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Abstract. A characterization of states, over quasi-local algebras, which satisfy a strong cluster
property is derived. The discussion is applicable to classical systems and quantum systems with Bose
or Fermi statistics.

1. Introduction

Several years ago Powers characterized primary states over UHF algebras
as the states satisfying a certain singly uniform cluster property [1]. The im-
portance of cluster properties in physical theories led several authors to generalize
Powers results to other algebras encountered in field theory or statistical me-
chanics (see for example [2—6]). These generalizations took several different
directions; the idea of far away observables, and analogy with Sinai’s results on
K-systems [7], is emphasized in [2, 3]; the notion of relative commutants of
observables is used in [4]; the singly uniform clustering property is equated with
a doubly uniform clustering property in [5, 6]. Most of these generalizations were,
however, modeled on certain commutation properties which are typically en-
countered in classical mechanics or quantum mechanics with Bose statistics. The
only attempt to characterize clustering states of Fermi systems occurs in [5]
which considers only the even states of the CAR-algebra. Also the proof of the
result concerning these states, Proposition 4.5 of [5], is incomplete®.

The purpose of this note is to correct this situation by providing a general
discussion which applies to all standard systems encountered in statistical me-
chanics regardless of statistics.

2. Quasi-local Systems

In this section we discuss the basic structure of algebras which are generated
by local subalgebras and possibly satisfy Fermi statistics.

Throughout & will denote an index set with an order relation =. We always
assume that # is directed with respect to this relation, i.e. if a, f € # then there
exists a y € & such that y = a, . In the second half of this section we also assume
the existence of an orthogonality relation L between pairs of elements of & with
the following properties

a) fa<pfand fLythenaly,

b) if « L f and « Ly there exists a 6 € & such that « L6 and 6 = f, y.

LA(M,

ao-

)™ and A(M,) AU~ do not generate A, as is claimed in the proof given in [5].
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In the next section we further assume that each pair o, f € % has a unique
least upper bound « V fe %, i.e. a V f € & is the unique element such that every
y=o, f satisfies y=a V (o, f).

Typically, in applications, & is the set of bounded open subsets of R” or the
set of finite subsets of Z". The relation o < f corresponds to inclusion of o in f3,
oL f corresponds to the disjointness of « and f, and oV f§ corresponds to the
union of « and S.

Statistics will be introduced into our formalism by aid of an automorphism g,
of a C*-algebra U, which satisfies 62 =1, i.e.

o(o(d)=4, Ae¥q.

Each element 4 has a unique decomposition into odd and even parts 4*
with respect to . This decomposition is defined by

A=A"+4"
A* =(A+0(A))2.

It follows that the even elements of 2 form a C*-subalgebra ° of A and the odd
elements a Banach space 2°. Now we introduce the class of algebras which will
be studied in the sequel.

A C*-algebra U is defined to be quasi-local if it possesses a family {2 },.»
of C*-subalgebras. These subalgebras satisfy certain requirements such as

L.t [J ¥, is norm-dense in .

aEeF
L2 Ifa=p then A, 2A,.
L.3 There exists an automorphism ¢ of 2 such that ¢ =1
and (U,) =AU, for all x € &.

L.42 If oL B then the following commutation relations are valid
[, AT =0, [ALA]=0
{22, A7} =0.

We remark that in classical mechanics, or quantum mechanics with Bose
statistics, ¢ is the identity automorphism, thus 2, = A¢; for Fermi statistics o is
non-trivial and corresponds to a change of sign of the Fermi creation and
annihilation operators.

Following [2] we now associate with each representation 7 of the quasi-local
algebra U the algebra of observables at infinity B" by the definition

B = () (U n(m,,))-.

aeZ \fla

This algebra has the following properties
Proposition 1.> Let w be a state over a quasi-local algebra U which satisfies
L.1—L.4. Then the algebra at infinity B" is contained in the centre 3,  of n! and

2 We use the usual notation [A4, B]=AB— BA, {4, B}= AB+ BA.
3 7, always refers to the Hilbert space representation of 2 on J#, canonically associated with w.
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in particular

o= ) (| mttp)

aeF \fla
€ B, T, (A"
The following conditions are equivalent
1. B" consists of multiples of the identity
2. Given ¢ >0 and A € W there exists an o€ & such that
lw(AB) — w(A) w(B)| <& B
for all
Be ),

pLla

3. Given ¢>0 and A € U there exists an o € F such that

lo(4B) — w(4) o(B)| < | B

for all
Be ) U
pla
Proof. Once we establish that
B L3,

then the equivalence of the Conditions 1 and 2, or 1 and 3, follow from Theorem 5.1
of [3]. Thus we concentrate on the characterization of B™.

