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Abstract. We provide a lower bound for the energy required to ionize an "electron" from a finite
crystal of low density and we show that the bound is independent of the crystal size. The electrons
interact with each other and with the fixed positive charges by short range interactions from a suitable
class of potentials.

I. Introduction
/

In this article, we prove the following assertion; let HM(N, α, m) be the Schro-
dinger operator for M spinless "electrons" of mass m in the presence of N fixed
"protons" regularly arranged in a finite lattice with lattice constant a. Assume
that the electrons are either Bosons or Fermions and assume that they interact
with one another by a positive, short range continuously differentiable potential
VR(XΪ — Xj) and interact with the protons by — vA(xt — y,-). Here, xt is the position
of the z-th electron and y; is the position of thej-th proton. Then HM(N, α, m) has
a ground state eigenvalue λMN uniformly isolated from the continuous spectrum
for all N and M :g N if a and m are sufficiently large. Hence there is a g > 0 such
that for all N and M ̂  N, dist (λMN9 σMN) ^ g where σMN is the continuous spectrum
oϊHM(N,a,m).

The quantity g is a lower bound for the work function familiar from the
photoelectric effect, i.e. the amount of energy required to ionize an electron from
the crystal. The fact that the work function is non-vanishing insures that the elec-
trons do not spontaneously escape from the crystal, regardless of the crystal size.
Thus the result is related to the more general problem concerning the stability
of solids.

Let us now outline the strategy of the proof. By Hunziker's theorem [1,2],
the infimum of the essential spectrum for HM(N, a, m) lies at infM, <M {inf spectrum
HM,(N, a, m)}. We make the inductive hypothesis that this infimum is actually
^M-I,N i e tne ground state for the Hamiltonian with one less electron. It is
therefore natural to consider the tensor product of the corresponding ground
state eigenfunction ΨM~I,N (not necessarily unique) with a one particle trial
function φ and to try to show that the energy expectation value for the tensor
product is bounded above by λM_ίtN — g. This would establish the existence of
discrete spectrum for HM(N,a,m) below λM_lfN — g and therefore the existence
of a ground state eigenfunction ψMN corresponding to λMN= inf spectrum
HM(N9a,m). The induction then proceeds to M^N. However, there are two
modifications to this strategy.
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The first modification comes about in considering the tensor product of
ΨM-I,N and tne one particle trial function φ. In the case of the electrons obeying
Fermi statistics, the tensor product should be antisymmetrized. In order to avoid
difficulties arising from matrix elements complicated by the antisymmetrization,
we first multiply ψM-ίtN by a symmetric factor η(x^...xM_ J so that the resulting
function vanishes whenever any of its variables lies in the support of φ. η is con-
structed so that the norm of ηψM-ι}N is near one.

The function ηψM-ι,N *s further modified by a unitary operation which shifts
the variables of ηψM-ι,N a small amount in a lattice site where the one particle
density ρ(x)= J d x 2 . . . d x M _ 1 \ΨM-I,N(X>X2> •• *M-ι)l2 is small. The reason for
such a shift is seen by the following heuristic argument: In the limit as α, m-> oo
we expect ρ(x) to become highly concentrated about each proton position with
weight about equal to i/N. If M is approximately equal to JV, the potential seen
by an additional electron situated at x near one of these positions (say yt) is

- VA(X - yt) + (M - 1) J υR(x - x')ρ(x')dx'« - VA(X - yt)

(M-l) .
+ N vR(x-yt)

which may be insufficient to bind this additional electron for M^N-^co (i.e.
the attraction is cancelled by the repulsion). We find however that if t/;M_1 ) N,
and hence ρ, are shifted slightly in the site of the additional electron, it will bind
with an overall decrease in energy by g or more. This local shift approximates
the polarization of the M — 1 electrons due to the introduction of an additional
electron.

In Section 2 we give the precise statement of the theorem along with its proof,
which we discuss in Section 3. An Appendix is included giving simple criteria
under which the hypotheses of the theorem are satisfied.

