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Abstract. An example is given of a local spherically symmetric short range potential,
such that the wave operators for scattering of a single particle by the potential are not
complete. States exist which are asymptotically free at ί = — oo, but having a non zero
probability of absorption into the origin at ί = + oo.

1. Introduction

It is a somewhat unusual situation that, although asymptotic com-
pleteness in potential scattering has received considerable attention,
and has been proved under a wide variety of rather weak assumptions,
there does not seem to exist in the literature any example of a short
range local potential for which completeness of the wave operators does
not hold.

V(r) is said to be of short range if \V(r)\ = 0(r~(1 + ε)) as r-»oα(ε>0).
If in addition V(r) is locally square integrable in 1R3\{0} the wave oper-
ators

Ω± = s-lim e

lHte~lHot exist [1], and are said to be complete if range
f-> + oo

(Ω+) = range (Ω_), or equivalently if the scattering operator 5 = Ω_ *Ώ+
is unitary [2, Chapter IV].

With an attractive singular spherical potential such as — r~n (n^.2)
one has in the classical theory the phenomenon of the particle plunging
into the origin (within a finite time interval). The expectation that this
might occur also in the quantum-mechanical case and lead to a breakdown
of completeness turns out not to be justified. Since the total Hamiltonian
is not essentially self-adjoint for such a potential, it is possible to define
an evolution by means of a non-unitary semi-group, of which the generator
is not self-adjoint (see [3,4] for the case n = 2, and also [5] which relates
such a semi-group to the one-parameter family of unitary [6] evolutions);
however, completeness holds for all possible unitary evolutions [7,8].

Nor is completeness violated for singular repulsive potentials [9,10],
or for potentials which are non-singular [11] (i.e. for which Jor|F(|r|)
• dr < GO). Hence it remains only to consider potentials which are both
unbounded and oscillating near r = 0. (Potentials which are unbounded

* On leave of absence from University of Hull, Yorkshire, England.



126 D. B. Pearson

and oscillating at infinity have recently received some attention in
quantum theory; see for example [12,13].) In the present paper we
define such a short range spherical potential V(\r\) for which the wave
operators are not complete, and describe some of the phenomena
which accompany this.

The main features are
(i) H = H0 + V (defined in the single partial wave / = 0) is essentially

self-adjoint, and therefore generates a unique unitary evolution; H is
also bounded below.

(ii) The absolutely continuous spectrum of H, for / = 0 and in a
finite subinterval of 1R, is doubly degenerate, the degeneracy having a
physical interpretation.

(iii) The scattering operator is non-unitary, and states which are
asymptotically free at t = — oo have a non-zero probability of absorption
at the origin as f-> + oo. There exist "semi-bound" states, i.e. states
which are bound as ί-> + oo (in the sense that with probability 1 the
particle remains near r — 0) but which are not bound as t —> — oo (these
states are not super-positions of eigenstates of H, see [14,15]). The
space of scattering states does not coincide with the subspace of absolute
continuity Ma c (H).

(iv) There is a high degree of instability in the coupling constant g
e.g. for O r g g < 1, the wave operators corresponding to H(g) = H0 + g V
are asymptotically complete.

Two motivations of our interest in scattering by such a potential
are (i) to delineate more clearly the limits of the usual scattering theory
and spectral theory, and (ii) to set up a model of creation and absorption
(and of the localisation of states) in quantum mechanics, while retaining
an evolution which is unitary for finite times.

After the preliminary calculations and estimates of Section 2, V(x)
is defined in Section 3, and the asymptotic behaviour of solutions of the
time-independent Schrodinger equation are studied. In Section 4
(Propositions I-IV) the spectral properties of the differential operator

HI = —r~τ~ + V(x) in a finite interval are obtained; H1 has an absolutely
ax

continuous as well as a discrete spectrum. In Section 5 (Proposition V)

the spectral properties of H= ——^ + V(x) on a semi-infinite interval
ax

are obtained. The interval may most conveniently be taken as (— oo, b\

with b>0. The potential function V(r) is then obtained from V(x) by
the substitution x-+b — \r\. In the subspace / = 0, the total Hamiltonian
H = — A + V(r) is unitarily equivalent to the self-adjoint ordinary

differential operator H = — 2 + V(x) acting in L2( — oo, b)9 where x = b
Cl X

]
corresponds to r = 0.
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Finally (in Propositions VI and VII) two orthogonal subspaces
reducing H are defined and physically interpreted, and the existence of
semi-bound states, together with non-unitarity of the scattering operator,
are deduced.

2. Solutions of the Schrδdinger Equation with Potential U(x; α), α -» 0

Before defining the potential function V(x\ it will be convenient
to define a function U(x;a) depending on a positive parameter a, and
such that as a varies (and tends to zero) through a sequence of values
an, U(x, an) determines V(x] on successive small subintervals of 1R.
In this section we define U (x; a) and consider some of its properties.

We first define an auxiliary generalised function U0(x; a) by

t/0(x;α)= Σ λκδ(x-Ka), (Q£x£A>&a). (1)
K=l

Here the Aκ's are real numbers depending on α, and are given
successively by

1 0 _^-3/2 -1\ (n-l/2 Λ - l\ (π-l/2 n-ί\ (n-SI2 n-l\ΛI> Λ2, ..., A8 — (a — a ) , ( a — a ) 9 ( a — a )9(a — a j,

(a-ll2-a-l\(a-*>2-a-l\(a-*l2-a-l\(a-ll2-a-l\

(2)
and δ is the Dirac ^-function. We take 0 < a < 1.

Now let f(x) satisfy the eigenvalue equation

-/"(x)+t/0(x;α)/(x) = /c2/(x), (/c2>0) (3)

and define the 2-component vector- valued function f(x) by

/r(x) is discontinuous at each ^-singularity x — Ka, and we adopt
the convention that in that case f2(x) is defined by a limit from the right.