If xe # and B e B™ are given, one can choose a sequence B, e (Y, ) such
that the o, are mutually orthogonal, o, L o, and B, converges strongly to B. (First
one selects o; and B; such that oy Lo and ||(B; — B) p|| <1, then a, and B, such
that o, Loy, o, Lo and ||(B, — B) | < 1/2 etc. .) It then follows from the uniform
boundedness principle that ||o(B,)|| =B, <b with b independent of n. Thus,
possibly passing to a subsequence, we can assume the o(B,) converge weakly.
In particular, the odd and even parts B, of B, converge weakly. As the o, are
mutually orthogonal condition L.4 implies

(B,)* B, + B, (B,)*=0

for n+m and this allows the estimation (see [8, 9])

2 N
Y (B;)*B, + B, (B;)*

nom=1

Thus the B, converge weakly, their Cesaro means converge uniformly to zero,
and hence B, must converge to zero. Therefore, B converges weakly to B and
we have established that

Be (U m () S QL) (@)’

pla
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But this is valid for all « € & and hence we conclude that
Bro C m ( U QIE))
aeF \fla

E e, (W) N, (A"

The first inclusion is valid in the opposite sense by definition and hence must
be an equality. This completes the characterization of B,

3. Locally Normal States

In this section we place further restrictions on the quasi-local structure of the
algebra A and states w which we consider. These conditions are arranged so that
any of the usual algebras associated with the canonical commutation, or anti-
commutation relations, are covered.

We need the following condition on the local subalgebras 2, of the quasi-
local algebra .

L.5 Each %, is isomorphic to an irreducible subalgebra n(2,) of the algebra

B(s#,) of all bounded operators on some Hilbert space #,. There exist
R, =R} € B(s#,) such that

R*=1,, R,n(A)R,=n(c(A)
for all AeU,. Further, on #,,, the n(A,)” and n(A,)~ are type I factors
embedded in n(ﬁ[avﬁ) with the property that

(E(QIOZ)UTC(QIH))- = TC(QI(Z Vﬁ)_

We have used a slightly over-simplified notation in this condition. What is
meant is that the representation of %, considered as a subalgebra of 2, ;, on
H, 5 is a sum of copies of the representation of A, on .

A state @ over a quasi-local algebra 2 which satisfies conditions L.1-L.5 is
now defined to be locally normal if for each « € & one has

CU(Q[a) = Tr.?{’a(ga n(QIa))

where g, is a positive trace-class operator on #, with trace-norm unity.
Further the state is defined as continuous for the automorphism ¢ if ¢ is
weak operator continuous in the representation r,, generated by w. This will of
course be the case if o is covariantly implemented, i.e. if there exists a unitary U
such that

n,(0(4) =) n,
for all A e U, in particular if w is even, i.e. invariant under o.
Our immediate aim is to prove the following

Proposition 2. If o is a locally normal state (over a quasi-local algebra A
satisfying conditions L.1—L.5), continuous for the automorphism g, then the algebra
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of observables at infinity B satisfies the following

=3, NTL(U)

Lemma 1. Let o be locally normal and o« Lp. There is an R, em, (A, such
that R,>=1 and
R,m (AR, =7 (0(A), AeU,.
Further one has

nw(ma), N nw(g’[a \ [})N = (Roz nw(ﬂg) + nw( i}))" .
Proof. As w is normal in restriction to 2, the representation space #,, has a

factorization
Hoy=H,QH"

and the representation 7, restricted to 2, is then of the form

nw(ma) = n(ﬂa) ® ﬂx” .
The R, is then defined by
Ra = R&Z ® ﬂ”l

and the first properties follow from L.5. To establish the second property we
remark that 7,(2, ) is a sum of copies of n(2, ;) and it suffices to prove the
property for the latter representation. But a simple calculation using .4 demon-
states that

(R, m(AP) + (ALY S m(AW,) nm(A,, ), (%)

Now 7(2,)" is embedded as a type I factor in n(, 5)". We have
Hpvg=H, QA"
(U, y p) =7( W) R Ly

and, as 7(,) is irreducible, the left hand set occurring in (x) must be of the form

1, ®%

where 4 is a weakly closed subalgebra of B(#"). To deduce equality in (x) it
suffices to prove that 4 is irreducible on #” or, equivalently, that

(WA, U (R, (AY) + (A))”

is irreducible on #,, ;. But this latter set contains 7(2,)Un(U,) and the result
follows from Condition L.5.
Finally Proposition 2 is established by the second statement of the following.

