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Abstract. The crossing symmetry of the π—π system has invited many authors to try
different versions of the bootstrap hypothesis on it. In the last few years, there has been
some hope that the positivity conditions of Martin, Balachandran and Nuyts, Roskies,
and, most recently, the Roy physical region constraints, might be sufficient to fix the low
π-π partial waves with very little additional information, like the position and width of
the ρ resonance. This hope was recently proved too optimistic by Basdevant, Froggatt and
Petersen. A similar result was obtained by the present author in an approximately crossing
symmetric, solvable model. In this paper we strengthen this latter result by determining
the multiplicity of the exact solution to a crossing symmetric neutral π-π model. We
consider only the S wave, but the multiplicity would increase by the addition of other
coupled channels. The analysis is not confined to weak coupling only, and includes all
solutions, in particular also a class of logarithmically decreasing ones, which are left out
by most other authors.

1. Introduction

Some time ago, the present author showed in a simple solvable
neutral ππ model [1] that the positivity conditions, derived by Martin [2]
and a number of other authors, are not sufficient to fix the π°π°S wave
when, say, the scattering length is given [3]. In fact a number of CDD
poles, with arbitrary position and residue, could be added to the ex-
pression for l//(s), without violating seriously the positivity condi-
tions.

One might argue that the model of [1] only approximately satisfies
the positivity conditions, and that the result would be different in a
model which satisfies the positivity conditions exactly. The obvious
answer to this argument is to construct such a model, which satisfies all
possible positivity conditions, and prove that its solution is not unique.
This is what we shall do in the present work.

The model we shall consider is a neutral, crossing symmetric ππ
model, which is known as the Cini-Fubini [4] approximation for the
S wave. It is obtained by taking the once subtracted Mandelstam re-
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presentation with a symmetric spectral function ρ(s, ί), that is
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and assuming that the absorptive part is well approximated by the first
few terms of a partial wave expansion, in this case the first term,

g(s,t,u)= £ (2/+l)Im/ / (s)P / ( l + ̂ Γ)«Im/(s). (1.3)
/ = 0 \ 5 — 4 /

Adding a unitarity relation for the S wave amplitude f(s\ the result is a
simple, crossing symmetric model, fulfilling all possible positivity
conditions. Of course, it is not a realistic model, since it assumes all
higher waves, and in particular the P wave, to be real. However, since
crossing and unitarity are exact for the S wave, it is a good testing ground
for hypotheses about the usefulness of the positivity conditions. The
model is also internally consistent, and believed to have non-trivial
solutions, in contrast to the one obtained by taking also the P wave in
Eq. (1.3) different from zero, which Lovelace [4] proved to have no
solution.

Projecting from Eq. (1.1) the 5 wave results in the dispersion relation

1 P?« 12
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(s'-4)(sf-

s' + s — 4

5-4 Sf

- s) s'

I m f ( s ' ) d s f ,

or, if no subtraction is necessary,

'. A.I

For simplicity we assume that no bound states are present. To the
dispersion relation we add the unitarity condition

Im f ( s ) = ρ(s)R(s) \f(s)\2 = ρ(s) \f(s)\2 + - [1 - η2(s) ] B

to obtain a non-linear problem for the determination of Re/ and Im/
The functions ρ and R or η are assumed given,

Q(s)=\—> R(s)^l, 0^η(s)£l, (1.4)
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and the inelasticity η and the inelasticity ratio R can be expressed in
each other by

= 2-211(5)0082*0

or

 i ; l+772(s)-2?7(s)cos2<5(s) ' ( '

η(s)= cos2^(5)±-|/l-[^)-l]2sin22^), (1.6)

where δ(s) is the phase shift.
We shall also discuss the non-crossing symmetric model obtained

by modifying the dispersion Relation A.I to

1 °° Γ 1 m l
Re/(s)= -P f - - + — - τ llmfWds', A.2

π i [ s - s s +s — 4\

or to a subtracted version of this equation. The parameter m ̂  0 can be
varied, which will help us in the analysis. For m = 2 the left-hand cuts
of the dispersion Relations A.I and A.2 have a similar behaviour for large
s', a fact that we shall also use.

The multiplicity of a class of exact solutions to a dispersion relation
like A.I or A.2 and the unitarity Condition B has been studied by Love-
lace [5]. He showed that a solution δ(s) to the present problem, satisfying

<5(s)-<5(4) = πv + 0(s-μ), μ>0, as s-^oo, (1.7)

contains 2v arbitrary parameters, corresponding to v CDD poles.
This result of Lovelace already answers, for solutions satisfying

Eq. (1.7), the problem posed above. It shows that in order to get a unique
solution for the 5 wave amplitude one must:

(i) fix the total variation of the phase shift (to πv);

(ii) determine a number of parameters (here 2v) from auxiliary
conditions;

besides using analyticity, unitarity and crossing symmetry.
In the present paper, which is a shorter version of an unpublished

report [6], we generalize this result to include all solutions, not only
those approaching zero like an inverse power when s->oo, as Eq. (1.7)
implies. We begin in Section 2 by classifying all possible solutions to
the dispersion Relations A.I or A.2 and the unitarity Condition B. We
prove that there are only two classes of solutions, one satisfying Eq. (1.7)
and the other approaching zero at infinity like an inverse power of the
logarithm of 5. It is the slow decrease of this latter class of solutions
which makes the present study difficult.

In Section 3 we discuss the exactly solvable case m = 0, and in Sec-
tion 4 we formulate the general non-linear problem in a suitable Banach
space. This Banach space is larger than those used by other authors [5, 7],
which allows us to include all solutions. We shall study the local multipli-
city, extending the results of [5], but have no new results on the problem
of existence of the solutions, which is the main point of interest of [7].
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Following Lovelace [5], we take in Section 4 the Frechet derivative,
use the "Implicit variable" theorem by Vainberg and Trenogin [8], and
reduce the problem of the local multiplicity of the solutions of the non-
linear problem to the problem of determining the index of a linear,
singular integral operator.

In Section 5 we determine this index in some solvable cases, and in
Section 6 we use theorems on φ operators by Gokhberg and Krein [9]
to include also non-solvable cases. Finally, we present in Section 7 the
main results and a short discussion. Two Appendices contain some
necessary mathematical details.

2. Classification of Solutions

In this section we shall classify all possible solutions to the dispersion
Relations A.I or A.2, satisfying the unitarity Relation B. We begin by
proving that no solution exists, which requires any subtraction.

