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Abstract. It is shown that the Dobrushin-Lanford-Ruelle equations for the probability measure μ,
and the Kirkwood-Salsburg type equations for the lattice or continuum correlation functions ρ, and
for the spin correlation functions σ, are essentially equivalent for all ρ, σ, and μ satisfying certain
boundedness conditions. It is also noted that the lattice equations are identical to the equations for the
stationary states of a certain Markoίf process. This extends previous results of Ruelle, Brascamp and
Holley who proved some of these equivalences for states.

1. Introduction

The equilibrium states of an infinite classical lattice system can be specified
by various means [1-5], e.g.:

1. States defined by a probability measure μ which is a solution of a linear
equation called the "Equilibrium Equation". These states are called "Equilibrium
States".

2. States defined by the solutions of a set of equations for the correlation
function ρ(X) (lattice gas language).

3. States defined by the solutions of a set of equations for the expectation
values σ(X) (spin language).

It is known that 1. implies 2. [2, 3,4] and conversely any state whose correla-
tions satisfy 2. is an Equilibrium State. In this note we point out that the Equi-
librium Equations and the equations for ρ(X) or σ(X) are equivalent in an even
stronger sense, i.e. their solutions, with suitable boundedness properties, even if
they do not define states are also equivalent. Indeed the different equations are
expressions of the same relation using different basis for the observables.

2. Lattice Systems

We consider a spin \ classical lattice system defined on a lattice i£ the algebra
of observables is the algebra of continuous functions on the compact set [5]

r= Π {o,ih
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A state ω is defined by a probability measure on the Borel sets of Γ; it specifies
for any finite subset ΛCJ? and any X c Λ, a measure μΛ(X;dY) on the compact
set 0>(£e/Λ) representing the probability that a set Z C i f is of the form Z = I u 7
with Y C 5£jA and Y edY. For any observable A e 21 we have

= lim X μΛX)Λ(X) (2.1)

where A(X) means, now, the value of A on the element of ^(J£?) which is empty
outside X and

= ί

The energy of the configuration X is given by:

TCX

where

sup I Σ \Φ(X)\\<co. (2.2)

The interaction is said to have finite range if for any x e <£, there exists a finite
set Δx such that Φ(xuX) = 0 if X<tAx.

The state ω is said to be an "Equilibrium State" with respect to the interaction
Φ if it is a solution of the equilibrium equation [2]:

Y (2.3)

for all finite A,xeA,Xc A/x.
Introducing the function Ex by:

2EX(R) = H(xuR)- H(R)

(2.3) can also be written [2,4] in the form

2βE*<x»Y) (2.4)

and for finite range potential,

μΛ{x^X) = e-2βEAX)μΛ{X) (2-5)

for all finite A,X<JXCΛ,ΔXCΛ.

It is customary to introduce the following family of observables whose linear
span are dense in 21:

ίl if reX

reR

The correlation functions ρ and σ are defined by:

Moreover (2.6)

μA(X) =
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The connection between the different descriptions is obtained by means of the
operators $tA, ^A together with their "inverse" srfA *, # 7 \ operators defined on
the space of bounded functions φ on ^(JSf) by:

YCΛIX YCΛ/X

(2.7)

Σ <>γ(X)φ(Y) (^Λ~ » (X) = χ^(X)2" W £ σγ(X)φ(Y)
YCΛ YcΛ

where σγ{X) = {— l)l χ° y | and |S| = number of sites in S, and which satisfy:

The connection between the different descriptions is then given by:

μΛ = ̂ Λ-
1ρ = ̂ Λ~

1σ (2.8)

From the above definitions it follows at once that the correlation functions ρ,
and σ define a state if and only if:

ρ(0)=l and ts/χ1ρ^0 for all finite

or

σ(0)=l and J ^ V ^ O for all finite

3. Correlation Equations and Equivalence

It has been shown [2,4, 7] that for any equilibrium state ω the functions ρ is
a solution of the following '""Gallavotti-Miracle" (GM) Equation

ρ(0)=Uρ(X)= X K{x;X/x;T){ρ(TvX/x)-Q{TvX)} = (jrxρ)(X) (3.1)

where K(x;X; T)= Σ Z c Γ ( - l ) | Γ | " | z | e - 2 ^ ^ u Z ) . The GM equation can be
written in an obvious way as a linear equation on the space 3f of bounded functions
ψ on ^j(if),

with ί(X) = δx>ii

We shall also define 3)s C @ as the space of "symmetric functions" φ s.t.

for all x^

We shall show below that for any equilibrium state ω, the function σ is a solution
of the equation:

ω K σx) = ω(σx tanh j8 £x)

()l

for any x ^ X. This equation is valid for any interaction such that tanh βEx is a
continuous function on Γ.
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This equation was studied in [7] and for finite range interactions becomes:

( 0 ) = lίσ(

[σ(τ(xuX)= Σ a(x;R)σ(XR); v " ^ "
Rφx

where

fl(x;^) = 2~1^1 X σs(#)tanh

Lemma 1. For finite range interaction and any ψ e *2)s

for XcA/x,and AXCA.