I.Q.f2(Ka)= lim /'(x).
x->Ka +

By direct solution of the eigenvalue equation, we find that f(d) and
/(O) are related by the equation

(α)\ = /cos ka k~1 sin kα \ /Λ (0)\

/2(α)/ V/L! cos ka — fesin feα λ1 k~1 sin fcα + cos ka) \/2(0)/

and similarly we have

/Λ(2α)\ = /coskα fc^sin/cα \//i(α)\

\/2(2fl)/ \A2 cos fcα — /csin fcα /12 ̂ ~1 §in ̂ β + cos ̂ a) 1/2 (β)/
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Inserting λ1 — (a~3/2 — a~ *) and A2 = (a~ 1/2 — a~ 1), we may hence deter-
mine by matrix multiplication the 2 x 2 matrix relating /(2α) and /(O).
We shall need to know only the behaviour of this matrix in the limit
as 0-*0, and using the series expansions of the sine and cosine functions
we find that as α->0 the transformation matrix from /(O) to f(2a) is

Here and subsequently, a function of k and α is defined to be 0(cf)
if the function is of the form cfF(k, a) where, for 0 < α < 1 and for k in

any finite subinterval of R, both |F(fc, α)| and — 2

uniformly in k and α.

dF(k, a)
are bounded

Similarly, the transformation matrix from /(2α) to /(4α) is

a + 0(a3/2)

-4/3/cV/2

We may now multiply these two matrices to give the transformation
matrix from /(O) to /(4α), viz.

1 + 0(α3/2) 0(α)

-5/3k2 + 0(a112)

and the product of the same two matrices in the reverse order gives
the transformation matrix from /(4α) to /(8α), viz.

l+0(α1/2)\

l + 0(α) / ' l j

A final matrix multiplication now gives

/Λ(8α)\ /I - 5/3 fc2 + 0(^1/2) 1 + 0(α1/2)\ /Λ(0)\

/2(8α)/ \-5/3/c2 + 0(α1/2) i+0(α) /\/2(0)λ
(7)

The function U(x;ά) may be thought of as an approximation to
the generalised function t/0(x; a\ in which each ^-singularity λκδ(x - Ka)
is replaced by a potential barrier (or well) or width d and height (λκd~1),
where d ̂  α. Though the precise value ofd is unimportant, it is convenient
to set d = α4.

Thus let U(x) = λκd~l (with K = l or 2) throughout an interval
of length d.

Then, if f(x) satisfies the eigenvalue equation
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ί f \in the interval, the matrix transforming , at one end of the interval

^ 'H;)at the other end of the interval is

cos(k2d2 - λκd)ί/2 d(k2d2 - λκd)~ll2 sm(k2d2 - λκd)l/2\

-d-1(k2d2-λκd)ll2sm(k2d2-λκd)ίl2 cos(k2d2-λκd)i/2 )'

(8)

With d = a4 ,λ1 = (a-3/2-a~1) and λ2 = (a~1/2-a~1), letting α-> 0 this
matrix becomes

+ 0(α5/2) 0(a4) \

, + 0(a) l+0(α5/2)/ l j ? U

and
l+0(α3) 0(α4) \ (κ==2} (9/)

In each case, I I is the limiting transformation matrix corresponding
\AK v

to the ^-singularity.
Now U (x; a) is defined by

= λκa~4\ 4 4 ( }

where k— 1, 2, ..., 8 and λκ is given by Eq. (2).
If f(x) satisfies the eigenvalue equation

-/"(x) + £/(*; α)/(x) = fc

then the matrices transforming „, \ into ^ ' and rι/^

I f(2a + 2α4) \ ^ ̂  ^(α + ^ ^( + α<

into (,.,,- 4J have the forms (9) and (9') respectively. Multiplying

(OOS /Γ/7 ^

7" v" 1 5 we fώd that the matrices transfor-
— ksmka coska /
. J,n,o ^ and

differ from the 2 x 2 matrices in Eqs. (4) and (4') only by

(0(a5/2) 0(aΊ/2)\ ίO(a3) 0(α4

\0(a) 0(a2) I an° \0(a2) 0(α3),

respectively.
This further implies that the transformation matrices from /(O) to

f(2a + 2a4) where /ΞΞ Kj and from /(2α + 2α4) to /(4α + 4α4) have

the forms (5) and (5r) respectively. That is, as we might expect, the
transformation matrices corresponding to U(x;ά) have, in the limit as
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α->0, the same behaviour asymptotically as the matrices corresponding
to U0(x;a). The calculation of the transformation matrix from /(O)
to /(8α + 8α4) in the limit as α—>0 is now identical to the calculation
of the matrix relating /(O) and /(8α), which we carried out for L70(x; a).

We have, then, the following

Lemma 1. Let U(x; a) be defined by Eq. (10), where the λκ's are given

by Eq.(2). Let f(x)= (^} = (f,* Λ where /(x) satisfies the eigen-

value Eq.(ii). Then

/(8α + 8α4)=M(/c2;α)/(0), (12)

where the 2 x 2 matrix M(/c; a) satisfies, in the limit as α—>0,

Sβtf + Otf'2) l + 0(α)

3. Asymptotic Behaviour of Solutions of the Schrδdinger Equation
with Potential V(x)

In this section we define, on an interval [0, b\ the potential function
V(x\ and consider the asymptotic behaviour near x = b of solutions
ψ(x; k2) of the equation

-t//'(x; k 2 ) + V ( x ) ι p ( x ; k2) = k2ιp(xι k2) (14)

A sequence of points {xn} defines a partition of the interval [0, b)
into infinitely many subintervals. On each subinterval [xn, xn+1\ V(x)
is defined to be U(x;an) (apart from a change of origin), where {an}
is a decreasing sequence of positive numbers, to be chosen, and con-
verging to zero.

Thus we have

U(x-xn,an), x B ^xgx n + 1 ; n = 0,l ,2,. . . , (15)
where

and
00

In the limit as x -> fe, the amplitude of oscillations of V(x) tends to
infinity, while the period of oscillation tends to zero; thus F(x) is
unbounded both from above and below near x = fe.