Assume that

Im/(s)>C(lnsΓα for s>sa, C>0. (2.1)

Then the dispersion Relation A.2, subtracted once, calling the subtrac-
tion constant C0, implies that for s large enough

c
π

π(l-α)

if α = l

if α φ l

(2.2)

This follows from the asymptotic analysis of Appendix 1, Eq. (A. 1.6). The
same result, with m = 2, can be proved in the case of dispersion Rela-
tion A.I.

Now, unitarity demands

which clearly excludes the growing behaviour of Re/ (s) for αrg
Assuming also that

Im/(s)<C(lnsΓα + ε for s>s α ,ε>0, (2.4)

which means that the asymptotic behaviour is close to the lower limit in
Eq. (2.1), we get from Eq. (2.3) that

π(l-α)
<C(lns)

Since we know already that α > 1, this implies that C0 = 0 and α > 2 — ε.
This proves that any solution Im/(s) to the disperison Relations A.I
or A.2, satisfying the unitarity Relation B must be asymptotically smaller
than (lns)~2 + ε, ε>0. Thus no subtraction is necessary.
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From unitarity we also have

0 g 1 - η2(s) = 4ρ(s) {Im/(s) - ρ(s) [Re/(s)]2 - ρ(s) [Im/(s)]2}

^-4ρ2(s)[Re/(S)]2^0

as soon as Im/(s)-»0 as s-» oo. Thus, in our model,

Re/(oo) = 0 and η(oo)=i. (2.6)

Next, we shall prove that if a solution exists, behaving asymptotically
as an inverse logarithm, then its leading asymptotic behaviour is com-
pletely fixed. We thus assume that

Im/(s)4^C(lnsΓ«,CφO, (2.7)

where we know from above that α > 2 — ε. Then, according to Appendix 1,
the dispersion Relation A.2 implies

. -(M1-. (2.8)

In the case of A.I, the same formula with m = 2is valid.
We now employ unitarity, assuming for the inelasticity ratio R(s]

the asymptotic form
R(s)s^R0(lns)\ γ^Q. (2.9)

This gives a reasonable generality to our results, since experimentally,
R(s) seems to stay bounded. For the inelasticity η, the Assumption (2.9)
corresponds to an approach to 1 with a rate determined by the relation

j _ γι2(s] i
1 ^ ~ 4 s)"*, y ^ O . (2.9')

#0

This quantity is restricted, by the unitarity relation, to be between
Oand 1.

With the Assumptions (2.9) or (2.9'), unitarity gives

which implies

„ π 2(l+y) 2

•RoO+m)2

that is, a completely fixed leading asymptotic term:

(2.10)

(2.11)
y) Πn^- 1 -^

o m ) (Ins) .

We shall call any solution fulfilling Eq. (2.11) α C7αss 1 solution.
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Due to their slow decrease at infinity, the Class 1 solutions are
difficult to handle, and have not been studied in detail before (except for
some solvable cases [1,4]). In particular, we shall in the following examine
their multiplicity. In [6] we also study their asymptotic form in more
detail, deriving their asymptotic series in (lns)~". We prove there that
this asymptotic series is fixed by unitarity and analyticity, except for a
single parameter, connected to the scattering length.

In [6] we also prove, that any solution not belonging to Class 1 must
belong to Class 2, which is caracterized by the following asymptotic
form:

2 C0 In 5
in the Case A.I

(m 1)C° i n t h e C a s e A . 2 f o r m φ l (2.12)

—T- 1 in the Case A.2 for m — 1 .

Here, C0 is the positive constant

1 °°
C0= — f I m f ( s ) d s . (2.13)

π 4

In contrast to the Class 1 solutions, the asymptotic form of the Class 2
solutions thus contains information about the low energy absorptive
part.

3. Solution of the Right-Hand Cut Equation

As is well known, our non-linear problem could be easily solved with
the Castillejo-Dalitz-Dyson [10] method if the left-hand cut were absent,
that is for m = 0 in the dispersion Relation A.2. This exact solution is
of great interest to us in this work, since, as we will prove, the gross
feature of it cannot be changed by the left-hand cut.

The exact solution for m = 0 is

4 \ oo O /„ Λ \
1 n / Λ\ \~~* Pn\ /— K j o 4) y

f ( s ) α0 ° ^ (αn - 4) («„ - s)

s-4 « ρ(s')R(s')ds'

where α0 is the scattering length, and απ is the position and βn the residue
of the nih CDD pole, β0 corresponding to a CDD pole at infinity. These
constants have to be real and satisfy

Γ 0 < α0 < oo ,

4 < α Π < α o , n = l , 2 , . . . (3.2)
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Let us first look at the asymptotic behaviour of the solutions (3.1).
If βQ φ 0 it is obvious that the term — β0s dominates for large s, i.e., that

n 1 Re/(5)

f ( s ) \f(s)\2 °̂°

This clearly corresponds to a Class 2 solution

(3.4)

according to Eq. (2.12), Case A.2 with m = 0.
If j80 = 0 the integral will dominate the right-hand side of Eq. (3.1)

for large 5. According to Appendix 1, Eq. (A. 1.6), we have

This corresponds to a Class 1 solution with

2 2 ( l n s Γ 2 - y . (3.6)

in accordance with Eq. (2.1 1) with m = 0. Thus the absence or presence of
a CDD pole at infinity determines whether the solution is of Classes 1
or 2.

For elastic unitarity, we can easily trace the variation of the phase
shift for the Solution (3.1) through the formula

cot^)^ * Re * (3.7)
Q(s) f ( s )

Assuming first that all /JΠ = 0 for n^ 1, we find from Eq. (3.1) that
if β0>0? Re (I//) is positive at threshold, decreases through zero and
reaches — oo at s = oo. This corresponds to an increase of δ(s) from zero
through π/2 to π at 5= oo. If instead β0 = 0, Re(l//) stays positive and
approaches -f oo at s = oo. This is so since for elastic unitarity, the integral
can be easily computed, and shown to give a positive contribution for all
s. For y > 0, on the other hand, the integral may change sign, depending
on the actual form oίR(s\ so we cannot draw such definite conclusions.

For elastic unitarity, and the sum in Eq. (3.1) absent, we thus have

Adding now CDD poles, we find that each pole contributes one zero
and one infinity to Re (I//). Since the residue is negative, this means that
each CDD pole adds π to <5(oo).

