.1 for details and notation.

1) Existence of the extension follows from amenability of G and the assumption
AMC.o/% (e.g. Ruelle [12,6.2.13]): Uniqueness is immediate.

2) Since each state on .o/% can be extended (e.g. Ruelle) to a G-invariant state
on .o/, o/M separates the set of all states on .«/¢. Therefore, by an Extension of the
Stone-Weierstrass theorem [5, 11.3.1], o™ = /6.

3) Let # be the eneveloping von-Neumann algebra of .o/, .o/ is isomorphic
to a g-dense C*-subalgebra of %4, and G extends to a group of automorphisms
of B. If Se# (resp. ¢ € #*), and if m is a mean on B(G), define mSe % (resp.
m*p € B*) by <mS; up=mlgS; up vV ue A, (resp. {m*¢;S>=m{¢p;gs) v S e A).
If ¢ is a state on 4 and if # is an invariant mean, then it is easily seen that ¢on
and #*¢ are two G-invariant states on # which coincide on .«/°. Consequently,
by 1, {¢;nS>={n*p;S)> VS e (though not necessarily for all Se%). Choose
a net {M},, of finite means weak*-convergent to #. Then, for each state ¢ on #
and S € .7, {p; nSy=<n*¢; S>=n{P;gS) =limM ;< $; §S) =1lim{¢; M;S). Thus,
by linearity, for each Se./, 5S=weak-limM,;S. We conclude that
nSeCo{gS|geG} ¥k and by Mazur’s theorem [6,V.3.13], that nSeCo{gS|geG} V.
Consequently, Co{gS|lge G} "n.o/® is not empty. To prove that {nS}=
Co{gS|g e G}~ ¥n.o«/% suppose that S e Co{gSlge G} ¥n.«¢® with S+#S. There
exists, therefore, ¢ € #* such that (¢;S—nS)>+0; thus {n*¢;5—nS)=+0. But
n*¢ is, by continuity, and linearity, constant over Co{gS|g € G} V. Define S°=xS.

4) These properties follow immediately from those of the invariant mean 7.
Uniqueness is immediate. [
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