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Abstract. We consider the problem of relaxation times for Markov evolution of systems composed
of a countable number of locally interacting particles, each one of which has a finite phase space.
We give a theorem for comparison of mean square relaxation times of evolutions possessing the same
ergodic stationary state. We give a reduction theorem for "attractive" evolutions. The results are
applied to a generalization of the Glauber evolution of the one dimensional Ising chain.

1. Introduction

This paper concerns the stochastic time evolution of a system composed of
a countable number of locally interacting particles, each one of which possessing
only a finite number of states. A basic example of this type of system is the Glauber
model [5] for the evolution of the one dimensional Ising chain.

The joint configuration of the particles is described by a point in the phase
space Ω. The equilibrium distribution is a probability measure μ on Ω. We use
the operator Tt to express the evolution of the function/on Ω. The time development
is specified by the master equation

-^(TJ) = G(TJ) (1.1)

with a given master operator G.
The properties of the equilibrium state μ are usually well known. Very much

less is known about the exact nature of the master operator. One fundamental
constraint on G is that it should have μ as a fixed point. A second commonly
imposed constraint is that G should satisfy the "principle of detailed balance".
In probabilistic parlance this amounts to reversibility of G with respect to μ.
The physical interpretation is that fluctuations from equilibrium should not
distinguish the direction of time.

The particular concern of this paper is the convergence properties of solutions
to (1.1) in the limit as t approaches infinity. Assume there is a function space $F
which is complete in a certain norm || || such that for each / e # " there is an

/J|=0 (1.2)
f-> oo

for some fixed λ ^ 0. Then λ is called a relaxation coefficient for Tt in the norm || ||.
The relaxation time of Tt in the norm || || is the reciprocal of the supremum of the
set of relaxation coefficients. If there is a strictly positive relaxation coefficient,
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Tt is said to have a finite relaxation time in the norm || ||. If zero is the only relaxation
coefficient, Tt is called quasistable in the norm || ||.

In considering models for the time development of the one dimensional
Ising chain, Glauber [5] selected a certain G which satisfied the two constraints
mentioned above and had additional nice properties. For this G he showed that
one particle functions converge exponentially in time to their expectation values
in the uniform norm || || ^

||/|loo = sup|/(x) | . (1.3)
xeΩ

Theorem 2 below then shows that any function of a finite number of particles
has the same convergence property. A somewhat disturbing feature is that there
are continuous functions on Ω which do not converge in this manner so that there
are no nonzero relaxation coefficients for the Glauber evolution in || H .̂

Felderhof [4] represented the G of the Glauber model as a symmetric operator
and gave an explicit solution to the eigenvalue problem. The spectrum of G
consists of the eigenvalue zero corresponding to the equilibrium state and negative
eigenvalues bounded away from zero corresponding to excited states. The gap
in the spectrum implies that functions converge to their expectation values
exponentially in time in the sense of (1.2) in the μ-mean square norm. Theorem 1
below shows that a very broad class of master operators which leave μ fixed
also converge in this manner, so that the finiteness of the μ-mean square relaxation
time is more a property of μ than of the specifics of the evolution. Mean square
convergence is not sufficiently strong for some applications nevertheless knowledge
of mean square convergence properties gives information of a negative nature
about convergence in stronger norms.

2. Fundamentals

The one particle phase space is the finite set W. The particles are labelled
by the countable set S, which is taken to be Zd, the set of points with integer
coordinates in d-dimensional Euclidean space. The general phase space is Ω = Ws.
The discrete topology on W makes Ω a compact Hausdorff space in the product
topology. It is not difficult to generalize the results below to the case in which S
is an arbitrary countable set and each particle has its own compact metric space
as phase space.

We consider several function spaces on Ω. All functions are real valued unless
otherwise specified. The symbol A always denotes a finite subset of S. A function g
which has the property that the value of g(x) depends only on the values of x
on A is called a A-cylinder function. Cf(Ω) denotes the set of finite cylinder functions.
Each g e Cf(Ω) is a Λ-cylinder function for some Λ. C(Ω) denotes the space of
continuous functions on Ω equipped with the norm || Ĥ  of (1.3).

Let μ be a probability measure on Ω. We use the term measure to mean
countable additive, bounded, Baire measure. The symbol Lp(μ\ l ^ p < o o ,
denotes the space of p-absolutely integrable functions on Ω equipped with the
norm || || Cf(Ω) is dense in C(Ω) and in Lp(μ), 1 ̂  p < oo, in the appropriate norms.
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The μ-inner product is defined

(f,g)μ = ϊfgdμ (2.1)

for /, g e C(Ω). See Yosida [11] for details.
In working with the product space Ω some special notation is helpful. For

specified j e S, given a e W, x e Ω, we employ the left subscript ax to mean

k if

The symbol j does not appear; it will be specified in the text or understood from
context.

