Commun. math. Phys. 42, 29—30 (1975) © by Springer-Verlag 1975

On the Perturbation of Gibbs Semigroups

N. Angelescu and G. Nenciu

Institute for Atomic Physics, Bucharest, Romania

M. Bundaru

Institute of Physics, Bucharest, Romania

Received July 14, 1974

Abstract. The trace-norm convergence of the Hille-Phillips perturbation series is proved for the whole perturbation class of the generator of a Gibbs semigroup.

In Ref. [1], Uhlenbrock proposed the following terminology:

Definition. A selfadjoint semigroup $\{T(t)\}_{t \ge 0}$ in a separable Hilbert space with the property:

$$\operatorname{tr} T(t) < \infty, \quad \forall t > 0 \tag{1}$$

is called a Gibbs semigroup; and raised the problem of proving the trace-norm convergence of the Hille-Phillips perturbation series [2] for a conveniently large class of perturbations of the generator of a Gibbs semigroup. He gave also a proof of trace-norm convergence in the case of bounded perturbations, based on an inequality due to Ginibre and Gruber [3].

The aim of this note is to point out that a slight modification of this very argument allows to prove the trace-norm convergence of the series for the whole Hille-Phillips perturbation class.

Proposition. Let T(t) be a Gibbs semigroup and A its generator. Let B be A-bounded and such that:

$$\int_{0}^{1} \|BT(t)\| \, dt < \infty \,. \tag{2}$$

Then the series:

$$S(t) = \sum_{n=0}^{\infty} S_n(t)$$
(3)

with:

$$S_0(t) = T(t); \qquad S_n(t) = \int_0^t ds \, S_0(t-s) \, B \, S_{n-1}(s) \tag{4}$$

is $\|\cdot\|_1$ -convergent uniformly for t in compact subsets of $(0, \infty)$. In particular, if B is moreover symmetric, then S(t) is a Gibbs semigroup.

Proof. If B is A-bounded, then $BT(t) = [BR(\lambda, A)][(\lambda - A) T(t)]$ is bounded and condition (2) makes sense. One can write $S_n(t)$ as a multiple (trace-norm) Bôchner integral:

$$S_n(t) = \int \cdots \int ds_1 \dots ds_n \chi_n^t(s_0, s_1, \dots, s_n) S_0(s_0) B S_0(s_1) \dots B S_0(s_n),$$
(5)

N. Angelescu et al.

where χ_n^t is the characteristic function of the set: $s_i \ge 0$, $i = 0, ..., n, \Sigma_{i=0}^n s_i = t$. Then:

$$\|S_{n}(t)\|_{1} \leq \int \cdots \int ds_{1} \dots ds_{n} \chi_{n}^{t}(s_{0}, s_{1}, \dots, s_{n}) \\ \cdot \|S_{0}(s_{0}) BS_{0}(s_{1}) \dots BS_{0}(s_{n})\|_{1}.$$
(6)

We shall now use the inequality of Ginibre and Gruber [3]:

$$\left\|\prod_{i=0}^{n} A_{i} T(s_{i})\right\|_{1} \leq \left(\prod_{i=0}^{n} \|A_{i}\|\right) \operatorname{tr} T\left(\sum_{i=0}^{n} s_{i}\right)$$
(7)

for every Gibbs semigroup T(t) and bounded operators $A_0, ..., A_n$. We shall take $A_0 = S_0(s_0/2)$ and $A_i = BS_0(s_i/2)$, i = 1, 2, ..., n. Denoting $\varphi(t) = ||S_0(t)|| = \exp(\omega_0 t)$, and $\psi(t) = ||BS_0(t)||$, we obtain from (6) and (7):

$$\|S_n(t)\|_1 \le 2^n \cdot \varphi * \psi^{*n}(t/2) \cdot \operatorname{tr} S_0(t/2)$$
(8)

wherefrom one can proceed as in [2], Theorem 13.4.1, showing that there exist constants $\omega > \omega_0$ and $\gamma < 1$, such that:

$$\|S_n(t)\|_1 \leq \gamma^n \operatorname{tr} S_0(t/2) \exp(\omega t) \tag{9}$$

which finishes the proof.

Corollary. Let T(t) be a Gibbs semigroup and A its generator. Let $D \subset \mathbb{C}$ be a domain and, for every $z \in D$, let B(z) be given such that:

(i) B(z) is A-bounded and $z \rightarrow B(z) T(t)$ is bounded-analytic on D for every t > 0.

(ii) $\int_{0}^{\infty} \sup_{z \in D} \|B(z) T(t)\| dt < \infty.$

If S(z; t) is the semigroup generated by A + B(z), then $z \sim \rightarrow S(z; t)$ is $\|\cdot\|_1$ -analytic on D for every t > 0.

References

- 1. Uhlenbrock, D.: J. Math. Phys. 12, 2503 (1971)
- Hille, E., Phillips, R.S.: Functional analysis and semigroups. Providence, R.I.: Amer. Math. Soc. 1957
- 3. Ginibre, J., Gruber, C.: Commun. math. Phys. 11, 198 (1969)

Communicated by H. Araki

N. Angelscu G. Nenciu Institute for Atomic Physics Bucharest, Romania

M. Bundaru Institute of Physics Bucharest, Romania