, ' / 2 \ ' wnere ψ(*',k2) satisfies Eq. (14), we
ip (x k )/

may define 2 x 2 matrices Mn(k2) and Mm π(/c2) by the equations

2) = ψ(xn,k
2) (16)

and
fc2) = v(^π» fc2) > respectively . (16')
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From Eq. (16') and the definition of V(x) we see that
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(17)

where M(/c2; an) is defined by Eq. (12).
The behaviour of ψ(x k) near x = b is determined by the behaviour of

Mn(k2) as n-»oo. In order to express this more precisely we define on the
space of 2-component vectors a norm by

(Fi
(F2

and we define the norm of a 2 x 2 matrix to be the operator norm
(regarding the matrix as a linear operator on the normed space of
2-component vectors).

Since lim an = 0, we have from Eq. (13)

n~* oo

where

lim \\Mn>n+,(k2)- M(fc2)|| = lim )- M(k2) = 0,

(18)
1-5/3/t2

-5/3/c2

The convergence is uniform on any finite interval 0 ̂  k2 ̂  const.
Suppose, then, that on a finite subinterval we have

-(Mn,n+1(k2)-M(k2)) (19)

where the positive constants cn are independent of k.
The cn's may be made arbitrarily small as the απ's are decreased,

and we now choose the sequence {an} to converge sufficiently rapidly
to zero that we have

00

Σ « c π < o o . (20)
n = l

We take the interval on which (19) hold to be 0 ̂  k2 ̂  12/5. It is important
to note that in the interior of this interval M(k2) has distinct non-real
eigenvalues, both on the unit circle.

The asymptotic behaviour of Mn(k2) follows from the following

Lemma 2. For 0 < k2 < 12/5, the following limits exist, the convergence
being uniform in k2 in each closed subinterval of (0,12/5):

W(k2)= lim [M(/c2)]~" Mπ(/c2);

1 = lim
(21)

dk'

-—- W(k2) = lim —2- [(M(/c2))~M,
dk H"*00 dk

-(^/c^-^lim-^ΠM^/c2))-1

(21')



132 D. B. Pearson

Further, all limits are uniformly bounded in each closed subinterval
of (0,12/5).

Proof. Define Xn= [M(k2)Γ" Mn(k2) and Yn= -j^Xn.

Then

(Xn+ 1-Xn)= [M(k2)Γ <»+ " LMn,n+1(k2) - M(k2)] [M(k2)]« *„ . (22)

Now for 0 < k2 < 12/5 we have
N = eiN«E+ +e-iN«E_ , (N = Q,±l, ±2...)

where E+ and £_ are (non-orthogonal) projections onto the eigenspaces
of M(k2) corresponding to eigenvalues eiθί, e~ia respectively, and α
is real. Solving the eigenvalue equation for M(/c2) we find cosα =1 — 5/6 k2.
|| £+|| are uniformly bounded in k2 in each closed subinterval of
(0,12/5), so that in each closed subinterval we have ||[M(k2)]N|| ^c,
where c is independent of k and N.

Hence from (19) and (22) we have

\\Xn+1-Xn\\^c2cn\\Xn\\. (23)

Using the fact that lim nc =0, it is easy to deduce by induction that,
«-> oo

for n^ 1, and for some A independent of k and n [in each closed sub-
interval of (0, 12/5)], \\Xn\\^An.

Hence \\Xn+1 — Xn\\^c2cnAn, so that from (20) we may deduce
the uniform convergence of Xn in the closed subinterval, to a uniformly
bounded limit which we have denoted by W. The same result for the
limit of [XJ~ 1 follows immediately, since det Xn = 1.

Differentiating Eq. (22) w.r.t. k2 and using the inequalities \\Xn \\ ̂  const.

and
d

^ const. (|ΛΓ| + 1) in each closed subinterval, we
dk2

find, for n ̂  1, || Yn+ ^ — Yn\\ ^ c2cn \\ Yn\\ + const. ncn, so that again we may

deduce the uniform convergence of Yn and of — ypfj"1. The limit is
ClK

in each case a continuous function of k2, and the limits are easily seen
to be dW/dk2 and dW~ί/dk2 respectively. This completes the proof
of the lemma.

Remarks. The lemma tells us that, for 0< k2 < 12/5, where ψ(x; k2)
satisfies Eq. (14), we have

lim [MX,,, k2) - [M(k2)]" WV(09 k2)\\ = 0 ,
~ >•n~ >• oo

so that for large n we have

φ(xπ, k
2) - eίn*(k}E+ Wψ(Q, k2) + e~

in*(k}E_ Wψ(Q, k2) .

Hence, as xπ->ft, ψ(xn,k
2) remains bounded but rapidly oscillating.

We may use the estimates of the previous section to investigate the
asymptotic behaviour for large n at interior points of the interval (xn, xn+1),
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and we find that ψ(x;k2) is [like V(xJ] unbounded both from above
and below near x = b, and highly oscillating. (We consider real solutions.)
For spectral theory it is important to know whether ψ(x; k2) is square
integrable near x = b. The necessary estimates follow from the following.

Lemma 3. Let φ(x;/c2) be the solution of Eq. (14), (0< k2 < 12/5),
satisfying the boundary conditions

where β is a real constant. (24)

Then

36 sin2 α
W(k2)

cos/?

sin /?

-5k'

-5/c2 W(k2)
cos/?

sin j8

e±ίΰί(k) are the eigenvalues of M(k2} and T denotes the transpose of
a matrix. The convergence is uniform in β and k for k2 in each closed
subinterval of (0, 12/5).

Proof. We shall use the notation

From the identity

-j- (ψ(x, kl) ψ'(x, k2

2) - ψ(x, k2

2) ψ'(x, ft?))

we have

, fcf) ψ(x, fef

For given n, taking the limit as kl-^k2 and using Eq. (16) we obtain

*β\\
(26)

(The limit may rigorously be justified, since in L2(0, xn) ψ(x, k2) is
strongly continuous in fc.)

