
Commun. math. Phys. 44, 45—51 (1975)
© by Springer-Verlag 1975

Existence of Phase Transition for a Lattice Model with a
Repulsive Hard Core and an Attractive Short Range

Interaction

M. Cassandro
Istituto di Fisica, Universita di Roma, Roma, Italy

C.N.R., Gruppo Nazionale di Struttura della Materia

A. Da Fano and E. Olivieri
Istituto di Matematica, Universita di Roma, Roma, Italy

C.N.R., Gruppo Nazionale di Fisica Matematica

Received January 18, 1975

Abstract. We consider a lattice model with a repulsive hard core and an attractive short range
interaction. We show that this model has at least three independent equilibrium states, when the
temperature is sufficiently low and the chemical potential is suitably chosen.

1. Introduction

The existence of a phase transition at sufficiently low temperature and/or
high density has been proved for a large class of lattice models [1].

The procedure, now actually standard, goes back to Peierls [2] and relies in
showing that the correlation functions are sensitive to boundary conditions even
in the thermodynamic limit.

The fundamental steps are:
i) definition of contours: each configuration on a lattice is associated to a

family of polygonals (the contours);
ii) estimate of an upper bound for the probability of finding a given contour

present: this probability, in all cases of interest, turns out to decrease esponentially
with the inverse temperature and the lenght of the contour.

The main difficulty generally arises in getting point ii) and, until recently,
it was possible to get these sort of estimates only for systems exhibiting a symmetry.

A big progress has been recently achieved by Pirogov and Sinai [3], that were
able to prove point ii) for an Ising spin system with small non symmetric pertur-
bations1.

In the present paper we consider a lattice model with a repulsive hard core and
an attractive two-body short range interaction and, by the method of Peragov
and Sinai, we show that there are at least three equilibrium states corresponding
to different boundary conditions if the temperature is sufficiently low and the
chemical potential is suitably chosen.

1 The case where three-body interactions only are present, was solved by Merlinί, Hintermann,
and Gruber [4], in two dimensions with a different technique, based on duality transformations.
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This model was previously studied by Dobrushin and shown to exhibit at
least two indipendent non traslationally invariant equilibrium states, when the
chemical potential is suitably large [5].

The calculation refers to the two dimensional case; generalisation to three or
more dimensions does not present any particular difficulty.

In the second section we define the model and for suitable boundary conditions
we express the partition functions in terms of contours. In the third section the
Pirogov and Sinai method is applied. We conclude by briefly discussing a physical
interpretation of our results and listing some obvious generalizations of our model.

2. The Model

Consider a box ΛcΈ2, containing \Λ\ lattice points and call SΛ its boundary.
On each site i e A there is a spin variable σt = ± 1 and σΛ = (σ1,..., σ^) denotes an
arbitrary configuration in A. The hamiltonian of the spin system we shall consider
has the form

H(σΛ) = hard core - / £ < a J » e ^ σ ι σ J - h^ieAai9 (2.1)

where the hard core acts between plus spins on nearest neighbours sites and the
sum is over second neighbours pairs in A. If we split the lattice into the two
sublattices Έ2 and TL2, that connect second neighbours (cf. Fig. 1), with obvious
notations A = AaκjAb,σΛ = (σΛauσΛb), the hamiltonian will read

H(σΛ) = hard core + HfcJ + H^σJ, (2.2)

where

# i K α ) = -JΣ<i,J>eΛaσi<rj- tiΣieΛaσi ( 2 3 )

is the standard Ising hamiltonian with nearest neighbours interaction in the
sublattice Έ2.
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Fig. 1. o lattice^ latticeZ^
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Now if we consider a box A, defined as in Fig. 2, we notice that all the sites
i e dA belong to the same sublattice. Then, keeping all spins on dA to be minus,
we will focus our attention on the following two arrangements for all spins sitting
on the sites internal to A and neighbouring dA:

i) they are all bound to be minus;
ii) they are all bound to be plus.
The first is what we call the τ 0 boundary conditions. For the second we have

to distinguish two cases: dAeΈ1 and dAeΈl that we will denote respectively
as τ1 and τ 2 boundary conditions.

