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Abstract. The charge operator is hermitean if and only if the vacuum is invariant. In that case
the charge must be invariant under time translations.

Consider within the Wightman framework a quantized real field tvm(x) trans-
forming under the inhomogeneous Lorentz group (ILG) according to

tμm(x)-> U(a, Λ)tμmU~1(a,Λ) = (Λ~1)μ

μ/D™,(A~x)tμ'm'(Λx + a).

Here m stands for a collection of vector indices, U(a, Λ) is the unitary representa-
tion of the ILG, D%>(Λ) a finite dimensional irreducible representation of the

homogeneous Lorentz group (HLG)1. Let θr(x) = 9 — , r > 0 , η(x) be real test

functions with compact support and 5(s)= 1 for s^ί, §η(x°)dx° = l (see e.g. [4]).
We assume in addition that the Fourier-transform ή(p°)φθ for all finite p° (this
is always attainable, e.g., by a small shift in imaginary direction in p°-space). This
rather technical looking assumption turns out to be necessary for not loosing in
the limit r-»oo a contribution of tμm concentrated on a mass shell (see also 4 ).

Put

Then, due to relative locality,

Λ-> limi[β?, A] = i[β~ 4 U r o M ) ,

defines a map on the algebra St of all strictly local operators, and defines an
operator Qm by

β m ^ β = [ β ? M ] U Γ o M ) β (1)

with domain 01Ω (Ω denotes the unique vacuum vector).
1 We consider only single-valued representations. Therefore we may assume the ίvm to be her-

mitean. Mutatis mutandis the following remains unchanged for complex fields.
2 This is possible because Ω is separating.
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Qm should be a candidate for a "charge" operator. Therefore one would like
to have Qm hermitean and selfadjoint.

Theorem l . Q m is hermitean if and only if (Ω\[Q™, A]\r>ro(A)Ω)...0 (i.e. invariance

of the vacuum).

Proof. Since tμm is assumed to be hermitean, it is straightforward to show that
invariance of the vacuum implies Qm to be hermitean. For the other direction
consider CeM with lim(Ω|[β", C]β)Φ0. Assume Ωe8Qm*. Then

(Qm*Ω\CΩ) = (Ω\QmCΩ)= li
r —•

On the other hand, QmΩ = ]imlQ^9 l ] β = 0. Therefore Qm cannot be hermitean. -
It is easy to show slightly more, namely in case the vacuum is not invariant, Qm

is not closable.
We see: Qm is a condidate for a charge precisely in case the vaccum is invariant.

With certain additional assumptions one can then even show that Qm is self-
adjoint [5, 6]. We do not want to discuss this point here.

In case the vacuum is not invariant, one may question whether (1) is intuitively
speaking a reasonable definition. To our mind, this seems to be the case, since
one wants to see the action of the map transforming different fields into each
other on the state space, too. Unclosable operators, however, are rather nasty
objects.

Coleman [1] has shown in case of a covariant vector field, that the invariance
of the vacuum implies dμj

μ(x) = O. In [3] this was somewhat generalized and shown
that the conclusion does not hold in case of arbitrary tensor currents. In general
one gets only dvd

vdμt
μm(x) = O. The essential aspect, however, of Coleman's theorem

is that the existence of a charge operator implies that the charge operator must
be independent of time. In the subsequent part of the present note it will be shown
that this latter conclusion stays true for all tensor currents.

Consider3

Then by using (1) one gets

QmAΩ = Hm [β;™, A]Ω= ίQT,Λ]\r^rcΛ

= rlim [£>Γ,
r

[For the last line one makes use of the relative locality between tμm and A and
of the shape of θr(x).] We want to show that

(2)
r->oo

implies

[GΛ^] = [βΓ^]=O (3)

for sufficiently larger and all Ae&.
3 P° stands for the Hamiltonian. We are a little sloppy in the following by not specifying pre-

cisely the domain properties of the unbounded operators involved. However, this would not change
the conclusion and can easily be filled in an obious way.
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Let Be 01 and Λo be arbitrary, then

(AξΩ\ {D?B - BD?} Ω) = (Ω| {A0D?B - A0BD?} Ω)

= {Q\{IAO, D^B + [D?, ̂ loβ]}Ω). (4)

We intend to show that this vanishes for a dense set of vectors A%Ω. Consider
the second term first. For C = 0

(Ω|[D?,C]Ω) (5)

vanishes for large r [because then

)» C]Ω) = (Ω|[[P 0, QTl C]Ω)= - ( Ω | [ [ ρ ? , C], P 0 ]Ω)-(Ω|[[C, P o ] , Q?

and PoΩ = 0, and Eq. (2)]. On the other hand, assuming Eq. (2), it was shown
in [3], Proposition 2.1.1, that dμt

μm(x) is a free zero mass field4. Therefore only
mass zero states contribute as intermediate states in (5) and one has the

Lemma 1. Let dμt
μm(x) transform according to an irred. rep. of the HLG. Let C

be local relative to dμt
μm(x)5. Then (2) implies that (5) vanishes.