The r.h.s. of Eq. (26) may be expressed as the sum of two terms.
In the first the r.h.s. is evaluated as though [M(/c2)]" were independent
of fc, differentiating only the second factor w.r.t. /c2; in the second the
r.h.s. is evaluated as though
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(M(/c2)) " Mn(fc2) were independent of fc, differentiating only the
first factor w.r.t. k2. Since detM(k2) = 1, and {F(k)} is invariant under
multiplication of F(k) by a constant matrix having determinant 1, the
first term is just

which according to Lemma (2) is uniformly bounded in any closed
subinterval of (0,12/5). To evaluate the second term, note that

(sinα) . . ,
5/3/C 2 smna smna-sm(n-

2

(27)

2 ^ i is positive definite, and (FK(fc)) * exists. Hence from

Since cosα = 1 - 5/6 /c2, we have —-̂  = —-. —. Carrying out
dkz 6smα dα

the differentiation, we divide Eq. (26) by n and let n-> oo. Using Lemma (2)
to evaluate the limit, we arrive at Eq. (25), and Lemma (3) is proven.

Corollary. For 0</c2<12/5, the eigenvalue Eg. (14) has no non-
trivial solution in Z?(0, b).

Proof. For 0</c2<12/5, the bilinear form defined by the matrix
10/c2 ~5fc2

-5fc2 6
Eq. (25) we have

j! Xn b

lim — J [v?(x, fc2)]2 dx > 0, so that J [ψ(x, /c2)]2 dx = oo .
"-"co n o o

Lemma 3 enables us to estimate norms of eigenfunctions of the dif-
ferential operator -d2/dx2 4- V(x) on [0, *„]. In order to give a complete
spectral analysis we need also to have estimates of the number of eigen-
values.

Lemma 4. Let N(A) be the number of eigenvalues of — 2 -f V(x)

defined in (0, xn) with the boundary conditions

cosβ/'(0) - sinjB/(0) = cosy f'(xn) - smγf(xn) = 0,

lying in a closed subinterval A o/(0,12/5).
Then

nAδ<,N(A)^\+nBδ ( w ^ l ) , (28)

where δ is the length of A and A, B are strictly positive constants which
are independent of A and n for A contained in any fixed closed subinterval
of (0,12/5).

Proof. Let ψ(x, k2) be the solution of Eq. (14), satisfying the boundary
Conditions (24), and define θn(k) = tan~1[ιpf(xn, k2)/ψ(xn, /c2)] (cf. [16],
Chapter 8).

Γ ι Λ / i v n ίn dx(ww" — (wf)2) ]
More precisely, θn(k) = p + \ ^—T~ΐ\ι—
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According to Eq. (16), we have

so that with the notation of the proof of Lemma 3 we have

d / , / , Λ _ ί^/I^/008^

dk2 9M(/cHJMw MB(/c2)
cos/

sinβ
(29)

,2Jcosp
Moreover {Mn(k ) . _ > is given by Eq. (26), and from Lemma2

I \sm P/J
we may deduce that ||Mn(fc2)|| and iKM^fe2))"1!! are bounded uniformly
in n for fc2 in any closed subinterval of (0,12/5). Hence from Lemma 3
we have

nπA ^ —-J- θn(k) ^ nπB for some positive constants A and B .
dk

But as k2 increases from any eigenvalue to the next, θn(k2) increases
by π. In the interval A9θn(k2) cannot increase by more than nπB δ.

Hence N(A)^ 1 +nBδ, and similarly we obtain the lower bound
for N(A) in Eq. (28). This completes the proof of Lemma 4.

d2

4. Spectral Properties of Hl = —τ + V(x) in [0, b)

(ί) The Absolutely Continuous Spectrum; 0 < λ < 12/5

The corollary to Lemma 3 implies that, for the differential operator
— d2/dx2 + V(x\ the eigenvalue equation for any non-real eigenvalue
has only one non-trivial solution which is in I2 near x = b. Thus we
are in the limit-point case at x = b. Hence the differential operator
- d2/dx2 + V(x), acting in L2(0, b) with the boundary condition /(O) = 0,
is self-adjoint. We denote this operator by H^. The spectral properties
of Ht follow from a knowledge of the spectral function ρ(λ) of Hv

However, before considering ρ(λ\ it is instructive to see how the
existence of the continuous spectrum follows directly from the corollary
to Lemma 3.

Proposition I. H^ has continuous spectrum in the interval (0,12/5).

Proof. Let λ be real with 0< λ< 12/5, and suppose that λ is in the
resolvent set of H1. Then Tλ = (H1—λ)~i is defined and bounded on
L2(0, b). From Eqs. (10) and (15) we see that V(x) = 0 for 0 ̂  x ̂  α0.

Let Φ(x)eL2(0,ί?) be such that Φ(x) = 0 for x>a0. Then ψ(x)
= (TλΦ) (x) satisfies the equation

- Ψ"(x) + V(x) Ψ(x) = λ Ψ(x) (x > α0).

But Ψ(x)eL2(Q,b).
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Hence Ψ(x) = 0 for x > α0.
So both Φ(x) and Ψ(x) may be regarded as elements of L2(0, α0),

and TA as a bounded linear operator from L2(0, α0) into Z?(0, α0). TA is
also self-adjoint and TλΦ = 0=>Φ = 0.

Hence 7)"1, defined in L2(0,α0), is self-adjoint. Now Ψ and if
are continuous at x = α0, so that Ψ(a0)= Ψ'(aQ) = Q. Hence in L2(0, α0),
T f 1 is a differential operator —d2/dx2 — λ, such that each element
in D(TA~1) satisfies the boundary conditions /(0) = /(<z0) = /'(00) = 0.
But such an operator cannot be self-adjoint, since there is a proper self-
adjoint extension [namely the operator —d2/dx2 — λ with the boundary
conditions /(O) = /(α0) = 0]. So we have a contradiction, from which
we deduce that λ cannot be in the resolvent set of Hί. Thus every point
of the interval (0,12/5) is in the spectrum of Hί9 and since in this interval
there are no eigenvalues we conclude that in (0,12/5) the spectrum is
purely continuous.

Now let ρ(λ) be the spectral function of H^ (For the definition and
general properties of spectral functions of second order differential
operators see [16, Chapter 9]). ρ(λ) is non-decreasing, and defines a
Lebesgue-Stieltjes measure on the real line.

Proposition II. For 0<l<12/5, the measure generated by ρ(λ) is
equivalent to Lebesgue measure. In particular, dρ(λ) is absolutely continuous
in this interval, so that H^ has a non-trivial absolutely continuous subspace.