II. The Main Theorem and Its Proof

The class 1/~ of admissible two body potentials is the set of pairs v = (vA9vR)
of continuously differ en tiable functions on [0, oo) such that

^i: vA(r), vR(r) > 0 and monotonically decreasing to 0 in r.

i^2 '• At infinity, vA(r), vR(r) < Cr~3 ~δ for some C, δ > 0.

d
τΓ3: lim —— In vR(r) = 0.

r-»oo ar

^4: There exist numbers r0 > ε0 > 0 such that

sup ι^(|x|)- VA(\X + r0e11) + VR(\X + (r0 + ε0)e11)| - vA(ε0)<-g<0,
JcelR3

where el is a unit vector. We also identify

VR(X) = VR(\X\), VA(X) = VA(\X\).

We show in the Appendix how to construct functions which are in ̂ .
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Our Hamiltonian HM(N, α, m) depends on v e '1^ and on the parameters
N, the number of charges " + 1",
M, the number of charges " — 1",
a, the lattice constant,
m, the bare mass.

Let yι,...yN be N different points on the unit lattice 2£ 3ClR 3. The "electron-
proton" attraction is defined to be

N M

Vep(M,N,a)=- £ £ υΛ(xk-ayj). (1)
j = 1 fc = 1

Here, the xk are the coordinates of the quantum mechanical "electrons", and the
ayj are the fixed positions of the "protons" for lattice constant a. The "electron-
electron" repulsion is

Ke(M)=+ Σ M*;-**), (2)
M ^ j > k ̂  1

and the total Hamiltonian is

M A

HM = HM(N9 a,m)=- Σ^ + KP(M, N, *) + Fee(M) (3)
_ / = ! ^W

acting on 3CM = P(L2(IR3)ΘM), where P projects on the symmetric subspace if the
"electrons" are Bosons and on the antisymmetric subspace if they are Fermions.
We may omit the proton-proton repulsion since it is only a function of N and
not of M. Our main result is the following theorem.

Theorem 1. Given vei^ there are constants av, mv and Nv such that for all
lattice constants a^av, masses m^.mv, integers N §; Nv, and M ̂  N one has
inf spectrum HM(N,a,m)^inϊ continuous spectrum HM(N, a, m) — qv for some
qv>0.

Remark. Our best estimate for qv in the limit as a, m-> oo is a g of condition i^4.
Note also that for ve'f" the continuous spectrum coincides with the essential
spectrum.

Proof. Throughout the proof we let ψMtN = ιpM be a ground state eigenfunction
for HM(N, a, m) (no confusion will arise by suppressing sometimes the N, α, m
dependence), and let λMN be its corresponding eigenvalue. The proof starts by
reducing the assertion to an induction argument in M. As was remarked in the
introduction,

inf cont spec HM + 1 (N, a, m) = inf {inf spec HM> (N, α, m)},
M' ̂  M

by Hunziker's theorem [1,2]. We make the inductive hypothesis on M that

inf cont spec HM +1 (AT, α, m) = λMfN ^ 0,

(λ0>N is defined to be zero), and that the theorem holds for M' ̂  M. It follows that
we must show

inf spec HM +1 (N, a, m) <,λMίN-qv, (4)

for some qv > 0, independent of N, α, m, M < N for sufficiently large N, α, m.
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In the case M = 0 let φ(x) be a normalized function with support concentrated
around one of the N protons. Then the expectation value (φ,H1(N,a,m)φ) is
strictly less than zero uniformly in ΛΓ, a, m for m sufficiently large. Thus there are
eigenvalues λ1>N uniformly less than zero and the induction starts. We now
proceed to the proof of inequality (4).

We start the proof of Theorem 1 with a geometrical lemma. Given .̂ ...
and a, define AN to be the union of the N lattice cubes of side a with centers
. . . ayN9 and let Si , . . . SN be the cells of ΛN. Let ρ0, ... ρκ be positive densities on IR3

with fR3 dx Qj^i. Let ρjk = JSk dx ρjf

Lemma 2. Given ε>0, there is, for each N sufficiently large, a cube SioCΛN

such that

*>^> j=ί,2,...K.