Lemma 2. If w is a locally normal state then

3= [ ( U nwwaymnw(mavﬁ)”)"

aeF \fla
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and if, further, @ is continuous for the automorphism o then

3ra (A= () (U ma¥)".
aceF \fla

Proof. The first statement is proved in [4]. To deduce the second we first

use Lemma 1 to identify
o= () (U (Romo () + 7, (U5)) "
aeF \fla

Secondly the continuity implies that the even part of the weak closure of a set
of operators in the representation is the closure of the even part. Thirdly one has
that R, is even because ¢ applied to 7, (2,)" is covariantly implemented by R, and

o(R)=R,(R)R,=R,.

The desired result follows immediately.

Proposition 2 follows directly from Proposition 1 and the second statement
of Lemma 2.

Combination of Propositions 1 and 2 provides criteria for clustering of locally
normal states. Stronger results can, however, be obtained by full exploitation of
local normality as we show in the next section.

4. Doubly Uniform Clustering

The following result strengthens the statements, on clustering, obtained from
Propositions 1 and 2.

Proposition 3. Let @ be a locally normal state (over a quasi-local algebra
satisfying Conditions L.1—L.5) and continuous for the automorphism o, then the
following conditions are equivalent.

1. 3., N7, (W) consists of multiples of the identity.

2. Given e>0 and Ae W there is a f € F such that

w(AB)—w(A4) w(B)|<¢|B

forallBe () A, lw(AB) — w(4) w(B)| <& | B
yLlp

3. Given e>0and o€ F thereis a fe F such that

lw(4B) — w(A) o(B)| < e[ A] | B
forall Ae W, and all Be | A,

vLlB
4. Given¢>0 and Ae W there is a f € F such that

lw(AB) — w(4) w(B) <& | B
forall Be Lljﬂ A
v
5. Given >0 and o € & there is a f € F such that

N

S (4, B) - o(4) a»(B.J] <o
i=1

for-all A, U,, B;e | ) A, and all N.

yLlp

N
i=1
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The equivalence of Conditions 1, 2 and 4 is established by Propositions 1
and 2. The remaining conditions both contain extra uniformity. A doubly uniform
clustering property of the type considered in Condition 3 was first derived in [6]
by remarking that the local normality allows the inner algebra 2, to be strongly
approximated by a finite-dimensional algebra. This also allows the deduction of
Condition 5 % This latter form of clustering was re-expressed, in [5], in terms of
tensor product states and derived by an independent method which apparently
does not allow the derivation of Condition 3. Thus we will base our proof of the
proposition on the methods of [6] and use the tensor product structure suggested
in [5] to make one of the auxiliary estimates.

For the proof it is convenient to introduce an auxiliary quasi-local C*-algebra
B on #,. The algebra B is defined in terms of local subalgebras {B,},.s with
the choice

B, =71,(A,)" -

The state w has an extension, also noted by w, to B given by
w(%a) = Tr.}fd(ga %a) H xe 50.

where g, are the density matrices determined by the original state. Note that
A CB and on S, one has

B =m, (A, B =), et

In particular, the centre and the even part of the centre, of W and B represented
on 4, are identical. Now we can consider the proposition re-expressed in terms
of B and w. It is then easily seen that if this latter form of the proposition can be
established then the proposition, as stated, is also established. For this one uses
the information already contained in Propositions 1 and 2, the containment
A C B, and the equalities of the centres. Thus we will consider only the proposi-
tion concerning B, and prove that 2=-3 and 4=-5. The reverse implications are
obvious and these equivalences suffice to complete the proof of the proposition.
We need the following.

Lemma 3. Let ¢ be a density matrix® on a Hilbert space # and R an operator
on A with the properties R =R* R*=1.
Given & >0 there exists a finite-dimensional projector E on # such that

RE=ER
Tr(EgE)>1—c¢.

and

Proof. Let o™ be the even part of o, with respect to the reflection induced
by R, i.e.
0" =(e+ReR)/2.

It is evident that ¢ is positive and of trace-class.

4 This point was clarified by a discussion with J. Slawny in 1972.
5 A positive, trace-class operator with trace-norm unity.
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As g" is even, i.e. commutes with R, its spectral projectors will also be even.
Clearly there exists a finite dimensional spectral projector E of ¢* such that

Tr(Eg"E)>1—c¢.
Next note that if 4 is odd, i.e. RAR = — A4, and of trace-class
Try(A)= — Truy(RAR)= — Tr,(A)=0.
But E(¢ — ¢™)E is odd and of trace-class. Therefore
Try(EQE)=Tr,(Eg* E)>1—¢.