Consider now a particular solution, for which

<5(4) = 0,(5(oo) = πv, v integer. (3.9)
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Then the analysis above shows that this solution has exactly v CDD
poles (counting also the one at infinity), and that its multiplicity κ, that
is the number of arbitrary constants in it, is given by

J2v + 1 for Class 1 solutions

\2v for Class 2 solutions .

This result is now proved for elastic unitarity and m = 0, and we go on
to generalize it to inelastic unitarity, to m φ 0 and to the case of dis-
persion Relation A.I.

4. Banach Space Formulation of the Non-linear Problem

The non-linear problem of finding solutions to the dispersion
Relations A.I or A.2 and the unitarity Condition B is best discussed
within the framework of mappings of Banach spaces with suitable
norms [5,7].

We have chosen to work in a Banach space of Holder continuous
functions on 4^s< oo, which, however, in order to allow for Class 1
solutions, do not have to obey the Holder condition at s = oo. As s-> oo
they are only requested to approach a limiting value at least as fast as
(Ins)'*, fc^l.

To be more explicit, we put

u=i-— (4.1)
5

and let H(μ, k) be the space of Holder continuous functions φ(u) on
u £ [0,1), including u = 0 but excluding u = 1, with the norm

k (4.2)φ(u)\+ sup -
we[0,l] wι,u 2e[0,l] Ui-U2

\-U<

where 0 < μ < 1, k ̂  1 and w< = min(w1, w2). That this is a Banach space,
and even a normed ring, is proved in Appendix 2.

We shall also use the subspace H0(μ, k\ consisting of all the functions
of H(μ, k) that are zero at u= 1, φ(l) = 0.

In H0(μ, k) we use the simpler norm

«ι,«2e[0,l]

since if this norm is finite and φ(i) = 0, it follows that sup \φ(u)\ is finite.
Let finally C(k) be the space of continuous functions on [0, 1] with

the norm

s u p ( w ) | l n - , f c ^ O . (4.4)
«6[o,i]
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For k = 0 this is the usual supremum norm, for k> 0 it also demands φ
to approach zero as M->! at least as fast as (In4/(l — u))~k.

Since Holder continuity of the scattering amplitude follows from
unitarity and analyticity, the discussion of Section 2 shows that any
solution to the dispersion Relations A.I or A.2 and the unitarity Condi-
tion B will have

Re/(tt)e/f 0(μ,H-y), Im/(M)eH0(μ,2 + y), (4.5)

with μ ̂  % and γ defined by Eq. (2.9).
Let us now write the dispersion Relations in the form

ρ(tt)Re/(«) = ί(KR + KL)lmn («) , (4.6)

where

and

ρ(u) 1 2(1 -u)

π 'A 1-M

(4.8)

for the case of dispersion Relation A.I, and

for the case of dispersion Relation A.2.
KR is a singular linear integral operator from H0(μ,k+i) to H0(μ, k),

any fe>0. It is bounded in the norm (4.3), as shown in Appendix 2.
K2 and Km are non-singular linear integral operators, defining mappings
of C(/c+ 1) into H0(μ, fc), which are also bounded in the norm (4.3).

K2 and K2 have a similar behaviour near u = 1, so that their difference

ΔK = K2-K2 (4.10)

is more well-behaved than either of them. It is shown in Appendix 2 that
ΔK defines a bounded map of C(fc) into H0(μ, k).

Now /f (μ, fe) is a normed ring, multiplication being a well-defined
operation in it. Therefore, the unitarity Condition B is a non-linear
relation in H(μ, 1 -f 7), provided we assume

η(u)eH(μ,i + γ), R(u)\n- e f l f o l ) . (4.11)

Introduce the phase shift δ(u) e //(μ, 1 + 7), and put

1 -^)cos2%)} . (4.12)
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Assuming also δ(0) = 0 and η(Q)=i, so that we get normal threshold
behaviour, Eq. (4.12) are well-defined relations in the normed ring

Since further Re/(l) = 0, Im/(l) = 0, η(i)=i for any solution
according to Section 2, we must have δ (1) = π v, v = 0, ± 1, ± 2,.... In fact
we have as u-> 1

/ 4 \ - i - y / / 4 \ - 2 - r
πv + πσ In + 0 In

\ i-u] \\ i-u]

for Class 1 solutions

Iπv + 0((1 - u)μ) for Class 2 solutions, (4.13)

where

σ= * + y

 N . (4.14)

With the phase shift, the dispersion relation can now be written

P(<5(w))ΞΞ—>7(w)sin2(5(w)-
1 —η cos 2δ

2ρ
) = 0.(4.15)

This a non-linear relation in H(μ, 1 + y\ which is equivalent to the
unitarity Condition B combined with the dispersion Relations A.I
or A.2. In the following, it is the solutions of this equation that we shall
study.

Since H(μ, 1 + γ) C H(μ, 1) for γ ̂  0, we shall treat Eq. (4.15) as a re-
lation in H(μ, 1), thereby including all cases.

We are interested in the local multiplicity of the solutions. Therefore,
we assume δ(u) to be a solution to Eq. (4.15), of Classes 1 or 2, and make
a small variation δδ(u) of it. Let P'η be the Frechet derivative of P, that is

P;(m, (5)<5δ(u) - f/(w) cos2(5(w)(5(S(w) - pCΛ + KL)J <5<5 (w) . (4.16)

The index η is to indicate that η has been held constant during the
differentiation. The m dependence comes from KL of Eq. (4.9). When we
occasionally use Eq. (4.8) for KL we just leave out the argument m. The
Frechet derivative is a linear operator in H(μ, 1), or in H0(μ, 1) if we
assume δδ(i) = 0.

At this point it should be observed, that the multiplicity of the
solutions to Eq. (4.15) may depend on how the inelasticity is given.
lϊη(s) is a given function in the unitarity Condition B, then P^ of Eq. (4.16)
in the Frechet derivative to be studied, but if R(s) is the given function,
we should instead define a Frechet derivative with constant R. Here,
we shall content ourselves with a study of the constant η case. Details
about the constant .R case can be found in [6].

Provided we can show that Pη(m, δ) is a φ operator, i.e., that it is
closed, has a closed range, and that its null space and defect space are
finite dimensional, we can follow Lovelace [5] and employ the "implicit
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variable" theorem of Vainberg and Trenogin [8]. Putting α and β equal
to the dimensions of the null space and the defect space, respectively,
of Pη(m, (5), the implicit variable theorem says that in the neighbourhood
of the solution δ(u\ the Eq. (4.15) is exactly equivalent to β non-linear
scalar equations in α real variables.