Definition 2.1. A generator G on Ω is a formal sum G = ΣGk(a, b; x) such that
for each keS, Gk(a,b x) is a continuous function onW xW xΩ which is independent
of xk and satisfies

Gk(a,b;x)^0 for aΦb, (2.3)

X Gfc(α,6;x) = 0 (2.4)
beW

for all a,bsW,xeΩ. The operator of G is the linear transformation with domain
Cy(Ώ) and values in C(Ω) whose action on the /1-cylinder function g is given by

Gg= Σ

V (2 5)
Gkg{aX)= Σ Gk(a,b;x)g(bx)

beW

with the modification of x at the fc-position.
Condition (2.4) makes the operator of G map constant functions to zero.

Also, by (2.4), it is sufficient to specify Gfc(α, b; x) for a φ b.
The above definition of a generator corresponds to the case in which only

one particle at a time changes state. See Dobrushin [2] for generalization.
Definition 2.2. The generator G on Ω is called reversible with respect to the

probability measure μ if the operator of G is symmetric in the μ-inner product,
i.e. if (G/, g)μ = (/, Gg)μ for all/, g e Cf(Ω). G is called strictly μ-reversible if each Gk

is μ-reversible.
When the probability measure μ on Ω is the equilibrium state of a "reasonable"

potential, it possesses certain well-behaved conditional probabilities and vice-versa
(see Sullivan [9]). We assume that μ possesses a family of strictly positive functions
{μk(a\x)\ keS] such that μk(a\x) is independent of xk and for all keS, ae W,
xeΩJeC{Ω)

f [ Σ f
with the modification of x at the /c-position.

For such μ there are several associated generators. Two examples are the
type I generator, G1 = ΣG[, and the type II generator, GII = ΣGI

k

I, of μ given by

Gί(a,b;x) = μk(b\x)9 b + a, (2.6)

Gjftfl, b x) = [μk(b I x)/μk(a \ x)]* , fe + α . (2.7)

Both GJ and Gu are strictly reversible with respect to μ.
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The difficulty in solving the master Eq. (1.1) is due to the the fact that, in
general, a generator G on Ω is an unbounded operator. We approach the problem
from the point of view of semigroup theory using the results of Liggett [7] and
Sullivan [10]. The reader is referred to Yosida [11] as a basic reference on
semigroups. We use the term "'strongly continuous" to mean "of class C o " in
Yosida's terminology. An operator T on a space $F with norm || || is called a
contraction if | |T/ | | ^ | | / | | for a l l / e 3F. An operator G defined on a domain in 3F
is called dissίpatίve if for each / in the domain of G and each λ > 0

(2.8)

In a real inner product space with | | / | | = (/,/)* this amounts to the condition

(2.9)

for each / in the domain of G. The closure G of G is defined so that the graph of
G is the closure of the graph of G. This depends on the norm but we use the one
symbol G with the norm to be taken from context.

Let G = ΣGk be a generator on Ω. The operator £ Gk is a bounded linear
keΛ

dissipative operator on C(Ω) and we can evaluate the associated evolution
exp It Σ Gλ,t^0, by the exponential power series. In many cases of interest

V keΛ /

these evolutions converge with increasing A to a well-defined evolution Tt,
ί^O, corresponding to G (see [7, 10]).

Definition 23. The generator G = ΣGk on Ω is said to have the semigroup
property if the closure G of G as defined on Cf(Ω) in C(Ω) is the infinitesimal
generator of a strongly continuous, linear semigroup of contractions Tt, t ^ 0,
such that for each t0 > 0 and each fe C(Ω)

lim sup l l T J - e x p t Y Gk f\ = 0

where the /L-limit is taken in the sense of the net of finite subsets of S ordered
by inclusion.

When G has the semigroup property with evolution Tt acting on C(Ω\ we use
topological vector space duality to get the associated evolution Tt' acting on
measures (see Yosida [11]). A probability measure μ is called stationary with
respect to G (or under Tt) if T/μ = μ for all t ^ 0. By differentiation one obtains the
following.

Lemma 2.4. Let the generator G onΩ have the semigroup property. A necessary
and sufficient condition that the probability measure μ be stationary with respect
to G is that J Gfdμ = 0 for all fe Cf(Ω).