To deduce the implication 2=-3 we first let E € n(U,)" denote a finite dimen-
sional even projector, i.e. R, E R, = E. (At the risk of a slight confusion E will also
denote the image of this projector in B,.) Given ¢>0 we can, by Lemma 3 and
local normality, choose E such that

) ol —E)<eg/12.

(The dimension n of E will then depend on &.)
Next consider the decomposition

w(AB)— w(A) w(B)=w(EABE)— w(EAE) w(B)
+w((1 —E) ABE)— w((1 — E) AE) »(B)
+w(EAB(1 —E))— o(EA(1 — E)) w(B)
+w((1 —E)AB(1 — E))— o((1 — E) A(1 — E)) w(B)
where A, Be B. One has
lo((1 — E) ABE)| = |/ (1 — E) | A]| || B]|
lo((1 — E)AE) o(B)| < /(1 — E) [A] |B]| etc.
and hence
lw(4B) — w(A4) o(B) £ [w(EABE) — w(EAE) w(B)| + (¢/2) | Al | Bl -
But if 4eB, and Be B, with L one can use the evenness of E to deduce that
w(EABE)— w(EAE) w(B)= w(AgB) — w(Ag) o(B)

where Ay = EAE. Finally let {y.},-,
of E. One has

» be an orthonormal basis for the range

n
Ap= Z B, au=Ww Ap)
k=1
where E,,; denotes the matrix units associated with {y,}. Therefore

(A B) — o(Ap) o(B)| < || 4] n* sup [w(Ey B) — w(Ey,) o(B)].
But Condition 2 implies that § € # can be chosen large enough that
€
|w(E B) — @(Ey) o(B)| < B (Bl

for all Be ) B,;. Combining the above estimates yields Condition 3.
LB
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The proof that 4=-5 begins in a similar manner by the choice of E and the
decomposition for w(A4B) — w(A) w(B). One also has the estimates

Y ol(t~ B 4,BE)| < /ali— )

i=1

but one needs the following

Lemma 4. If o is locally normal, C;e W,, B;e UG with f Lo then

i o((1 —E) C,.)a)(B,-)‘ <) w(l—E) % CiBiI
i=1 i=1

Proof. Consider the states w, and w;, over A, and A, given by w, = wly, and
wy(B)=w(B) if BeAj
= 0 if Be¥j.

Let (A, m,, Q,), (#}, 75, Q) be the associated triplets and define the tensor
product representation of U, ;, where L f, by

H = H,DH,
() =n,()®1, AeU
=n,(A)®R;, AeAY
n(B) =1®n(B), Be¥,.

A straightforward calculation, using

. Ry Q=0
then yields
(@Q, n(A) n(B) Q) = w,(A4) wy(B)
where
Q=Q,8Q2,.
Thus, if E, C;e A, and B; € Aj one has
N N

Y o((1—E)C)wB)= Y (r(1 —E)Q,n(C;B) Q)
i=1 i=1
and the desired result follows from the Schwartz inequality applied to the right

hand-side.
The remainder of the proof that 4=-35 is similar to that for 2=-3. Note that

in terms of the matrix units

N n
Z EAlEBl= Z Elekl,
i=1 ki=1
where .
By, = Z, (e, A;w) B SBﬂ

i=1
and hence

1Bl =

N
v AiBi“.
i=1
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If w is an even state, i.e. w(A4) =0 for all 4 € A° or, alternatively, w(a(4)) = w(A)
for all A €U, then the results of Proposition 3 can be strenghened. One has

Proposition 4. Let w be an even locally normal state (over a quasi-local alge-
bra W satisfying Conditions L.1—L.5) then the following conditions are equivalent

1. 3, N7, (W) consists of multiples of the identity.

2. Given ¢>0 and o€ F there is a fe€ F such that

£

i=1

N

Y. o(4;B) —w(4) w(Bi)l <é
i=1
forall A;e N, Bie | ) A, and all N.

yLlB

The proof that 2=>1 is implicit in Propositions 1 and 2. To prove the converse
we proceed as in the proof of 4=>5 in Proposition 3 but note that the estimate
of Lemma 4 is valid for all B;e % if  is even.

To conclude we remark that the statement of Proposition 4 differs from the
result claimed in Proposition 4.5 of [S]. This latter result states that the above
clustering property is equivalent to 3, being multiples of the identity. The two
results are not incompatible but, for them to be simultaneously true, it would be
necessary that the centre of every locally normal even state is even. This appears
to be unlikely. There certainly exist even quasi-free states whose centre is not
even [10].
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