The index κ = α — β of the φ operator Fη(m, δ) is thus the excess of the
number of variables over the number of equations, or, in general, the
dimensionality of the manifold of solutions to Eq. (4.15) containing δ(u).
Thus, δ(u) should contain κ arbitrary parameters.

We now set out to prove that Pη(m, δ)isaφ operator, and to determine
its index κ. For a smaller Banach space, containing only the Class 2
solutions, this has already been done by Lovelace [5]. We shall try to
extend his proof to include all solutions. Because of the very slow decrease
of the Class 1 solutions this is a very delicate task, as we shall see.

We decompose P'η into a sum of a right-hand cut contribution

PR(δ) = Pn(0,δ) (4.17)

and a left-hand cut contribution

Pf

L(m,δ) = Pη(m,δ)-Pί(09δ). (4.18)

The right-hand cut operator is examined in the next section and in
Section 6 the influence of the left-hand cut contribution is analyzed.

5. The Index of the Right Hand Cut Frechet Derivative

Combining the result of Section 3 with the implicit variable theorem
immediately tells us that for elastic unitarity and m = 0, that is for the
right-hand cut Frechet derivative PR(δ), the index is κ, where

f 2 v + 1 if δ is a Class 1 solution with m = 0

[2v if δ is a Class 2 solution with m = 0 .

However, in order to be allowed to use the implicit variable theorem, we
should first prove that PR(δ) is a φ operator. We would also like to cover
inelastic unitarity, and study PR(δ) when δ is a solution with m>0.
Therefore, we shall now solve explicitly the equation

PR(δ)δδ(u) = δ f ( u ) , (5.2)

that is the singular integral equation

,,3,
iπ i (i-u'}(u'-u) ρ(u)

Here, A and B are the functions

ρ(u)
(5-4)

i^-sm2δ(ύ)
ρ(u)
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which are Holder continuous on (0, 1), excluding the end points. But
then Eq. (5.3) is of the type studied in Muskhelishvili's book [1 1], except
that for Class 1 solutions we must relax the Holder condition at u=\.
The function φ,

is analytic, except for a cut (0, 1). On the cut its limiting values φ±(u\
from above and below, respectively, belong to HQ(μ, 1) if δδeH0(μ, 1).
This follows from the proof of the boundedness of KR in Appendix 2
and the fact that 5(0) = 0 and

/ 4 \ - i - y
β(M)Λ2iπσlln— -1 (5.6)

when δ is a Class 1 solution with

/ 4 \ " 1 ~ y

δM^πv + πσίln-j— H . (5.7)

Equation (5.3) can now be written

, (5.8)

which, since φ+ — φ~ =Bδδ, is equivalent to the Hubert problem

A(u) + B(u) B(u) δf(u)
Φ (M)= A(u)-B(u)Φ {U} + A(u)-B(u) ρ(«) (5'9)

A(u) + B(u) _

A(u)-B(u) ~e '

Here

which is finite and non-zero on O ^ w ^ l . Taking the logarithm thus
gives a finite function with the asymptotic form

" V7 o * "* /I D £0(U)
2l A~B (5.11)

/ 4 \ - i - y / / 4 \ - 2 - r
= 2πv + 2πσ In——1 +O In-——

as M->1, for any Class 1 solution with the asymptotic form (5.7).
For Class 2 solutions one gets instead

uf)9 (5.110

that is, a Holder condition also at u = 1.
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Introduce now the function

π o u — z

which is analytic except for a cut (0,1), on which Γ±(u) is Holder con-
tinuous, excluding u = 1, where

ί / 4 \
2vln(l-u)-2σlnίln——-1 +0(1) for δ Class 1 andy = 0

~ l 2 v l n ( l - w ) + 0(l) otherwise. (5.13)

This follows as for φ± above, using for the asymptotic form of the
integral (5.12) also the results of Appendix 1.

The function exp(Γ) is now a solution to the homogeneous Hubert
problem, and a solution to the inhomogeneous problem (5.8) can be
constructed as in [11]. However, we shall follow Lovelace, and use the
Dashen-Frautschi method [12]. The D function is, since we have assumed
no bound states, given by

D(u) = e-^Γ+(u). (5.14)

It has the asymptotic form

ί / 4 Y
const (i—u) v In for δ Class 1 and y = 0

D(u)u~A ^ ~U'
[const(1—M) v otherwise, (5.15)

or in the s variable

ίconst 5v(ln s)σ for δ Class 1 and y = 0
D(s>*~«> {constsv otherwise, ( }

where the constants v and σ are defined by Eqs. (5.7) or (4.13) and (4.14).
According to the Dashen-Frautschi method, we next write a dis-

persion relation for the function D2φ, which is analytic, except for a cut
(0,1) in M or (4, GO) in s. On the cut

as follows from Eqs. (5.8), (5.12), and (5.14). The asymptotic form of this is

ί const s2 v(lnsΓ2 + 2σ for δ Class 1 andγ-0

Im{D2(5)φ + (5)} i-00|const52v(ln5)"2->) for δ Class 1 a n d y φ O

[const52v"μ for δ Class 2, (5.17)

provided we assume the perturbation to go to zero as s->oo, that is

If δ is Class 1, 7 = 0, and 2σ ^ 1 we obviously have to make 2v -f 1
subtractions in the dispersion relation for D2φ, otherwise it is sufficient
with 2v subtractions. Since the non-linear problem of Section 3 had no
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solutions with v < 0, we assume here that v ̂  0. Putting

(2v+ 1 for Class 1, y = 0 and 2σ^ 1 , ,. ...
κ = <L t . (5.18)

(2v otherwise ,

the dispersion relation for D2φ can be written

where (^^(s) is an arbitrary polynomial of degree rgκ — 1. This is
obviously the most general analytic function fulfilling Eqs. (5.16), (5.17),
and the bound

\D2(s)φ(s)\ <
fconst|s|2 v(ln|s|Γ1 + 2σ for δ Class 1 andy-0

oo [const |s|2 v(ln|s|)~1 otherwise, (5.20)

which follows from Eq. (5.15') and the fact that φ± e H0(μ, 1).
The expression for δδ corresponding to Eq. (5.19) can now be obtained

with the help of Eq. (5.8):

(s)\D(s)\2

s" \ D ( s ' ) \ 2 ^ A ( s f ) δ f ( s ' ) d s f (5*21)

π i s'*(s'-s)2ρ(sf)

This is the explicit solution of Eq. (5.3). It contains exactly κ arbitrary
parameters, the coefficients of the polynomial Qκ-ι(s). Note that

: const s*-2v-1(lns)-2σ for δ Class 1 andy-0
2ρ(s)

const 5 κ" 2 v~ 1 otherwise, (5.22)

so that if we, e.g., had chosen κ — 2v + 1 for 2σ < 1, δδ would not have
belonged to H0(μ, 1). Therefore, we are forced to choose κ according
to Eq. (5.18).