Proposition 2.5. Let the generator G on Ω have the semigroup property and be
reversible with respect to the probability measure μ. Then μ is stationary with
respect to G.

3. Ergodicity and a Comparison Theorem

From Yosida [11], XIII. 1, it is easy to deduce the following two propositions.
Proposition 3.1. Let the generator G on Ω have the semigroup property with

evolution Tt. Let μ be a probability measure which is stationary with respect to G.
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Then the action of Tt on C(Ω) extends uniquely to a strongly continuous linear
semigroup of contractions on LP(μ) for ί^p<oo. The associated infinitesimal
generator of the semigroup is the closure in the p-norm of G as defined on Cf(Ω)
and is a closed linear dissipative operator in LP(μ). We have

μ0 (3.1)

for each f e Cf(Ω).

Proposition 3.2. Let G and μ satisfy the hypothesis of Proposition 3.1 and
further assume that μ is reversible with respect to G. Let G denote the L2(μ) closure of
G. Then G is self-adjoint and its spectrum consists of nonpositive real numbers.
Let —λ be the supremum of the strictly negative spectrum of G and let Po denote
the projection on the zero eigenspace of G. Then for each feL2(μ), t ̂  0

lim \\Ttf-Pof\\2=0, (3.2)
ί~> 00

\\eλt(Ttf-P0f)\\2S\\f-P0f\\2. (3.3)

It follows that, for the evolution of Proposition 3.2, if A>0, then any A',
O:gA'<A, is a relaxation coefficient and the L2(μ) relaxation time is I/A.

When one has a Markov process on a finite set, the set can be partitioned
into a transient class and a number of ergodic classes (see Doob [3]). Within
each ergodic class the process proceeds independently of the configuration of the
other ergodic classes. Each ergodic class has a characteristic relaxation time.
A similar decomposition for locally compact spaces can be found in Yosida [11],
XIII.4.

Definition 3.3. The evolution Tt is called ergodic it it possesses a unique
stationary probability measure. If Tt possesses a stationary probability measure μ
such that the only fixed points of Tt in L2(μ) are the constant functions, then Tt

is called L2(μ) ergodic.
It is not difficult to show the following:

Proposition 3.4. Let the generator G on Ω have the semigroup property with
evolution Tt. If Tt is ergodic with stationary probability measure μ, then Tt is L2(μ)
ergodic.

Theorem 1. Let G and H be generators on Ω which have the semigroup property
with corresponding evolutions Tt and Ut. Let G be reversible with respect to the
probability measure μ and let Tt be L2(μ) ergodic. Assume

(Hf,f)μS(Gf,f)μ (3.4)

for all fe Cf(Ω). Then μ is stationary with respect to H and Ut is L2(μ) ergodic.
If A ̂  0 is such that

eλt\\TJ-Sfdμ\\2 (3.5)

is bounded mί^O for each fεL2(μ), then

eλt\\UJ-$fdμ\\2S\\f-Sfdμ\\2 (3.6)

Proof. From (3.4) we deduce that H is dissipative with respect to ( , )μ It
follows easily that μ is stationary under Ut. Let feL2(μ) be a fixed point of Ut.
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Then Hf = 0. From (3.4) and reversibility we conclude that / is in the domain of
( - Gf and ( - Gf f = Gf = 0. Hence / is a fixed point of Tt, so Ut is I2 (μ) ergodic.
Let L2

0(μ) denote the subspace of L2(μ) consisting of those functions whose μ-
integral vanishes. From the boundedness of (3.5) using the spectral representation
we find that the restriction of G + λ to Cf(Ω)nL2

0(μ) is dissipative. From (3.4)
we have that the restriction of H + λ to Cf(Ω)nL2

Q(μ) is dissipative, so eλtUt is a
contraction semigroup on L2

0(μ) which yields (3.6).
Corollary 3.5. The L2(μ) relaxation time of Ut is no greater than that of Tt.
An important case in which (3.4) is satisfied is when G and H satisfy the

remaining hypotheses of Theorem 1 and H = G + K where K is a generator on Ω
which is either strictly reversible with respect to μ or has the semigroup property
with stationary measure μ.

4. Attractive Evolutions

In the case of ''attractive" evolutions one can reduce many convergence
questions to considerations involving one particle functions. The term "attractive"
is from Holley [6]. Theorem 2 below generalizes his result. See Preston [8] for
fundamentals of the techniques used here.

We assume that the one particle phase space is equipped with a partial order
^ which has a minimal element 0 and a maximal element w so that each a e W
satisfies 0 ̂  a ̂  w. The general phase space Ω has the product partial order so
that x ^ y means xk ^ yk for all keS.ln this order Ω has unique maximal element,
denoted w, and unique minimal element, denoted 0, so that for each xeΩ, Org x ̂  w.
One determines from context whether 0, w refer to points of W or Ω.