Proof. The measure of any closed subinterval Δ of (0,12/5) is the
limit as rc->oo of the measure of Δ defined by family {ρn} of non-decreasing
functions, where ρn(λ) is the spectral function of - d2/dx2+ V(x) in the
interval [0, xJ, with the boundary condition /(O) = f(xn) = 0.

ρn(λ) is constant except at each eigenvalue of the differential operator
in [0, x J where there is a discontinuity

'Xn \

J [tp(x, fc2)]2 dxΓ1, where ψ(x, k2)

satisfies Eq. (14) with boundary Conditions (24), and here β = π/2.
We may use Eq. (25) to estimate the magnitude of the discontinuity,

and in Eq. (28) to estimate the number of points of discontinuity in
the interval Δ. We find that the measure of A is bounded above and
below by const, δ, where in each case the constant is independent of Δ
for Δ contained in a fixed closed subinterval of (0,12/5). Hence letting
n->oo we find that the measure defined by ρ(λ) is bounded both above
and below by const. <5, so that the measure is equivalent to Lebesgue
measure.

(ii) The Discrete Spectrum; λ> 12/5

We turn now to an investigation of the spectrum of H^ in the interval
(12/5,oo). Since for k2 > 12/5, M(fe2) has real eigenvalues β(k2) and
[jβ(/c2)] ~1, where 0 < β(k2) < 1, (20) is no longer sufficient for the existence
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of the limit W(k2) defined by Eq. (21). We therefore choose the sequence
{an} to converge sufficiently rapidly to zero such that for k2 in any bounded
closed interval A (19) holds, where the cn are independent of k2 in each
interval, though may depend on A, and the cn satisfy, for all x>0,

£ c n x"<oo. (30)
«=ι

[It may be verified that (13) and (19) hold even for fc2<0, so that we
need not restrict ourselves to positive intervals A] Using (30), the con-
clusions of Lemma 2 follow for all real /c2, and in Eqs. (21) and (2Γ)
convergence is uniform in each closed subinterval of R For large n
and k2 > 12/5, we have

E+ P^φ(0, k2) + [β(k2)Yn E~ Wιp(Q, k2) ,

where E+ and E~ are projections onto the eigenspaces of M(fc2) cor-
responding to eigenvalues β(k2) and [^(fc2)]"1 respectively. For each
k2> 12/5, there is exactly one linearly independent solution of Eq. (14)
which belongs to L2(0, b\ namely the solution for which E~ Wψfi, fc2) = 0,
so that Wψ(Q, k2) is an eigenvector of M(fe2) with eigenvalue β(k2).
If this solution also satisfies the boundary condition φ(0, fc2) = 0, then
k2 is an eigenvalue of Hv . There are two cases to consider

(a) Let k2 be an Eigenvalue of H1

Suppose that E~ Wψ(Q, fc2) = 0, where ψ(x, k2) satisfies Eq. (14) and
the boundary Conditions (24), with β = π/2. We may use Eq. (26) to
estimate Xn

[ψ(x> k2)]2 dx 9 and letting n-*ao we find

ί lψ(x, W dx = \W(k2) P}\ + 5/3 —
o I wJ i

where

= W(k2)ψ(Q.k2).

Note that if F is an eigenvector of M(/c2) with eigenvalue β(k2),
and {(M(k2))N F} is evaluated as though F were independent of k, then

{(M(/c2)f F} = {(M(k2)f~1 F} + 5/3([(M(/c2)f-1 F]t)
2

= {(M(/c2)f -1 F} + 5β(β(k2)f-

and hence the bracket expression may be calculated by induction.
Now v(k2) (u(k2))-1 = β(k2) -1 + 5/3 k2.

If k2 is a limit point of eigenvalues of Hl5 we have

-£3- ίv(k2) (u(k2)Γ 1l=-ίr β(k2) + 5/3 .
tt K u K
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But the r.h.s. is just - [w(fc2)] ' 21 W(k2) I 1 , so that we would then
have [ \ '

However, differentiating w.r.t. fc2 the quadratic equation for β(/c2)

to express 2 in terms of β(k2\ we find that the r.h.s. is identically
d /c

zero. Since Jo {.ψ(x> k2)]2 dx>0, we may conclude that Hx has no limit
point of eigenvalues for k2 > 12/5.

(b) Suppose k2 is not an Eigenvalue of H^

Then E~ WΊp(0,/c2)φO, and as n-»oo we have ψ(xn, fc2)-[jS(/c2)]"M

• E~ P^V>(0, fc2), where φ(x, fc2) satisfies Eqs. (14) and (24). Using the
continuity of W(k2\ we can choose y and an open interval containing k2

in which E~ Wψ(Q, fc2)Φθ, and such that the boundary conditions
sinγψ(xn,k

2) — cosγψ(xn,k
2) = Q9 together with (24), are not both

satisfied for large n. The measure defined by ρ(λ) is then zero for the
interval, so that k2 is in the resolvent set of Hί. We summarise our
conclusions as follows:

Proposition III. The spectrum of H^ for λ > 12/5 is purely discrete,
the eigenvalues having no point of accumulation in (12/5, oo).