Proof. Let α > 1 be given and define nN(aJ) to be the number of cells in ΛN for
which ρjk<a/N. Then %(a,j)g:7V(a — l)/α. If not, then nN<N(ot — i)/a and the
remaining N — nN cells with ρjk ^ a/N would have total weight at least

which is impossible. In particular

^ΛΓ

V V ' °? ^J •= •*•* j •>

1+ε

To complete the proof we make the inductive hypothesis that the number of cells
mNj satisfying the first j +1 inequalities of the lemma simultaneously is

_ Nε

which is the case for j = 0, by inspection. Then

-..i±i.,)-w
Nε 2^+ 1(l+β)-e Nε

Nε
In particular, mNK^ χ+1 which is greater than 1 for N sufficiently large,

so there is at least one cell with the asserted properties, q.e.d.
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By ^4, there is an ε > 0 and an integer k such that

k
sup vAx-vA
xeIR 3

and we fix now ε and k to such values. We also fix M ̂  N and we omit the sub-
script N whenever possible. Let ιpM be a normalized eigenfunction of HM(N, a, m)
with eigenvalue inf specHM(N, α, m). We define the following four normalized
densities on IR3:

QM(X) = $ I Ψ M ( * > *2» *Λ/)|2 dx2 " dxM , (6)

\gmdxψM(x,x2,...xM)\2dx2...dxM

Hgrad^ipMlli 2

f vκ(x — X~>}\\PM(X > χ?> " XM)\2 dx~> ...dxMJ ι\.\ Z / l T J V Z V ' Z ' JVL / I 2. M. ίQ\

SVRa(x-Xl)\ψM(Xl,...XM)\2dxl...dxM
vMa(X)— ~r / Γi 7 ^2^—j j > (?)$vRa(x-x1)\ιpM(x1,...xM)\2dxdx1...dxM

where

vRa(r) = 0 if ^ < β/4,
*β _ . ^ (10)

By Lemma 2, there exists an Sio C ΛN, provided N is sufficiently large, such that

o < i+S ί i i )
βMίo^-^Γ, (H)

(12)

(13)

(14)
KIM

Refer now to Fig. 1. We divide the region Sio into k subregions or wedges s l 5 ...sk

with wedge axis passing through the center of Sio and pointing in the jc(3)-direction.
The wedges have opening angle 2π/fc. It is evident that for one of these subregions,
say sjo we will have the inequality

4 i

.L
Refer now to Fig. 2.
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Fig. 1

Fig. 2
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Assume that new coordinates are chosen as shown, so that the wedge opening
is symmetrical with respect to the x(2) = 0 plane and with edge running along the
jc(3)-axis. Let η0(x) be a piecewise continuously differentiable function on IR3 with
the properties ~ ,

ηQ(x)=i on IRMs^n^uD,)), (16)

η0(x) = 0 intheopenset Oc(iJOv-, A / /

containing p0

and f/o interpolates linearly otherwise. The maximal derivative oϊη0 is independent
of the lattice constant a for a large enough.

We next define a diffeomorphism/on IR3 (also depending on a) which approxi-
mates the polarization of the charges due to the introduction of another particle
at pΌ. It has the properties

Fl) /is the identity on (IR3 - S ί o)uD3, (18)

F2) /»(*) = *<» for y-2,3, 1 (19)

F3) /maps D1 onto D1uD2 and it maps no point from the exterior
of (9 into 0, (20)

F4) sup |/(jc) — x\ ̂  r0 and in the region R,
X

f(x) = x + £ ( 1V0, where e(i} is the unit vector in the positive (21)
jc(1 ̂ direction,

F5) d(i>duψ}-+Q and d*0/7'*-*^ as α^oo.

By F5),/will satisfy an inequality of the form

I/I*) -/(Jθ - (x - y)l ̂  κ» I* - JΊ, (22)
with Kf(a)-+Q as a-+oo. Property F5) and an inequality like (22) hold for the
inverse mapping/" *.