Using the asymptotic form (5.11) for A it is easy to see (cf. Appendix 2)
that the last term of Eq. (5.21), like the first, gives contributions to
δδ E H0(μ, 1) for any δ f e H0(μ, 1). [Provided η(s) φ 0, which we assume.]
Thus the defect space of PR(δ) is empty, and its range is the whole Banach
space H0(μ, 1) thus closed. Since PR(δ) is bounded, it is a closed operator.
Since further, according to Eq. (5.21), its null space has dimension κ,
we have now proved PR(δ) to be a φ operator with index κ given by
Eq.(5.18).

Let Jf^ be the null space of PR(δ), and define the factor space

(5.23)
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Let furhter GR be the restriction of PR(δ) to J*. Then GR defines a 1 to
1 mapping of @& onto H0(μ, 1), and its inverse G^ x exists. From Eq. (5.21)
we obtain

cos 2δ(s)

(5.24)

Q(S)S* " \ D ( s f ) \ 2 ^ A ( s f ) δ f ( s f ) d s f

πη(s)\D(s)\2 s'"(s' - s)ρ(s')

This is a bounded operator form H0(μ, 1) to ,̂ [provided η(s) + ϋ] as
proved in Appendix 2. GR and G^ * are </> operators with index zero.

We shall finally take advantage of the fact that for m = 1 the left-hand
cut discontinuity is just the mirror image in s = 2 of the one of the right-
hand cut. This means that in the variable

ί = (s-2)2, (5.25)

the amplitude is a real analytic function with just a right-hand cut (4, oo).
As a result of this, we can solve the equation

I*(ί,δ)δδ(u) = δ f ( u ) (5.26)

with the method used above for PR(δ).
In the variable t we have

(5.27)
TCI 4 t t

where A and B are given in Eq. (5.4) as functions of

,= 1-1 = 1--̂ . (5.28)

The asymptotic form of a Class 1 solution δ(t) in the t variable is

- y , (5.29)

since s ~ ]/ί. Thus the asymptotic form of the D function for y = 0 gets
an extra factor 2 in the exponent, as compared with Eq. (5.15'):

(const ίv(ln t)2σ for δ Class 1 and y - 0
D(ί)'Mconstί* otherwise. (530)

This implies the following rule for the number of subtractions, instead
of Eq. (5.18):

ί2v+l for δ Class l , y = 0, and 4 σ ^ l
κ= <L . (5.31)

2v otherwise.
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6. The Left-Hand Cut Contribution

In this section we shall discuss whether or not the addition of the
left-hand cut operator P'L(m, δ) to the φ operator PR(δ) may change its
index. The tools we have at disposal for this task are some theorems on
φ operators from [9].

First we shall employ Theorem 2.3 of [9] (= Theorem 5A of Love-
lace [5]), which says that if P'L(m, δ) is a compact operator, the sum

P'η(m,δ) = P'R(δ} + P'L(m,δ} (6.1)

is a φ operator with the same index as P'R(δ).
We recall from Section 4 that we had two different forms of KL,

Eqs. (4.8) and (4.9), respectively, and that their difference AK, defined
in Eq. (4.10), is asymptotically smaller than either of them, so that AK
defines a bounded map from C(/c) to H0(μ, k) (cf. Appendix 2).

For the corresponding Frechet derivatives P'L we correspondingly
define the difference

Δ rη(δ)δδ(u) = trη(δ)
(6.2)

/ ηsin2δ \
= — \AK — - δ δ ] ( u ) .

\ Q I

This is a compact operator in H0(μ, 1), as is seen from the following
decomposition into a series of successive mappings:

(i) a compact map from H0(μ, 1) to C(0): this embedding is compact
by the Arzela-Ascoli theorem (see Appendix 2);

(ii) a bounded map from C(0) to C(l): multiplication by

ηsin2δ

Q

(iii) a bounded map from C(l) to H0(μ, 1): the action of the operator
AK.

Since the product of a compact operator and a bounded operator is
compact [13, VI.5.4], it follows that the entire mapping is compact.

That the operator (7.2) is compact implies by the above theorem
that the Frechet derivative P'n has the same index for the case of dispersion
Relation A.I as for dispersion Relation A.2 with m = 2, and that if P'η
is a φ operator for one of those cases it is so for the other also. Therefore,
we can in the following concentrate on the case of dispersion Rela-
tion A.2.

Next, let us discuss the operator P'L with the explicit form

P'L(m, δ)δδ(u) = - κL δδ (u)

(«) * (i-u)η(u')sm2δ(u')

π 0
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If δ is a Class 2 solution, or Class 1 solution when y > 0, we can
follow Lovelace and decompose P'L as above for Δ P. We write

v< ^(^ v /ι 4 y-1 η(u')sm2δ(u')
PL(m, ̂ (tt) = - KL In τ—,-j —

V / (6.4)

1 - u1,

The successive mappings are:

(i) a bounded map from H0(μ9 1) to H0(μ9γ): multiplication with

(ii) a compact map from //0(μ, y) to C(0): this embedding is compact
by the Arzela-Ascoli theorem, provided γ > 0;

(iii) a bounded map from C(0) to C(2): multiplication with [cf.
Eqs. (5.5) and (5. 12)]

1 η(u')sm2δ(u')

(iv) a bounded map from C(2) to H0(μ, 1): the action of the operator

KL.
The net result is thus a compact map of H0(μ, 1) into itself, proving

that for 7 > OP^(m, <!>) is a compact operator in H0(μ, 1).
For y = 0 and (5 a Class 2 solution, the same result follows by simply

replacing y by ε > 0 in Eq. (6.4) and repeating the argument. However,
if δ is a Class 1 solution, this trick would not work, since the map (iii)
would not be bounded.

Employing again Theorem 2.3 of [9], we now have that for δ a Class 2
solution, or a Class 1 solution for y > 0, Fη(m, δ) is a φ operator with the
index fixed by Eq. (5.18) to κ = 2v.