Remark. Besides of the assumptions listed, we use Wightman's framework of
quantum field theory. In particular the assumption of definite metric in the
representation space is important.

Proof As said above, (2) implies D™Ω is a mass zero state (or vanishes). Let
the irreducible rep. of the HLG be of type (b + h, b).

i) Case 2b + h^2. Lemma 1 of [4] implies ||D^Ω|| < oo. Lemma 2 of [4] then
proves that (5) vanishes. (Actually, Lemma 1 of [4] was formulated for charge
integrals, i.e. integrals over a zero component of a tensor. The proof, however,
presented in [4] covers the present case too.)

ii) Case (0,0), d tμm is a scalar field. From 2.1.7 or 3.1.4 of [3] one gets
dμt

μm(x) = 0 (the original version of Coleman's theorem), thus (4) vanishes.
iii) Case (?,?). Then tμm is a second rank tensor field and 2.1.9 of [3] gives

dμt
μm(x) = 0.

iv) Case (1,0) and (0,1), dμt
μm = avλ is an antisymmetric tensor of rank two.

It has the two point function (see 5.2 of [3])

vκ - pψgμκ + pψgμσ - pμpκg™)

+ cε μ v κ σ +d(εμvκλpλp
σ + εμvλσpλp

κ).

Positivity of the metric requires α = 0 (this may also be inferred from feeing the
derivative dμt

μm). But then dva
vλ{x) = 0 too. In case v = 0, or λ = 0 Proposition 2

of [4] proves the statement. To treat the remaining case au, i,je{ί, 2, 3} consider

hλ(x) = (Ω\laiλ(x)9C]Ω). (6)
4 Here the assumption ή(p°)Φθ for all finite p° is used. - Compare, e.g., the case tμm(x) = dμφ(x),

φ(x) a free field of mass m>0 and η with η(m) = 0.
5 i.e. for C given, there exists a causal region subtended by two light cones such that [βμt

μm(x\ C] = 0
for xφ that region.
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This is C00 in x and has causal support. If hμ(p) denotes the Fourier-transform of

hμ9 we know that \hμ(p)η{p°)dp° is C00 in p. On the other hand, dλaiλ(x) = 0 implies

pμhμ(p) = 0.

Hence

0=~j(p"K(P))=djp%(p) + hj(p) + p'djhjp)

and

\h}(p)η(/A®d*p = - Sid^mλMP^p-jAdjhm^p. (7)

To show that this vanishes for r-»oo consider the r.h.s. The second term vanishes

because j/φ)ί7(p°)dp° is C00 in p:

l i m { p ι ( ^ ^

For the first term we know from [7] that

βoip)η(pO)dp%=o = 2ίPo^oho(p)ή(po)dp%=o

and this vanishes as shown above (case v = 0 or λ = 0). From Π}avμ(x) = 0 we get

Hence

In the same way one gets

Therefore the first term in (7) vanishes too for r->oo, and the lemma is proved.
In the cases ii), iii) of the preceding paragraph, dμt

μm(x) = 0 implies already (3).
To show that (3) holds in the other cases too [where dμt

μm(x) = 0 need not be true
as we know from 2.1.11 of [3]!], we argue that the first term in (4) vanishes for a
suitable set of Ao. To do so we use an extra assumption which one may call
asymptotic completeness:

dμt
μm(x) is a free field of zero mass (unless it vanishes) being relatively local

with respect to & 6 . Thus there will be asymptotic zero mass one-particle states
in the theory considered. There will be other asymptotic (and hence free) fields
too. Our assumption (A.C.) is: There is a set of free fields, containing dμt

μm(x), with
usual commutation relations. These fields smeared with testfunctions of compact
support have an algebraic closure &0. &0Ω is assumed to be dense in &Ω.

Lemma 2. Let dμt
μm(x) transform according to an irreducible representation of

the H.L.G. Assume (A.C). Then (2) entails

{Ω\IA09D?1BΩ) = 0 (8)

for sufficiently large r, Aoe$o, Be& all m.

6 One knows from quantum electrodynamics and from the Thirring model that this may happen.
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Proof. Since A0e&0, the commutator [D™, Ao~] can be decomposed into a
sum of terms

where A1,A2e$0

 a n d \β?> A{] is a C-number, i.e.

However, this vanishes according to Lemma 1, thus (8) follows.
Lemma 1 and 2 show that (4) vanishes. For large r and Be&, [D™, 5 ] is in

^ and independent of r. (A.C.) then implies [D™,β]Ω = 0, hence [D?,B]=0. We
therefore arrived at

Theorem 2. Within the Wxghtman framework of qf.th. and under the assumptions
of Lemma 1 and 2, the "ίnυariance of the vacuum"

for all AeM, r^.ro(A), all m, implies

for large r and all Ae&, i.e., the symmetry transformation commutes with the time
evolution.

The question, of course, arises of whether the assumption (A.C.) really is
necessary for the conclusion. Up to now we were not able to show directly that
for an interacting Wightman field theory dμt

μm^O[Jtμm = O is not possible.
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