M
We extend now η0 and/to operators η and U acting on L2(IR3M). Let η=(^)η0

be the multiplication operator acting on all variables of L2(IR3M) simultaneously
M

and let E7 = (g) ί/0 be the unitary operator on L2(IR3M) where C70 acts on L2(IR3)
by the unitary action

and where df~1 is the Jacobian. Let Φ(jc) be a C2 function with supp Φ concentrated
about p0 and contained in & and ||Φ|| = 1. Let Λ denote the antisymmetrical
tensor product when the electrons are Fermions, and the symmetric tensor
product if they are Bosons.

Lemma 3. (UηψM)(xl9 ...JCM) = 0 if any argument lies in (9. Also

I I Φ Λ UηιpM \\12( K3(M + D) - || UηψM ^^M)

k-i-s

/0)is thej-th component of/.
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Proof. The first assertion follows by inspection from the definition oϊηQ and UQ.
The equality of norms is then a consequence of the normalization of Φ and of the
fact that U is unitary. Finally

^ \\ΨM\\2~M ί dxι...dxM\ψM(xl9...xM)\2

SJo X ] R 3 ( M - 1 )

M(l+β) fc-l-β

kN = fe

by the inequalities (11) and (15), which proves the lemma.
We now estimate the energy expectation value for the trial function Φ Λ UηψM.

Using Lemma 3, we find

(Φ Λ UηιpM9 HM+i(N, α, m) Φ Λ UηψM)

2 -r\Φ,Hί(N9a9m)Φ) (25)

\\ΦΛUηψM\\2

(UηψM9 HM(N9 a, m) UηψM)

\\ηψM\\'
M

f + 1 \Φ(xί)UηψM(x2,...xM+1)\2vR(x1-x2).

The idea is to undo the effect of the U transformation in the first term on the
r.h.s. of Eq. (25), which we consider now.

Lemma 4. One has

(UηψM9 HM(N, α, m) UηψM)
, (26)

where y0(
α? m)->0 as a, m— » oo, uniformly in JV, M ̂  JV.

Proof of Lemma 4. We begin with the kinetic energy part of the l.h.s. of Eq. (26).
With the notation δ^ = gradxι, it is

M M
9 (27)

where U0 acts just on the first variable. A simple calculation yields

3

U0+ Σ C/0-
1((3(WΓlϋ))-^)ϋo3ϋ) + δ(k). (28)

j = ι

Here, Glk and G2(/Λ are just functions with support in Sίo. Let y t(α) and γ2(
a) be

bounds for G1/£ and G2jk, j, fe= 1, ...3, respectively. By Condition F5) on/, ^(α)
and γ2(

a) become arbitrarily small as α-+oo. By Eq. (28),

\\δ1U0ηψM\\2=\\Uό1d1U0ηψM\\2=\\d1ηψM\\2 + γk^^^ (29)
with

(30)



On the lonizatίon of Crystals 183

where P0 is the characteristic function in the first variable for Sio. Now

l ^ \\P0(Sιn)ψM\\ + l

irΓ^Γ'by the inequalities (11) and (12). We now use

- {(ψM, HMψM) - (ψM, Vep(M)ιpM) - (ψM, Vee(M)ιpM)}

(32)
1 1 JLL I —

<

We have used the induction hypothesis λMN^Q, and f^. The r.h.s. of (32) is
uniformly bounded as α->oo, by i^2. Inserting (32) into (31) and applying (11)
and (31) to (30) and (29), we obtain the estimate

M Ί M 9
Est. 1. \\d1 UηψM\\ = \\διηψM\\ +yk(a>m) where γk(a, w)->0 as

m m
a, m-> oo, uniformly in N and M ̂  N.

We next consider the Vep matrix element contained in (UηψM,HMUηψM).
We have

(UηψM, Vep(M)UηψM)v epv

'**^~-- \ ' / (ΎJ~ly (M}U—V (M)}ηwM)

f j Vep(M)ηψM)- M(ηψM, {U0

 1vA(x1 - ayio)U0 -VA(XI -ayio)}ηψM)

i Φ io

The last term on the r.h.s. of Eq. (33) is bounded in absolute value by

2M(l+ε)
- - - sup ^ vA(x - ayt) ^ const/a'' ,

N j c e S ί o i Φ i 0

using inequality (11), assumption i^2 and the fact that Uc Γ
1^^! — ^Ji)^o

— vA(x1 — ayi\ i φ / o is zero unless x1 £Sio. Hence this term can be made arbi-
trarily small for a-+ oo. Thus

Est. 2.