Lemma 2. For interactions satisfying the condition (2.2) any bounded solution
ρ of GM Equation yields a solution μA = ^Λ~1Q °f ^ne Equilibrium Eq. (2.4) or
(2.5) satisfying the normalization and compatibility conditions [2] and conversely.

Lemma 3. i) For complex valued interactions such that tanh βEx is a continuous
function on Γ for all x in JSf, any bounded solution σ of Eq. (3.2) or (3.3) defines a
solution μΛ = έFΛ~

 1 σ of the Equilibrium Eq. (2.4) or (2.5) satisfying the normaliza-
tion and compatibility conditions and conversely.

ii) Under the same conditions on the interactions, any solution of Eq. (3.2) such
that ϊFA~ * σ ^ 0 for all A defines an Equilibrium State and conversely.

Proof Lemma 1 follows from the definitions of $iA and Jf. For finite range
potential Lemma 2 is an immediate consequence of Lemma 1, while Lemma 3
follows from the following argument :

For any finite A such that X C Λ/x, Λx C Λ, Eq. (3.2) together with the identity

yields:

i.e.

Σ μΛ(Y)σx(Y)σx(Y)= Σ ^(Y) tanh lβEx(Y)]σx{Y)
YCΛ YcΛ

Σ tμΛ(Y)-μΛ(xvY)]σx(Y)= Σ l
YCΛ/x YZΛ/x

this equality being true for all X C Λ/x, we obtain:

)__ 1 - tanhβEx(Y) (γ]_ 2βEχiY)

which is the Equilibrium Equation Eq. (2.5). The converse statement is straight-
forward. The generalization to infinite range interactions is also straightforward.
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We notice at once that for finite lattice if, Lemma 1 yields

But ψ in έ?s implies that the L.H.S. of this equation is a symmetric function in the
variables ( x u l ) , therefore e~2βEχ{X)(^1ψ)(X) must be symmetric in (xuX)
for any ψ in ^ s ; this condition is sufficient to obtain explicitly the space Q)s. This
remark is in fact the starting point of Pastur's [6] analysis of the "Kirkwood-
Salsburg" operator.

To conclude this section we shall consider systems such that:

ϋ)
iii) Φ has finite range.
For such systems and for translationally invariant states, Lemma 3 appears

as a direct consequence of a result obtained by R. Holley [8]. Indeed Holley has
studied a Markoff process for such systems which implies that:

a i YcMjΛxeΛ

where (3.5)

XY=XuY-XnY

and A and M are cubes such that Δx C M for all x e A. For such a process it follows
that the evolution of ωt(σx) is given by:

— ωt(σx) = - 2 £ ωt(σx cosh βEx[\ - σx tanh βEJ) (3.6)

We thus see immediately that any state ω solution of Eq. (3.2) satisfies —— ωt = 0;

using Holley's result we can thus conclude that any translationally invariant
solution σ of Eq. (3.2) such that ^ λ σ ^ 0 defines an equilibrium state.

Moreover it is also a direct consequence of Eq. (2.5) that every equilibrium
state is a stationary state for the Markoff process investigated by Holley.

4. Continuous Systems

The preceding discussion can be extended to the case of continuous systems,
with many-body potentials, i.e. any solution ρ of Kirkwood-Salsburg equation
such that |ρ(X) |<£ | x | yields a solution of the Equilibrium Equation satisfying
the normalization and compatibility conditions. This is an extension of the
results of D. Ruelle [11] who showed, in case of two-body interactions, that
if ω is a state such that the induced measure μ is tempered, then the correlation
function is a solution of Kirkwood-Salsburg equation if and only if μ is a solution
of the equilibrium equation; moreover in this case \ρ(X)\^ξ^. We shall limit
the discussion to finite range interactions only.
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We consider a classical continuous system of identical particles in IRV; the
energy of the configuration (xx,..., xn) = X is