Definition 4.1. The space of continuous nondecreasing functions on Ω is
denoted Ct(Ώ). A generator G = ΣGk on Ω is called attractive if for each keS,
there exists a τ f c >0 such that (1 + τkGk) maps Ct(Ω) into itself.

Proposition 4.2. Let the attractive generator G on Ω have the semigroup
property with evolution jζ. Then Tt, ί^O, maps Ct (ί2) into itself.

Let μ be a "well-behaved" probability measure which is attractive in the sense
of Preston [8]. Then the type / generator of μ given by (2.6) is attractive. Other
generators associated with μ are not necessarily attractive.

Lemma 4.3. Let G be an attractive generator on Ω which has the semigroup
property with evolution Tt. Let f9ge C^Ω) be such that for some λ^O,

\ϊmeλtlTJ(w)-Ttf(0)-]

Then

Urn eλt\\Tt(f0)^ = 0.
t-* oo

Proof. Since we can add constants and multiply by positive factors, there is no
loss in generality in assuming that the values of/ and g lie in [0,1]. Then fg and
f + g — fg are nondecreasing so

0 S Ufa) (w) - Ufa) (0) ύ Uf + g) (w) - Tt(f + g) (0).
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Theorem 2. Let G be an attractive generator on Ω which has the semigroup
property. Let 3F be a set of nondecreasing functions in C(Ω) such that the algebra
generated by 3F is dense in C(Ω) in the norm || H .̂ // there exists a λ ^ 0 such that

\imeλt\-TJ(w)-Ttf(0)-] = 0 (4.1)
ί-*oo

for each fe #", then Tt has a unique stationary probability measure μ and for each g
in the algebra generated by $F

- 0 . (4.2)
r->oo

Also, for each fe C(Ω)

\im\\Ttf-Sfdμ\\oΰ = 0. (4.3)

ί->OO

If G is μ-reversible, then λ is an L2(μ) relaxation coefficient.

Proof. For g in the algebra generated by 3F we define μ [cf] by
(4.4)

which exists for any nondecreasing function, hence for any finite linear combination
of nondecreasing functions. Limit (4.4) defines a continuous linear functional on a
dense subspace of C(Ω\ so there is a measure on Ω also denoted μ such that

μ[£ll=!gdμ (4.5)

for each g in the algebra generated by 3F. The properties of Tt imply that μ is
a probability measure. Lemma 4.3 then gives (4.2). The uniqueness of μ and limit
(4.3) follow easily. The assertion that λ is an L2(μ) relaxation coefficient follows
from the spectral representation of the closure of G.

Usually !F is a set of one particle functions which generates the algebra
Cf(Ω). Convergence factors other than exponentials could be used in Theorem 2.

5. A Generalized Glauber Model

The Glauber evolution [5] with variable coupling serves well to illustrate
the preceding results. We consider the one dimensional Ising chain with variable
nearest neighbour interactions in zero magnetic field. The phase space is
Ω— {— 1,1}Z. In the configuration xeΩ, the interaction energy between sites k
and fc+ 1 is —Jkxkxk+1. We consider the generator G = ΣGk with

Gk{a, b;x)= -\ab{\ -akaxk_ 1 -βkaxk+1),

ak = i[tanh(J f c_ x + Jk) + tanh(J,_ x - JJ] , (5.1)

βk = i [ tanh(J k _! + Λ) - tanh(Jfc_ x - Jk)] ,

for α, be{ — 1, +1}. From results in [7] it follows that G has the semigroup
property. If v is a probability measure on Ω whose one point conditional proba-
bilities satisfy

vk(a\x) = exp(Jfc_ !**_ x α + Jkxk+1a)/Zkx (5.2)
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for each fce Z, ae {— 1, + ί},xeΩ, where Zkx is chosen so that the sum of vk(a\x)
over the two values of a is one, then G is strictly reversible with respect to v.

One stationary probability measure of the Glauber generator G of (5.1) is
the inhomogeneous Markov chain μ such that

μ(xk = a) = \,
, (5.3)

1 W = l(l + * Λ + 1 tanhJk).

We shall show below that μ is the only stationary probability measure of G when the
coupling constants are bounded. The type / generator (2.6) of μ coincides with the
Glauber generator (5.1).