(Hi) The Discrete Spectrum, λ < 0; Semi-Boundedness

By the same argument, the spectrum for λ<0 is purely discrete.
Investigation of the spectrum for λ large negative is complicated by
the fact that convergence to W(k2) is non-uniform in the semi-infinite
interval — oo < k2 < 0. We first prove a

Lemma 4. For y^ < y2 < 3/3, define the intervals Ai = \_yl9 y2]5

^2 = D^y3]> and A = [y^y^] = Av\jA2.
For V(x) e L2(A), define three self-adjoint operators by

n

boundary condition /(j^) = f ( y 2 ) =

-~ + V(x) + c2 in L2(A2)ι

boundary condition f(y2) — f(y^} = 0

in L2(A);

boundary condition f ( y ί ) = /(y3) = 0 ,

where c, c1? c2 are real constants and c ̂  c l 5 c ̂  c2.
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Let φι(x) satisfy — φ'[ + (V+c]) φl = 0 in Δί with the boundary
conditions φ^(y\) = 0, Φι(y2) — 1> and φ2(x) satisfy — φ2" + (F+ c2) φ2 = Q
in Δ2 with the boundary conditions φ2(y2) = 0, φ2(y^) = l [We suppose
that zero is not an eigenvalue of H(Ai) or H(Δ2}.~]

Suppose that H(Δί)^Q, H(J2);gO, and Φι(y2}^φ2(y2\ Then

Proof. Let (£(x) be an arbitrary element of D[H(Δ)~\, so that φ(yί)
= Q. Then integrating first over the interval Δί we have

<H(A) φ, φyί ^ - f j + V+c φ, φ
ax i

+ V + c (φ - φ(y2) φ,), φ - φ(y2) φ
ί

on noting φ — φ(y2) φι e D[H(Δl)~] and integrating by parts. There is a
similar inequality for (H(Δ)φ,φy2, and adding the two inequalities
we obtain

y ̂  \φ(y2)\2 (φ,'(y2) - φ2'(y2)) ^ 0 .

Hence the Lemma is proven.

Remark. For fc=l,2, let M(Δk) be the matrix transforming

satisfies — /" + (F+ck)/ = 0 in J fc. Then if all components, except
possibly [M(zlk)]21, of M(Δk) are positive, it follows that Φι'(y2)>Q and
Φ2(y2)<^ In that case the hypothesis Φιf(y2)^φ2(y2) is always
satisfied. In particular, if V(x) + ck is positive in Δk then all components
of M(Δk) are positive.

As an application of Lemma 4, we have

Proposition IV. The spectrum of H^ , which for λ<Q is purely
discrete and has no point of accumulation in (— oo,0), is bounded from
below.

Proof. Choose some negative value of /c2. Then, for a sufficiently
small, each of the 2 x 2 matrices in Eqs. (4) and (47) have
positive components, except for M21. According to the estimates
of Section 2, the same is true of the matrices transforming

where f(x) satisfies Eq. (11). The transformation matrices from /(O)
to f(2a + 2α4), and from f(2a + 2α4) to f(4a + 4α4), having the forms (5)
and (5f) respectively, have entirely positive components. Using the
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explicit form (10) of l/(x;α), it is straightforward to verify that the
differential operators —d2/dx2+U(x:>a\ defined respectively in
[0, 0 + α4] with the boundary condition /(O) = f(a + a4) = 0, and in
[α + α4, 2(0 + α4)] with f(a + a4) = f(2(a + a4)) = 0 are positive, provided,
say a < 1. By successive application of Lemma 4, with c = c1 = c2 = — /c2,
it follows that, for 0 sufficiently small, — d2/dx2 + U(x;a) — k2 is a
positive operator in [0, 8(0 + α4)] with the boundary condition /(O)
= /(8(0 + 04)) = 0. Further, according to Eq. (13) the matrix M(/c2;α)
defined by Eq. (12) has entirely positive components. Since V(x) is
defined in terms of U (x; a) by Eq. (15), we may continue the argument
to show that —d2/dx2 + V(x) — k2 is a positive operator in [xm, xj
with the boundary conditions /(xm) = /(xπ) = 0 provided m and n
are sufficiently large. [Note that for an sufficiently small the product
of any number of matrices having the form (17) will have entirely
positive coefficients.] Now apply the Lemma again, with A t = [0, xm],
A2 = [xm, x J, with c2 = — /c2, and choosing cί = c ̂  c2 such that
V(x) + c ̂  0 for x e Δ !. We now have - d2/dx2 + V(x) + c ̂  0 in [0, x J
with the boundary condition /(O) = /(xπ) = 0. Since we have the limit
point case at x = b, it follows (e.g. from considering dρ(λ) as the limit
of the spectral measure for the differential operator in [0, xj, and
noticing that c is independent of n) that H x 4- c ̂  0. Hence Proposition IV
is proven.

5. Spectral Properties of H =—d2/dx2 + V(x) in (—00, b]
Scattering Theory

We have defined V(x), for x E [0, 6), by Eq. (15). For x < 0 it is con-
venient to define V(x) = 0.

Now let H be the self-adjoint operator -d2/dx2 + V(x\ in L2(-oo,ί>);
no boundary conditions are needed since both at x = — oo and at x = b
we have the limit point case. Define also in L2(— oo, fe) the self-adjoint
operator H by

(Hf) (x) = -/"(x) + F(x)/(x) (x < 0 or 0 < x < b) (31)

with domain D(H)= {/(x);/,/' are absolutely continuous in (— oo,0)
and in (0, 6), /(O + ) = /(O - ) = 0, and HfeL2(-ao,b)}.

Thus H is the direct sum of —d2/dx2 in L2(— oo, 0) and H± in (0, b).
Let c>0 be such that — c belongs to the resolvent set of Hΐ. Then the
relation between H and H may be expressed in terms of the solution
φι(x) of the equation

satisfying φl(Q)=l and φieI?(—co9Q\

and the solution φ2(x) of

2, „ Λ,r (32)

satisfying <jέ.2(0)=l, 2 ' l '
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Hence φ1(x) = Qxp(]/c x), and we have also seen in Section 4 that
φ2(x) is unique. We define ^(x^O for 0 < x < b and φ2(x) = Q for
x<0; then φl9 φ2e L2(-ao,b). For any g eL2(-oo,fc), (H + c)"1 g and
(ίf + c)"1^ differ only by a linear combination of φl9φ2. Moreover,
if g is orthogonal to φι,φ29 then (((/ί + c)'1 -(H + c}~l)g,φκy
= (g,((H + cΓ1-(H + cΓi)Φκ> = 0(K=i,2), so that (H + c)~l 9
= (H + c)~l g. Hence we need evaluate (H + c)'1 only on the subspace
spanned by φί9 φ2.

Let Φκ = (H + cΓlφκ(K=l> 2)> and let

; Φ2(x) = 0 for x<0) .