U(X)= Σ φ(τ) ( 4 !)
TcX

where the interactions Φ have finite range, Φ ( x u J ) = 0 if \xt — x\>R for some
xteX and satisfy the condition 2Ex(X)=U(xuX)-U(X)^-\X\B. Let us
remark that this last condition is in particular satisfied by ultrastable potential
of finite type [9]. The operators j / Λ , s$X1 are defined on the space of symmetric
functions by:

£ 1
Y) where P ^

A A k = 0

and

We have s^Λs^χ1 =^Xιs^Λ = χΛ on the subspace of functions φ such that
\S&x^ for some ξ^O. Assuming that the correlation functions ρ satisfies
l ^ 1 * 1 the family of distribution functions μΛ is defined for any bounded

/lClRvby:

VA = ^A~1Q and

We shall say that ρ is a solution of "Kirkwood-Salsburg Equation" if it satisfies [9]:

(4 2)
xuX) = j-dYK(x;X; Y)ρ(XuY)

with K(x;X;Y)=ΣZcY{-\)W-{zιe-2β[Eχ(XuZ)\ Note that K{x\X;Y) = 0 if
\x — y\ > R for some yeY.

Theorem 3. i) For interactions satisfying the above conditions, any solution ρ
of Kirkwood-Salsburg equation such that \ρ{X)\ < ξ^, defines a solution \μΛ = s$χ 1ρ\
of the "Equilibrium Equation":

μΛ(xvX) = e-β[U^X)-υ{X)]μΛ(X) (4.3)

for all bounded ΛjxuX such that d(x, dΛ) > R. Moreover μΛ satisfies the normali-
zation and compatibility conditions.

ii) Conversely any solution of the Equilibrium Equation Eq. (4.3) which satisfies
the normalization and compatibility conditions and such that \μΛ(X)\^ξJx^
defines a solution of Kirkwood-Salsburg Equation.

Proof The proof is formally the same as for lattice systems. To conclude this
discussion we notice that it follows from Eq. (3.3) that:

for any ylClRv such that d(xh dA)> C0 from which follows that the induced
measure satisfies the Equilibrium Equation introduced by Ruelle in [11].
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5. Conclusions

We have seen that the different types of equations usually considered in
equilibrium statistical mechanics yield equivalent definitions of "Equilibrium
States". It should be remarked however that these Equilibrium Equations may
have solutions which do not define a state [7, 12,13]. As we have seen, any solu-
tion of the equation for σ (resp. ρ) such that 5Fχγ σ ^ 0 (resp. s#χx ρ ^ 0) defines
a state; it would be however of interest to find some more explicit conditions on
the space of solutions defining a state. A necessary condition is given for example
by \σ(X)\ ^ 1 it is not known under what conditions such a condition could be
sufficient.

A knowledge of some such relatively simple conditions on σ(X) might be
helpful for answering the question; what are the number of equilibrium states
of a spin system for a given value of the thermodynamic parameters β and (the
magnetic field) hΊ Consider for concreteness the case i f = ΈV and let the spin
interact with a translation invariant ferromagnetic pair potential only. We know
[12] that for h φ0, all β, and for h = 0, β< βc there is only one equilibrium state;
βc is the reciprocal of the temperature where spontaneous magnetization sets in.
It is also known that for h = 0, and β §; β\ β' depending on the interaction but
always β' > βc there are at least two extremal equilibrium states. These states
correspond to the infinite volume limit of states with + or — boundary conditions.
Consider now Eq. (3.2) for this system with h = 0; it breaks up into two sets
of equations, one for the even and one for the odd correlations. For β < βc there
is only obe solution of (2.11) which defines a state while for β > βc there are many
(any combination of the two extremal ones). The question now arises of whether
these new states yield new solutions of (3.2) for β < βc or not. In the first case
there is a "bifurcation" of the solutions of (3.3) at β = βc, while in the second case
the solutions of (3.3) for β> βc are a continuation of solutions for β<βc which
however do not define a state for β < βc but do so for β > βc.

We remark that in the space of bounded σ(X) there is certainly only one
solution of (3.3) for sufficiently small β since in that case (3.3) considered as a
linear equation, σ = 1 + K(β)σ, \\K(β)\\ < 1, for β < β for some positive β< βc [7].
(Similar results hold for the ρ Eqs. [14].) Hence if there are multiple bounded
solutions for β < βc they must start appearing at some fixed value of β, say β < βc

and 1 would then be in the spectrum of K(β) for β > β. An example in which
bounded solutions not defining a state exist was recently found by Brascamp [13].
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