The thermodynamic limit will be taken over sequences, ordered by inclusion,
of boxes {A}, preserving the boundary conditions.

We will now discuss in some detail the case of boundary conditions τ1. If we
call {σΛ}τ the set of all spin configurations in A, consistent with the hard core
exclusion and boundary conditions τ 1 ? the partition sum over A will read:

where the superscript + (—) in the hamiltonian is to recall the boundary conditions
on each sublattice.

If we recall that any spin configuration (rΛa(σΛb) is associated, by standard
rules [6], to a polygonal separating opposite spins in the sublattice Έ2(E2\ we get
that any σΛ e {σΛ}'τι can be associated to a collection of closed contours y = y{a)\jy{b\
where:

i) the y{ahs(y(b>s) are closed polygonals connecting adjacent points in the
sublattice Έ2(Έ^);

ii) two y(β)'s(y(b)'s) cannot intersect by construction (once the convention for
"chopping off [7] the edges is assumed);

iii) a y{a) and a y{b) do not intersect due to the hard core exclusion;
iv) any contour y{a\yφ)) defines a region θ(γ) in A with well defined boundary

conditions (τ l 5 τ 2 or τ0) (cf. Fig. 2).
In the sequel we will express the partition function in terms of suitably chosen

contours.
Given any configuration σΛe {σΛ}'τi, we can consider the associated contour

configuration.
Among these contours, we can select the outer ones (i.e. the contours that are

not embraced by any other contour); then we can collect the spin configurations σΛ

in classes in the following way: all the σΛ's that give rise to the same outer contour
configuration belong to the same class. Obviously a given <rΛe{σΛ}'τi cannot
belong to different classes.

Notice that, due to the presence of the τ1 boundary condition the outer
contours can only be composed of pieces connecting adjacent points of the
sublattice Έ2.

Conversely let {Γ{a)}Λ be the set of all collections of compatible (i.e. not inter-
secting) outer contours of type y{a) in A: then to any Γ(a) e {Γ(a)}Λ we can associate
all the spin configurations σΛ e {σΛ}τi that give rise to the outer contour configura-
tion Γ{a).

In this way we have partitioned the set {σΛ}τι in equivalence classes and we have
constructed a one-to-one mapping from these classes onto the configuration
Γ{a)e{Γ{a)}Λ.
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Fig. 2. Volume A with boundary conditions τ: a configuration γΛ and the associated set of contours
(yi>y2>y3>y4->y5>y6>yuyf2) Notice that: (a) the y's and the y"s are polygonals connecting adjacent
points in different sublattices,- (b) the outer contours are yuy2, ^3 (c) γt, γ2, y3, ?4> Ϊ5> Ϊ6>and ^ connect
point in the same sublattice. For τ 0 boundary conditions see for instance the region θ(yx)

Similar arguments (α->b) hold for τ2 boundary conditions. The relevant
difference for τ0 boundary conditions is that we can simultaneously have outer
contours belonging to different sublattices.

Let us set

ζτo(Λ, K β) = , h, β),

where ^VΛa(J^Λb) ^s the number of pairs of nearest neighbours on Λa(Λb).
Then we can write:

K Λ =
, k β) =

, Λ, /0 =

K β)

), K β), (2.4)

)? K β), (2.5)

, K β)

(2.6)

where {Γ(a)vΓφ)}A is the set of all collections of outer contours in Λ, Γ ( f l )uΓ ( ί ) )

such that no one of the Γ(α) e Γ(α) intersects aΓ{b) e Γ{b); \Γ{a)\(\Γφ)\) is the lenght of
contour Γ{a\Γ{b)) if we use the spacing of the sublattices as unit; \θ(Γ{a))\(\θ(Γ(b))\)
is the number of sites of Ab{Λa) contained in the region θ(Γ{a))(θ(Γ(b))).