(UηψM, VQp(M)UηψM) = (ηψM, VQp(M)ηιpM)

- M(η\pM, {vA(f(xύ - ayio) - VA(X^ - ayio)}ηψM) + yep(a) ,

where yep(α)-^0 as a^oo.
The Fee repulsion matrix element of (UηψM,HMUηιpM) is equal to

(UηψM, Vee(M)UηψM) = (ηψM, Vee(M)ηιpM)

+ **^^\dxl...dxM\ηιpM(x^ (34)

We will establish the following lemma.
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Lemma 5.

I ~ X2Ϊ\ ^ Φ)V R (X^ - x2) (35)

where c(a)->0 as α->oo.
Postponing the proof of the lemma for the moment, we apply it to the second
term on the r.h.s. of Eq. (34), whose absolute value is therefore bounded by

φ)M(M-l) J dxί...dxM\ηψM(xί,...xM)\2υR(xί-x2)
Sίo X R3(M-1)

4(1+β)
^φ)M(M-l)-

8(1+6)

εN
-$dx1...dxM\ηιpM(x1,...xM)\2vR(xί-x2)

which tends to zero as a-* oo. We have used inequality (13) and the fact that the
expectation value for J^e is less than the expectation value for Vep, because λMN ^ 0
and — A ̂  0. Therefore we have shown

Est. 3. (UηψM, Vee(M)UηψM) = (ηψM9Vee(M)ηψM) + γee(a)9 where yee(α)^0
asa-^Q. (36)

Proof of Lemma 5. We shall show: For every e>0 there exists an a< oo for
which the assertion holds with c(ά) = c. Let c> 0 be given. By condition ^3 on VR,
there exists a x0 ̂  2r0 so large that

for x ̂  x0 — 2r0 where α > 0 is a fixed number satisfying

2αr0 exp(2αr0)^c.

Then on integrating (37) we obtain

VR(X ± 2rQ)/vR(x) ^ exp(2αr0) for x ̂  x0 ,

and so
x±2r0

ί dyv'R(y) <α
x±2ro

ί dyvR(y)

(37)

(38)

(39)

(40)

(41)

where the first inequality holds by ̂  and by F4. The plus or minus sign is selected
according to whichever makes the bound larger. This proves the assertion (35)

(42)

Thus, for |x — y\ ^.x,

= \VR(f(X) - X -f(y) + y + X-y)- VR(X - y)\

Now suppose |jc — y\ < x0. Since vκ is differentiable,

\V'R(X)/VR(X)\£«O for all x.
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Choose now a so large that Kf(a) ^ 1 and

u0Kf(a)xo exp (a0Kf(a)x0) < c , (43)

cf. Eq. (22). Then by an argument similar to that for |jt — y\ ^x0 we have for

\x-y\<x0,

- vR(x -y)\ = \vR(f(x) -f(y) -x + y + x-y)- VR(X - y)\

^\vR(\x-y\±Kf(a)\x-y\)-vR(x-y)\

^ OL0Kf(a)x0 exp (a0Kf(a)x0)
 VR(X ~y)< cυR(x - y)

and this proves Lemma 5 (all cases).2

We return to the proof of Lemma 4. From Est. 1-3 it follows that

(UηψM,HMUηψM)

= (ηιpM, HMηιpM) - M(ηψM, {t^ί/fri) - ayio) - VA(XI - ayio)}ηιpM) + y3(α, m)

with y3(α, m)->0 as α, m-» oo. Since \pM is an eigenfunction for HM (by the induction
hypothesis), we have that [3, p. 458]

M
—

(45)

by inequality (11). The assertion of Lemma 4 follows now by inserting (45) into (44).
We now continue the analysis of Eq. (25) and we pass to the term

(Φ,H1(N,a,m)Φ). It clearly approaches — vA(pQ — ayio) as α, ra-»oo when the
support of Φ is chosen highly concentrated about pθ9 i.e. we have the estimate

Est. 4.