On verifying the continuity of first and second derivatives at x = 0,
we have

and

where
and q =

Hence (H + CΓ '- (fl + «Γ •- (j, - «Γ ΊΨ, + fe

But ||φ2|i
2

on integrating by parts.
There is no boundary contribution at x = b. This follows on replacing

φ2 by Fφ2, where F is a smooth function equalling 1 near x = b and
vanishing for x < 1/2 fo, say.

Then F(/)2 e D(H\ so that <(ff + c) Φ2, Fφ2> - <Φ2? (H + c) Fφ2>.
Similarly, \\φi \\2 = — P, so that we now have

(H + crl-(H + cΓl={p-qΓ1\Φι + Φ2><Φι + Φ2\ (33)

The proof that H is semi-bounded is a straightforward extension of the
proof of the corresponding result for H^ Moreover, since (H + c)~l

— (H + c)'1 is compact it follows that H and H have the same essential
spectrum [17]. The fact that the difference of resolvents is of trace
class implies [17] the existence on the respective absolutely continuous
subspaces Mac(H) and Ma c (H) of the wave operators

Ω± (H, H) = s-lim eiHte~ ifit and β± (H, H) = s-lim ^ήίβ" ίHί ,
f-» + oo f-> + oo

and implies that H and H are unitarily equivalent on their a.c. subspaces.
Hence H has the following spectral properties:

Proposition V. The spectrum of H for λ<Q is purely discrete and
bounded below, and has no point of accumulation (except possibly λ = 0).
For 0 < λ < oo, H has absolutely continuous spectrum which is simple
for λ > 12/5 and doubly degenerate for 0 < λ < 12/5.
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The a.c. subspace of H is given explicitly by

,c.(&)(tf) (34)

where

A4.c.
("00)(H) = {/;/eL2(-oo,6) and /(x) = 0 for x>0},

and
Ma.c.

(&)(H)-{/;/eL2(-cx),fe),/(x)^0 for x<0

and
fe Mac(Hί) (regarded as an element of L2(0, b)} .

Hence we have also

Mβ.c.(H) = Ω_ (H, H) Ma.c.
(- <*»(#) + Ω_ (#, H) Ma.c.

(b)(H) . (34')

Now let EZ^HI) be the projection, in L2(0, ft), onto Ma <,(//!), and
let F be the operator of multiplication by a smooth function equalling 0
for x near b and 1 for x near 0. Then \/g e L2(0, 6) we have Fa c (/^jg e D(if J
and F £a c (HJ 0 6 D(H0\ where H0 is the self-adjoint operator —d2/dx2

defined in L2(0,b) with the boundary conditions /(0) = /(fc) = 0. Thus,
for c>0, (H0 + c) F Ea c (HJ is defined on L2(0, b) and is therefore
bounded (since the operator is closed). Since (ί/o + c)"1 is compact,
it follows that F Eac(Hl) is compact, so that

s-ϋmFEΛG(H1)e'iHίt = 0.
t~* i oo

Hence if E[0}(lΊ is the operator, in L2(— oo, b), of projection onto the
interval Orgx^gα ' (i.e. F[0,Λ'] is multiplication by the characteristic
function of the interval [0, </]), then with 0 < d < b we have, for any

and

tlimJ|E[β.>b]β-'*'/« =

For fe Ma c

 (~ ̂ (H), we have, with a' > 0,

lim ||£(_00f_βΊe-'Jί7ll = ll/ll
f-* ± 00

Butforal l/eM a c (H), lim \\e-'atf-e-ίHΏ_(H,H)f\\ = 0.
ί^ oo

Hence from Eq. (34') we have

Proposition VI. Mac(H) is the sum of two orthogonal subspaces (the
subspaces on the r.h.s. of Eq. (34'))

ί+

(b\H), (35)
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each of which reduce H. For g e Ma c (H),

q E M+

(~co)(ίί)<^>s-lim£rfl ™e~lHtg = 0
i-*00 _ (36)

°°'β_ w (36')<^lιmJ|E[fl>b]έ? Ifίί0|| = \\g\\(Va<b).

For a particle moving in the potential V(x\ so that the evolution
of states is described by the Hamiltonian H = — d2/dx2 + V(x\ for any
state in M+

(b)(H) the probability as ί->oo of finding the particle in any
fixed neighbourhood of x = b tends to 1 that is the particle with certainty
asymptotically approaches x = b (and it may also be shown that the
kinetic energy tends to oo). For a state in M+

(~00)(//) the particle
asymptotically approaches x = — oo.

Equation (34') holds also with Ω+ replacing Ω_, yielding the
decomposition MΛmCt(H)=Mj~00)(H)+M_(b)(H)9 where equations cor-
responding to (36) and (36') are valid with the limit ί-» — oo.

Now let H0 denote the self-adjoint operator —d2/dx2 in L2(— oo, b\
with boundary condition f(b) = 0. Then range (Ω±(H,HQ)) is identical
to range (Ω±(H,f/0')), where H'Q is any other self-adjoint extension
oϊ-d2/dx2 defined on c™ functions with compact support in (— oo, b)\{0}.
If HQ has the boundary condition /(0_) = 0, then Ω±(H,H0

f) is just
the identity operator on MΆ^~™\H). Hence range (Ω±(H,H))
= Ma c/"^(H), and using transitivity [17] of the wave operators we have

range (Ω±(H,H0)) = Ω±(H,H) Ma<c<<-<*»(H) = M±

(~™\H). (37)

Proposition VII. M+

 (~ ̂ (H) φ M_(" 00)(H).

Proof. Let M[μ v](0<μ< v< 12/5) denote the range of the spectral
projection of H associated with the interval [μ, v]. Then on the subspace
M[μ V],H is equivalent to multiplication by the independent variable λ
in L2(μ, v)0L2(μ, v). The representation is given, for gεMac

(b\H\ by

g-+[Q9Ό(λϊ], with v(λ)=t^^\]g(x)ψ(x,λ)dx,
\ αλ I o

where ρ(λ) is the spectral function of Hί,ψ(x.,λ) satisfies (14) and (24)
with β = τι/2 and k2 = λ, and the limit is in I2 (μ, v dρ(λ)). If/e J^^'^H),
then f-+\u(λ\0], where u(λ) and /(x) are related by a Fourier sine
transform.