3. The Method

Equations (2.4)-(2.6) of the previous sections show that the set of the allowed
outer contour configurations and the associated outer contour wheights fully
describe the model. Therefore all contour wheight functions that give rise to the
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same probability for outer contour configurations must be equivalent as far as the
statistical behaviour of the system is concerned.

The phylosophy of Pirogov and Sinai's work is essentially based on the
previous observation and their approach ammounts to look for contour wheight
functions, consistent with the above mentioned requirements, that do satisfy the
exponential bound quoted in point ii) of the introduction.

In the sequel we will reproduce the Pirogov and Sinai's argument for our
model.

Let Ωa(Ωb) be the set of all closed edge-self-avoiding contours in the sublattice
TLl(El) and Ω = Ωa\jΩb. Introduce now μ\y\ μXb(γ) two non negative, translationally
invariant functions, defined on Ω and set:

ζ*(μ\A)\
if δΛeΈ2

a

if dAeΈl (3.1)

•Ur^r^e-^Γ^ζ(μτo,θ(Γ^)), (3.2)

where the star is to recall that only contour configurations γ e ΩJy e Ωb) are taken
in the sum (3.1).

We will prove the following theorem in order to show that our model exhibits
a phase transition.

Theorem. Consider the system described by Eqs. (2.4)—(2.6) of Section 2.

βJ JJ-
When ~^->e 2 it is possible to find a value of h, h* = h*(β, J), for which there

exist two wheight functions μτ(y) and μτo(y) such that:

ίζτι(h*,β,θ(γ)) for γeΩa

\ζ^(h*,β,θ(γ)) for yeΩ,

eΩ.

ii) μ\y)- \nζ*(μ\ θ(γ)) = 2βJ\y\ + 2hβ\θ(y)\ - ]nζ{μτo, θ(y)) (3.3)

μ<°(γ)-lnζ(μ<°, θ(γ)) = 2βj\y\-2hβ\θ(γ)-\nζ*(μ\ θ(y)). (3.4)

iii) μτ(γ)^2βJ\y\

μτ°(γ)^2βJ\y\.

Proof. If we set:

\nζ*(μ\ θ(y)) = 2\θ(y)\ot*(μτ) + K*{μ\ θ{y))

\nζ(μτ°, θ(y)) = 2\θ{y)\a{μτ°) + K(^°, θ(y))

ϊorh=la(μτo)-a*(μτ)-]/β
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the Eqs. (3.3) and (3.4) become

M = A + K(M),

where

M=\

AJ2βJ\y\)

(K*(μ\θ(γ))-K(μ«>,θ(y))
K(M) =

\K(μ*°,θ(γ))-K*(μ\θ(y)).

Putting now:

M0 = A

by means of a theorem due to Minlos and Sinai [8], it is possible to show by

standard methods (cf. Ref. [3]), that, when
βJ J—

2

lim Mn = M*
«-> 00

exists for all y's and M* is the searched solution, ft* is then given by Eq. (3.6).
To conclude the proof we remark that for any y which cannot contain internal

contours

and by interation it is easy to prove point i), of our theorem, for any y.

4. Conclusions

βJ -β-
We have shown that when — > e 2 and ft = ft*(jS,J), we have at least three

independent states associated, respectively, to the outer contour probability
distributions, given by the contour wheight functions μ\ μτ°.

If we remark that the states with τ1 and τ 2 boundary conditions are not
translationally invariant, it seems natural, in the language of the lattice gas, to
interpret the curve h = h*(β,J) as the solid-fluid transition line. It would be nice
to be able to discriminate between two fluid phases and get the full picture of a
solid-fluid system. But this is far from the purposes and limits of this work and,
presumably, the model is too simple to exibit this behaviour. A more feasible
problem is to extend these results to longer range forces. For instance the case of
first and second neighbours hard core exclusion and third neighbours attraction
can be treated exactly along the same lines, and only minor changes are required
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when the third neighbours attraction is replaced by a longer range interaction
a la Ginibre, Grossmann, and Ruelle [9]. Nevertheless the extension to arbitrary
ranges is not obvious.
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