(Φ, H^N, α, m)Φ) = - υA(ε0) + yι(a, m) (46)

where Jι(a, m)— »0 as a, m^ oo.
Finally, we analyze the last term on the r.h.s. of Eq. (25). The numerator

can be estimated by

M$dxdx1...dxM\Φ(x}UηιpM(x1,...xM}\2vR(x-x1)

= M J . . .+M j

J dx1...dxM\ηψM(xl9...xM)\2vR{f(xί)-p0) (47)
xιeS l o

M sup idXi...rfxMk^M(^i ?---^M)|2 |^(/'(^i)-^)-^(f(^i)
xesuppΦ

M J dxί...dxM\Φ(x1)UηψM(x2,...xM+l)\2vR(xί-x2).

2 An inspection of the proof of Lemma 5 and of Theorem 1 shows that a uniform gap exists also

if '̂ 3 is replaced by "/^: lim — In vR(r) = o c j , with 2αj r0 exp (2αjr0) < (g/vA(0)) (c/8(l + ε)).
-*
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The second term on the r.h.s. of (47) is bounded by

sup K(fl*0-*)
jfV xesuppΦ

which goes to zero in the limit of the support of Φ becoming highly concentrated
about p0. The last term of (47) is bounded by sup I(x) where I(x) is defined by

xesuppΦ

I(x)=M J dx1...dxM\ηψM(x1,...xM}\2vR(x-x1}. (48)
Xιe lR 3 \5 ί o

Let D0 be a cube of fixed side length d independent of JV, a, w, M containing
supp Φ, and contained in D1^jD2 Then for a sufficiently large,

f dxI(x)^M J dxdxί...dxM\ψM(xi9...xM)\2vRa(x-x1)
DO D 0 x i R 3 M

Γ ^ ^)dxvRa(x),

by inequality (14). Thus there is a point pιED0 such that

ί ^%W (49)

Furthermore, /(jc) satisfies a differential inequality,

|δ/(x) |^Mjdx 1 . . .£/JC M | W M(*ι J . . -

^ α0 f ^αc! . . . dxM \ηιpM(x^ . . . *

^α0/

by inequality (42), so that

1), for j ceD 0 . (50)

Therefore

which goes to zero as #— »oo. We thus obtain the estimate

Est. 5.

M$dxdxί...dxM\Φ(x)η'ψM(xl9...xM)\2υR(x-xί)

= M J dxl...dxu \ηψM(xι, . . . ̂ M)|2 ̂ (/"(^i) - Po) + Ί^
*ιeSίo

where y2(
a>m)~^Q as a,m-+co.
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We insert the estimates Lemma 4, Est. 4, Est. 5, and Lemma 3 into Eq. (25)
and obtain

( Φ Λ UηψM,HM+1(N,a,m)ΦΛ UηψM)

*ι-βtto)-MΛ*ι)-β3>i0) + l?.

\\ΦΛUηψM\\2

M ,

M(l+β)fe
= >W + N ( f c _ 1 _ f i ) "~

= λ'.

Here, P0 is the projection onto Sίo. By F4), the sup is bounded by

sup \VA(X) - VA(X + r0e
(1)) + VR(X + (r0 + ε0)^(1))| + γ'(a)

where /(α) - υR ~ - r0 + VA - - r0 - ε0 I ->0 as α-> GO.

Therefore,

λ' ^λMN+- sup |^(x) - VA(X + r0^
(1)) + υR(x + (r0

with y'"(0, m)->0 as α, m^ oo, and this proves inequality (4) and hence the Theo-
rem 1.

III. Discussion

In this section, we add some further remarks to the main result. One might
ask why neither the Coulomb case nor the finite range case (i.e. the case of a
potential with compact support) are covered in this paper. We feel that the main
difficulty in handling these two cases lies in the fact that one needs more specific
information about the eigenfunction ψM of HM(N, α, m) than its mere existence
(which is all we have used). In particular, we do not know the charge density
distribution, which should be concentrated around the proton sites. In the finite
range case, for essentially the same reason, we have no control over the increase
in repulsion as the charges are moved slightly by the transformation U. To our
knowledge, no appropriate rigorous results are known about the shape of ground
state wave functions for the Hamiltonians in question, so that without further
work on this problem, the geometrical Lemma 2 concerning families of probability
distributions seems to be the only available tool.