In particular, corresponding to φ2 projected onto M[μ v], where
φ2(x) is defined by (32'), is [0, v2 W], where we may write
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Using the differential equations for φ2 and ιp9 and noting that ψ(xn9 λ)9

ψ'(xn9λ) are bounded, while lim φ2(xn)=lim '̂(X,)^ 0, the integral
n— >• σo «-> oo

becomes

as 77->oo. Similarly, corresponding to 0! projected onto M[μjV] is
[t/ι(/l), 0], and for λ e [μ, v], u^λ), v2(λ) are bounded and non-zero.

Following [18], let Ml9M2 denote the two mutually orthogonal
subspaces consisting of elements of the form

[v2(λ) F(λ\ -u,(λ) F(λ)] , [u,(λ) G(λ\ v2(λ) G(λ)]

respectively; Mμ v = Mί 0 M2. From Eq. (33) we see that H = H on MΊ
hence the scattering operator S(H,H), which is unitary on M[μ v]?

satisfies S(H,H)= 1 on Mt. Therefore S(H,H) leaves M2 invariant, and
must, on M2, be the operator of multiplication by some function S(λ).
Setting F(λ) = v2(λ)9G(λ) = ul(λ) and adding, we may deduce from
the form of S(H, H) [(w/W + v2

2(λ)\ 0] that S(H, H) leaves the subspace
of elements [u(λ), 0] invariant only if S(λ) =i (μ^λ^v). This would
imply S(H,H)=1 on M[μ v]. However, using invariance of the wave
operators Ω±(H,H) = Ω+((H + c)~1,(^ + c)-1) [17] and Eq.(33), one
may calculate in the above representation (for example using results
of [19]) the matrix element <\u^(λ\Ό\, (S(H,H)- 1) [[w^AXO]), and
verify that this does not vanish. We cannot have, then, S(H, H)=i on
M[μ>v], so that S(H,H) does not leave the subspace [u(λ\ 0] invariant.
It follows that S(H,H} does not leave Ma.c

 (~~00)(H) invariant. But

0_ (H, H) Ma.c.
(- °°>(fl) = Ω+ (H, H) Ma.c.

(- °°>(H)

T, fl) Ma^-^(H) = Ma<c<<- «»(H) .

Hence M+

(~ 00)(H) φ M_ (~ ̂ ^H), and Proposition VII is proven.
Remark!. Proposition VII means that there exist states which are

asymptotically free and far from the scattering centre at t= — oo, and
which have a non-zero probability of "absorption" into the scattering
centre at t = + oo. This phenomenon is possible only for incoming states
having kinetic energy in the range [0, 12/5].

Remark 2. From Eq. (37) we see that range (Ω+(H,H0))ή= range
(Ω-(H, H0)) so that the scattering operator S(H,H0) is non-unitary.
In the time-independent approach with k2 > 12/5, one may define in the
usual way a unitary scattering amplitude. With 0<fc 2 < 12/5, one has
solutions of the time-independent Schrodinger equation in (— oo,ί?)
such that

, k2) - A^eίkx + A^<Γik* (x-> - oo)
and

ψ(xn, k2) ~ A2e-ίn«(k] + A2'e
inΛ(K> (n-> oo) ,
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where cosα(/c) =1 — 5/6 /c2. (Here one has a sum of two improper eigen-
functions, representing states absorbed at x = b as £— > + oo, — oo
respectively. Since ψψ — ψ'ψ has the same limit at x->b as at x-> — oo,
we may use Lemma 2 to show that \A±\2 + \A2\

2 = M/|2 + I^Ί2- Hence
I A \ M '\

the 2 x 2 matrix transforming M into \ is unitary, though non-

diagonal. It is interesting to note that this matrix, which may be expressed
in terms of the matrix W(k2) defined by Eq. (21), has a branch point
at fc2 = 12/5, which is the threshold for absorption.

Remark 3. For two reasons, with the potential V(x) we are on the
borderline between asymptotic completeness and incompleteness.

(a) Denoting by FL(x) the negative part of V(x\ and using Eqs. (10)
and (15), we have

If the sequence [an] converges sufficiently rapidly to zero (for example
if an+! < ̂ an) then (b — xn) ̂  const. an and Σ* an

c~1 < oo Mo 1.
In that case Jo (b- x)c \F_(x)| dx < ooVc> 1 .
The corresponding result for a spherical potential F(r) is

Jo r1 +ε |F_(|r|)| dr < oo, (β > 0), and similarly we have

Jr 3 / 2 + ε |F+(|r|)|dr<oo (ε>0),
ό

where F(r) is obtained by replacing x by b — |r|.
If the potential satisfied Jo r|F_(r)| dr<ao, then the wave operators

would be complete (see [10], Theorem 5 and Section 3).

(b) H(g) = —τ-2 +gV(*) is bounded below for O ^ g f ^ l . Hence
Cl X

according to [10], Theorem 51, we have asymptotic completeness for
0 rg g < 1 (but not for g — 1!), and it also follows, and may be verified
more directly, that H(g) is unbounded below for g>i. Thus the
phenomena which we describe in this paper are extremely unstable
as the "coupling constant" is varied.

Remark 4. To what extent are our conclusions dependent on a
particular choice of scattering Hamiltonian, and to what extent are they
necessary consequences of the breakdown of completeness?

The effect of the change of scale F(x)-»c2F(ex) is to change the
matrix M(k2) of Eq. (18) by the substitution k-+c~lk. If we define a
new potential function V(x) by making a different change of scale in
successive intervals [xπ,xπ+1), we may, for example, find

<i-k2 l \ / l - 2 f c 2

-k 2 1 / 1 -2fc2 1J

1 The results of this theorem, which are stated for a class of form extensions, hold also
for the Friedrichs extension of H(g).
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in which case Mac(H) is doubly degenerate for λ e (0, l)u(2, 3). Although
such examples show that the set of λ such that one has degeneracy is
fairly arbitrary, it seems that in most other respects the example of the
breakdown of completeness presented here may be considered typical.
We hope subsequently to return to this question.
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