For δ a Class 1 solution and y = 0, however, we cannot prove the
compactness of P'L. If the limit y->0 is taken in Eq. (4.16) we formally get

P>,7,^)7^tP;(m,0,(5), (6.5)

but since this limit in Eq. (4.16) is not approached uniformly in u, Eq. (6.5)
must be understood in a weak sense, not in the uniform operator topo-
logy. (If the limit had been uniform, P'L would have been compact by

Because of the non-uniformness of the limit (6.5), the proof that
Pη is a φ operator also for y = 0 becomes rather long. We give such a
proof, for almost all m x, in [6]. For shortness, we omit that proof here.

What is the index of the φ operator P'η(m9 0, δ)Ί From Section 5 we
have that if

δ(s) = πv 4- πσ(lns)~ 1 + O((lnsΓ2) (6.6)
1 To prove this, we made in [6] a technical assumption about the size of the con-

tinuous spectrum of a certain bounded operator. This assumption is probably valid, but
could not be rigorously proved to be so.
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then the index of

and the index of

f 2 v + l i f

[2v if 4 σ < l .

From Section 2 we further know that in order for δ to be a solution to
the non-linear problem, we must couple σ and m. But then the conditions
of Eqs. (6.7) and (6.8) on κ become

2 v + l if R0^2

2v if RQ > 2 .

We shall now prove that this rule for κ is valid not only for m = 0 and
m = 1, but for (almost) all m. We can see the mechanism: if m is increased,
the phase shift δ decreases faster as s->oo, tending to decrease the
index of P,J(0,0, δ\ but adding the (non-compact!) left-hand cut contribu-
tion to get Pη(m, 0, δ) tends to increase the index, so that the final rule for
the index, Eq. (6.9), does not contain m I

Gokhberg and Krein [9] have some theorems on the stability of the
index, which we shall use. Their Theorem 2.2 tells us that adding a bounded
operator with sufficiently small norm to a φ operator does not change its
index. Thus there is a neighbourhood of m = Q and w = l , where the
index is given by Eq. (6.9).

Theorem 3.5 of [9] says that if Fη(m, 0, δ) is a holomorphic operator
function for m in a certain region Ω, and is a φ operator for each m e Ω,
then the index is constant throughout the region Ω.

Take the non-linear Eq. (4.15):

P(m9δ(u))= — η(u)sm2δ(u) —
.f γ* *y ^**^ ̂ ^ y^y yj.^^. i ,,»^.^^y

(6.10)

The only m dependence of P(m, ^) is the factor m in front of the left-
hand cut operator. Thus it can be trivially extended to a holomorphic
operator function, by just allowing complex multipliers in the space
H(μ, 1), so that it consists of complex-valued Holder-continuous func-
tions on we(0,1).

But then it can be proved from the implicit variable theorem that
each solution δ(u) of Eq. (6.10) has an analytical dependence on the
complex variable m. The region of analyticity, Ω, is moreover only
bounded by points where the Frechet derivative P'η(m,δ) ceases to be
continuous, or to be a φ operator, or possibly where κ, α or β for this
φ operator change. Since the last points are isolated, and P'η(m, δ) is a φ
operator for almost all m, we can conclude that Ω is a connected region
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in the complex m plane containing the whole real positive m axis, except
possibly for some isolated points.

The Freehet derivative Fη(m, δ) depends on m explicitly, and implicitly
through δ. As just discussed, both these dependences are analytical in
the region Ω, so we can employ the theorem 3.5 given above. Thus κ is
given by Eq. (6.9) for almost all real positive m. Q.E.D.

7. Results and Discussion

In this paper, and in [6], we have studied the solutions to the dispersion
Relation A.I or A.2 and the unitarity Condition B, given in the Introduc-
tion. The main results about those solutions are the following.

I. The solutions fall into two distinct classes, according to their
large s behaviour. The asymptotic behaviour is like an inverse logarithm
for Class 1 solutions [Eq. (2.11)] and like an inverse power for Class 2
solutions [Eqs. (2.12)].

The two classes can also be characterized with the integral

/= ]lmf(s)ds. (7.1)
4

Class 2 consists of those solutions for which this integral is convergent.
They are well behaved, and their asymptotic form contains information
about the absorptive part at low energy. Class 1, on the other hand,
consists of those solutions for which the integral (7.1) is divergent. They
are dominated for large s by their own asymptotic form, so that this form
can be determined self-consistently, and does not contain any information
about the absorptive part at low energy.

The next result is [6]:
II. Class 1 solutions have a complete asymptotic expansion in

inverse powers of In s. This expansion has exactly one free parameter,
which does not enter the leading term, however. The parameter is
related to the scattering length, but contains in general also other
contributions.

About the local multiplicity of the solutions to our non-linear
problem we get for Class 2 solutions the same result as Lovelace, presented
in the Introduction. For Class 1 solutions, we get:

III. If in our non-linear problem we change dispersion Relation A.I
to dispersion Relation A.2 with m = 2, all other characteristics of the
problem remaining unchanged, the local multiplicity does not change.

IV. The local multiplicity may depend on whether we ask for solu-
tions with the inelasticity η(s) given, or the inelasticity ratio R(s) given in
the unitarity Condition B.

For

aR0(\nsγ, j^0, R0 >0(R0 ̂  1 for γ = 0) (7.2)
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and δ(s) a Class 1 solution satisfying

δ(s)8^αoπv + 0(OnsΓl-y)9 (7.3)

we get the following more specific results:
V. lϊη(s) is prescribed, the local multiplicity of the Class 1 solution

δ(s) to our non-linear problem is, for almost all m^O, given by

(7.4)

VI. If R(s) is prescribed, the local multiplicity of the Class 1 solution
δ(s) to our non-linear problem is, for almost all m^O, given by [6]

κ = 2v+i for any y and JR0. (7.5)

We have not been able to exclude the possibility that for some
isolated m values the above result might not hold. This fact is related
to the possibility of spontaneous symmetry breaking, discussed by
Lovelace [5]. We propose to resolve this difficulty for each particular
interesting case by numerical calculations.

A numerical solution of our non-linear problem with the Newton-
Kan torovich [14] method would, at the same time as it resolved this
difficulty, also provide an existence proof for the solution of that par-
ticular case.

As a final result we formulate what we have to do, besides using
analyticity, unitarity and crossing symmetry, in order to get a unique
solution for the S wave amplitude:

(i) decide whether we want a Class 1 or a Class 2 solution;

(ii) fix the total variation of the phase shift (to πv);

(iii) determine a number of parameters [2v for Class 2 solutions,
2v or 2 v + l according to Eqs. (7.4) and (7.5) for Class 1 solutions]
from auxiliary conditions.