Finally we note that some local singular behaviour of the potentials can be
accomodated: If VA, VR satisfy the hypotheses of our theorem and the particle
mass and lattice spacing imply that the conclusion of the theorem holds, then there
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is also a uniform gap under the perturbation vA->υA + vs

A

ng, vR-*vR + vs

R

ns provided
the L3/2(IR3) norms of vA

ng, vR

ng are sufficiently small. The proof of this remark is
effected by use of a Sobolev inequality with which one estimates the expectation
value for a contribution to the potential energy in terms of the kinetic energy
expectation value. We do not know of a decomposition of VA — VR = Yukawa
potential into singular and continuous parts for which a uniform gap can be
shown.

Appendix

The set 'f" contains pairs υ = (vA, VR) with VA = VR (= V).

Lemma. Let ω(r)^0 be a monotonically decreasing function, and let
(i) ω(r) = 0 iff r^r 1 ?

(ii) ω(r2) = ω(0)/3,
(iii) ω'(0) = 0,
(iv) — a<ω"(r}< — b<0 for r^rί and 2b>a.

Then there is a constant g(ω) > 0 such that for r0 — —^— — — and some small ε > 0,

Δ(x, y): = \ω(\/x2+y2) - ω(}/(x + r0)
2 + y2) + ω(j/(x + r0 + ε)2 + y2)\

- ω(ε) < - g(ω).

Proof. (I) Let |y |^r 2 .Then

Δ (x, y) g ω(r2) + ω(r2) - ω(ε) = — ω(ε) =-aί<0

for ε > 0 small enough.
(II) Let \y\ ̂ r2,x^2

s(r1 -r2)-I-ε. Then

Δ(x, y) ̂  ω(j/x2 + y2) - ω(ε) ̂  ω(2

s(r1 - r2)) - ω(ε) ̂  - α2 < 0

for ε > 0 small enough, since r1 Φ r2.
(Ill) \y\^r29x^-(ri-r2

A (x, y) ̂  ω(]/(x + r0 + ε)2 + y2) - ω(ε)

Γi - r2) - ε) - ω(ε) ̂  α3 < 0

for ε > 0 small enough.
(IV) \y\£r2 R

Then j/x2 + y2 ^r l 5 and hence in this region for ε>0 small (iv) holds.
(IVa) sup Δ(x,y) = Δ(x9Q).

yeR

Proof. We show — — A (x, 3;) = 0 iff y = 0. Indeed

dy

j p + ε)2

zi (x, j j
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But — zα^ω'(z):g — zb by (iv) for 0<z<r 1 so that { }^2b + a<0 and (IVa)
follows.

(IVb) So we have to show

A (x, 0) ̂  - a4 < 0 .
xeR

But

A (X 0) = J d£ J d/7ω"(x + ξ + f/) + ω(x + ε) — ω(ε) ̂  — ε r0b + a — < 0
o o 2

for ε small enough, so that A(x,y)^ —g(ω)<0 as asserted.

Corollary. Let V(x) = ω(x) + j (x) w/ί/i ω(x) satisfying the hypotheses of the
Lemma and

(i) 0<j

(ϋ) y(χ) .
(iii) lim In y(x)' = 0.

Then υ = (V,V) satisfies the hypotheses of the main theorem.

References

1. Hunziker, W.: On the spectra of Schrodinger multiparticle Hamiltonians. Helv. Phys. Acta 39,
451—462(1966)

2. Simon, B.: On the infinitude or finiteness of the number of bound states of an JV-body quantum
system I. Helv. Phys. Acta 43, 607—630 (1970)

3. Courant,R., Hubert,D.: Methods of mathematical physics I, New York: Interscience Publishers
Inc. 1953

Communicated by W. Hunziker
J.-P. Eckmann
L. E. Thomas
Departement de Physique Theorique
Universite de Geneve
32 Boulevard d'Yvoy
CH-1211 Geneve 4, Switzerland