Now we consider the very special case when all the Jks are zero. Any concept
of relaxation time which fails for this case seems doomed for more complex
evolutions. One can compute the evolution of point measures to get the following:

Lemma 5.1. Consider the Glauber generator (5.1) with all the Jks zero. Let

fn(x) = sgn
k=ί

where sgn(w) = + 1,0 or — 1 as u is positive, zero or negative. Then for each fixed

lim ?;/,( + )= 1,

KmTJn{-)=-i,

where " + " indicates the all + 1 point of Ω and " — " the all — 1 point.

Proposition 5.2. // λ > 0, then λ is not a relaxation coefficient for the Glauber
evolution with all Jks zero in the || Ĥ  norm on C(Ω).

We return to the general case. There is no loss in generality in assuming
that Jk ^ 0 for all k, as we can relabel the direction of individual spins to achieve
this. One verifies the Glauber evolution with Jk ^ 0 for all k is attractive in the
ordering of Ω induced from the — 1 < 1 ordering on {— 1,1}.

Let sk denote the element of C(Ω) such that sk(x) = xk. Each element v e ί1(Z)
yields an element of C(Ω) under the correspondence

keZ

This mapping is norm preserving and the image of/X(Z) in C(Ω) is a closed linear
subspace which we denote by 3F. The operator G of (5.1) maps <F into itself
and yields the following differential equation for v(t)e^1{Z) via (5.4):

~v(t)

(5.5)
[βυ]k = βk-ίvk-1-vk + ak+1vk+ x .

One verifies that B is a bounded dissipative operator on «fi(Z)J so that exp(f£),
ί^O, is a contraction semigroup. We deduce that 3F is invariant under Tt and
that Tt agrees with exp (tB) in ^ through the correspondence (5.4).
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If the Jfc\s are uniformly bounded,

IΛI^J all fceZ, (5.6)

let λ satisfy O^λ^ 1 — tanh2J. We deduce that B + λ is dissipative in / 1(Z).
Hence exp [t{B + λ)] is a contraction semigroup on <F and

^ r T V 7) s < V It) I C^ 1\
t / k k ^^ / I k\ ' \ /fceZ fceZ

From (5.7) and Theorem 1 and 2 we have the following:

Proposition 5.3. For the Glauber generator G of (5.1) which satisfies (5.6) there
is a unique stationary probability measure μ which is the inhomogeneous Markov
chain satisfying (5.3). For each g e Cf(Ω) and each λ satisfying 0 ^ λ < 1 — tanh2J
we have

\imeλt\\Ttg-ίgdμ\\<lo=0.
t~*ao

The L2(μ) relaxation time is no greater than 1/(1 — tanh2J). The type II generator
of μ has a finite L2(μ) relaxation time.

Next let us consider the case where the Jks may be unbounded but strictly
positive. Define uk by

exp( — uk) = tanhJk. (5.8)

Next define the probability measure μ+ by taking limits of finite chains of spins
with one point conditional probabilities satisfying (5.2) subject to boundary
spins equal to + 1. Define μ_ similarly with boundary condition — 1. If Σuk < oo,
then μ+ φ μ_.This is a phase transition in the sense of Dobrushin [1]. The proba-
bility measure ^μ+ + ^ μ_ is not a Markov chain even though it satisfies (5.2).
This kind of phase transition is not a singularity of a partition function. Instead
it is the existence of more than one equilibrium state obtainable from the potential
by taking limits of finite systems with different boundary conditions. In the
translation invariant case one needs long range forces to obtain a one dimensional
phase transition. Here we have nearest neighbour forces which are not translation
invariant nor bounded.

Another interesting case is that in which lim uk = 0, £ uk = cc and £ uk = co.
k>0 k<0

Here it can be shown that the only stationary probability measure for G is the μ
of (5.3). By considering the action of G on one particle functions one can show
that zero is a limit point of the spectrum of G considered as an operator on L2(μ).

Proposition 5.4. Let G be the Glauber generator (5.1) with strictly positive
Jks related to uks by (5.8). IfΣuk < oo, there is a phase transition in the sense of there
being more than one reversible stationary probability measure for G. //lim uk — 0,
£ uk = oo and £ uk = oo, then the only stationary probability measure for G is the

fc>0 k<0

inhomogeneous Markov chain μ of (5.3), but the evolution is quasistable in the sense
that the only L2(μ) relaxation coefficient is zero.
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For higher dimensional, translation invariant Ising models which have only
one phase, i.e. above the critical temperature or in a nonzero magnetic field, it
would be interesting to know if L2 quasistability can occur with "reasonable"
master operators.

I wish to acknowledge valuable discussions with Professor J. T. Lewis.
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