If other partial waves or coupled channels are included, the number
of arbitrary parameters increases, as discussed by Lovelace [5].

About the question of the existence of solutions to our non-linear
problem we have, unfortunately, very little to say. For Class 2 solutions
the existence has been proved (under certain restrictions on the input
function) by Atkinson et αl [7], but their analysis does not apply to
Class 1 solutions. Moreover, since the Class 1 solutions are not connected
to the zero solution, because of their fixed asymptotic form, it seems to us
extremely difficult to modify the method of [7] to include these solutions.
Therefore, we believe the Newton-Kantorovich method [14] to be the
best to prove the existence of Class 1 solutions. The present work contains
some necessary prerequisite for such a study, since one must know the
multiplicity, and work in the factor space @t of Eq. (5.23) in order to have



Crossing Symmetric Model 117

a well-defined inverse operator G"1, as necessary in the Newton-
Kantorovich method.
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Appendix 1

The aim of this Appendix is to derive the asymptotic form for large
s of integrals of the type

<? ds'

for A = O(s) as s-»oo.
Beginning with positive A and j> — 1, I (A) is obviously convergent,

approaches zero as A-> oo, and we have

i A

c ds'

τ!(in7
which gives

Since we only need the leading asymptotic behaviour, it is here sufficient
to note that

? dsf 1

i s'(lns'y+2

and that

A ύ U

Thus, we can conclude that

For negative A< -4 the integral (A. 1.1) is defined by its Cauchy
principal value. The contribution to the integral from near the singularity
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is then

\A\ + ε

= p j

(A. 1.4)

as S/A-+Q. This proves that the contribution from the region near the
singularity can be included in the rest term of expressions like Eq. (A. 1.3).
But this also means that it is unnecessary to subtract the integral (A. 1.4)
explicity from I (A) before making the expansion in Eq. (A. 1.2). Thus
Eq. (A. 1.3) is valid also for A-* — GO.

For 7^ — 1 we must introduce a subtraction in I (A), and define

? Ads' , 4 _

For this integral the above method gives the asymptotic form

for j=-i

'-2) for j<-\

as A-* + oo.

Appendix 2

In this Appendix we have collected some proofs of Banach space
properties. We begin by proving that H0(μ, fe), defined in Section 4, is
a complete space.

If the norm (4.3) is finite, it follows that

which, since ψ(\) = 0 for φ e H0(μ, k), implies that

#0(μ,/c)CC(/c)cC(0), k> (A.2.2)
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Assume that {φn} is a Cauchy sequence in H0(μ, fc), that is

119

H-+00. (A.2.3)

Then Eq. (A.2.1) implies that it is a Cauchy sequence also in C(0), which
is known to be complete. But then there exists a φ in C(0), such that

\φ(u)-φn(u)\^£n.

Moreover, Eq. (A.2.3) implies that

(A.2.4)

—u*,
In

-k

(A.2.5)

Since the right-hand side of this equation is independent of p, we can
take the limit p—»oo. Then according to Eq. (A.2.4) we get

(uj - φ(u2) - φΛuJ + φn(u2)\ ^ sn

which implies that

«1-M2

1 - M <
Ύln 4 ΓI ι -«<J '

(A

-»0 as n-^co. (A

.2.6)

2.7)< oo , \\φ — φn\\ ϊ

Thus jF/0(μ, fc) is complete.
The proof above is almost identical to the one, for a smaller space,

of Muskhelishvili (p. 132 of [11]). It works equally well for H(μ,k)
and C(fc).

Next we prove that the Banach space H(μ, fc) is also a normed ring.
This follows if we can prove that the product of two elements φ and ψ
of H(μ, fc) is again an element of H(μ, k), and that

\\φψ\\^\\φ\\ \\ip\\. (A.2.8)

Let us distinguish the two parts of the norm (4.2) by indices

\\9\\ = \\φ\\c+\\<P\\o. (A.2.9)

Then φψ is Holder continuous, and

\_\φ(uv] - φ(u2)\ I φ("ι)l + \φ(u2)\ \\p(u^ - ψ(u2)\~]
\\φψ\\o£

Ul-U2

+
Thus

l l v l l o
. Q.E.D.

(A.2.10)

(A.2.11)

In Section 6 we need the fact that the embedding (A.2.2) of Ή0(μ, fc)
in C(0) is a compact map. To prove this, we prove that the bounded set
\\φ || ̂  C in H0(μ, fc) is a compact set in C(0).
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Any function of this set if uniformly bounded by Eq. (A.2.1), and
further satisfies

, δ = \u1-u2\. (A.2.12)
μ — u<; \ i — u < /

Now
<5μ / 4 \ - * / 4 \ - f c

^Max -In = In— ^0 (A.2.13)

for any k>0. Thus for any ε>0 there exists a δ>0 such that

for |w x — w2 | ^<5 = 4exp -I—V|>0 (A.2.14)

for any function of the set || φ \\ ̂  C. But this is the statement that this set
of functions is equicontinuous. Then the Arzela-Ascoli theorem ([13],
IV.6.7) tells us that the set is compact. Q.E.D.

Next, we want to prove that the operator KR,

is a bounded operator from H0(μ,k+i) to H0(μ,k\ /c>0,
We write

(KRφ)(u) = I1(u)-I2(u), (A.2.16)

where

U — U

Since ρ(u) = ]/u and the integral is convergent for any φεHQ(μ,k+i\
/c>0, I±(u) is obviously a Holder continuous function on O r g w r g l
with μ^i- Further, as proved in Muskhelishvili ([11], pp. 46-48), the
integral in I2(u) is a Holder continuous function on the open interval
0 < u < 1, with the same Holder index μ as φ. At u = 0 the integral has a
logarithmic singularity, but since it is to be multiplied with j/w, we
obtain that I2(ύ) is Holder continuous on 0 ^ w < l with index
This implies that

(A.2.18)

as soon as φeH0(μ, k+ 1), μ<i, /c>0, with norm ||φ|| ^ C. For the
constant CΛ(ε), which may be ε dependent, one can, with some extra
work, following Muskhelishvili, obtain a finite, explicit value. However,
here we only need the fact that it is finite for any fixed ε > 0.

What happens when ε-»0? For the behaviour of the integral (A.2.15)
when u-+i we can use the analysis of Appendix 1. Equation (A. 1.6)
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gives

if

But then

|(KΛφ)(W l)-(^φ)(W 2)|^QC(ln-

C L 4
In-

U^l Γ U1 ~4πk \ i-u

4

(A.2.19)

(A.2.20)

, 0 ^ w 1 g w 2 ^ l , (A.2.21)

for some finite constant C'R, since, besides fulfilling Eq. (A.2.19), (KRφ)(u)
is bounded on 0 ̂  u < 1. This shows that if we let ε->0, u2-> 1 and hold
M! constant in Eq. (A.2.18), the equation is still valid, with a finite CR(0).
Finally, we put

CR = Max {CR(0) (In 4)fc, CJJ (A.2.22)

and combine Eqs. (A.2.18) and (A.2.21) to get

u, -

which is to say that

= sup

i-u,

^ CR. Q.E.D.

-k

(A.2.23)

(A.2.24)

The operator KL has, for the case of dispersion Relation A.2, the form

(κ ,\(\ mg(M) I (ί-u)φ(u')du' mρ(u)
(KLφ)(u)= - - — ί ,

For any φ e C(/c + 1), fe > 0, the integral 73(w) is convergent for 0 ̂  w < 1.
As w-> 1, we obtain from Appendix 1 the asymptotic form

C
if

4 \- f e" 1

ln^ 1 , (A.2.26)

which implies that in analogy with Eq. (A.2.21) we have

/ 44<) - /3(w2)i ^QC in
\ l-"ι

, 0 ^ u 1 ^ M 2 ^ l , (A.2.27)

for some finite constant C'L. Moreover, we get directly from Eq. (A.2.25)
that

\τ ί \ T ί \\ ( \\ φ(uf)du'UU(MI) — l^(uΊ)\ = (UΛ — u2) — —i ό\ i/ ά\ ίn \ ι 2 / j /^ ι,^^^ „, 4.

4! —u 2 (A.2.28)

for O ^ M 1 g M 2 ^ l - ε , ε>0.
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Combining the last two equations gives that I3(u) has a finite norm in
H0(l,/c) for any finite element φ of C(/c+ 1). This implies for KL that
its norm as an operator from C(k+ 1) to H0(μ, k), μrg^ , is bounded
by CL, where

CL = — Max {CL(0) (In 4)\ CL]. (A.2.29)
π

For the case of dispersion Relation A.I, the form of KL is

= -t^/4(u). (A.2.30)
π

This integral is also convergent for 0 ̂  u < 1 for any φ 6 C(k+ 1), k> 0.
As u-+1, the integrand has the same asymptotic form as the integrand of
Eq. (A.2.25), and the asymptotic analysis of Appendix 1 shows that

Γ / 4 \ ~ k / 4 \-k-ι
JΛtto-Γ In- if φ(u)u^C In- . (A.2.31)

k \ i-u] \ i-u)

This implies that Eq. (A.2.27) is valid also for I4(u). Moreover, I4(u) has
a continuous derivative on ε < u < 1 — ε, since

M o l l — w« w ( l — u ) L 1— M JJ ί—u

(A.2.32)

is a uniformly convergent integral on this interval. Thus Eq. (A.2.28) is
valid for /4(w), provided we cut off the interval at ui = ε. However, this
cut-off is not necessary, since from the fact that

x)<x, 0 < x < l , (A.2.33)

it follows that

u 1

\I4(u1)-I4(u2)\ ^ 2 — -J \φ(u')\du' < const ε for O ^ M 1 ^ w 2 ^ β -
2(1 — w2) o

(A.2.34)

But then the boundedness of KL follows just as for the previous case.
Consider now the difference Δ X,

π i I 1 — MM u(i -u)

1 - u)φ(u'}duf



Crossing Symmetric Model 123

for φ e C(k\ k> 0. Let first u^ 1 - ε, e>0, and divide the integration
interval into two, expanding the logarithm in the second term:

—uu u(i —u)

- u)φ(u')du'

i-u'

( u ί u M
φ(u')du'.

(A.2.36)

This shows that there appear no convergence problems at u' = 1 when
we take φ e C(k) instead of C(k + 1), as long as u ̂  1 — ε. Thus (A Kφ) (u)
is Holder continuous on 0 ̂  u 5Ξ 1 — ε, just as KLφ.

To see what happens when u->l we note that the asymptotic form
of the discontinuity on the left-hand cut is the same to leading order for
dispersion Relations A.I and A.2 with m = 2, but differs in the next order,
Since in Eq. (A.2.35) we take the difference between these two cases, the
leading term in KLφ is cancelled, but the next appears, that is

// 4 \~k~l\ / 4 \~ k " 1

(AKφ)(u) = 0 In- - if φ^^ciln- - . (A.2.37)
\\ i — u j / \ i — u;

It follows from Appendix 1, by analogy with Eq. (A. 1.6), that this equation
is in fact valid for all k Φ — 1. Thus

(ΔKφ)(u)εH0(μ,k) for any φeC(fc). Q.E.D. (A.2.38)

Finally, we want to prove that the operator G# 1 of Eq. (5.24) is a
bounded operator in H0(μ, 1). We can write

-ifKX f( \
R

l(δ)δf(s)=
η(s) ' v ' η(s)\D(s)\2

(A.2.39)

The factor multiplying δf inside the brackets in the last term has the
asymptotic form [cf. Eqs. (5.11), (5.15'), (5.18)]

\D(s')\2smΔ(s')

s'W)

const — (In sf)~1 + 2σ for δ Class 1, y = 0, and 2σ^ 1

const (In sf)~1 + 2σ for (5 Class 1, γ = 0, and 2σ < 1 (A 2 40)
const (In 5') ~ 1 ~γ for δ Class 1 and y ή= 0

const s'~μ for ί Class 2
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and is finite for all s', since the zero at threshold of ρ(s') is cancelled by
a similar zero of A (s'). If δ f e H0 (μ, 1) the asymptotic form of the second
term in Eq. (A.2.39) is

W)}(*)

(A.2.41)

η(s)\D(s)\2

[const (In s)~1 for δ Class 1
s~*°° [const s~μ for <5 Class 2,

which, since all factors are Holder continuous, implies that

ffoOU) if δfeH0(μ,i) and ι/(s)Φθ. (A.2.42)

With some extra work, an explicit bound for the norm of G^ 1 as an
operator in H0(μ, 1) can be obtained, but here we only need the fact that
a bound exists.
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