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Abstract. A unified proof is given for the existence of a phase transition for any two or
three dimensional lattice gas with hard cores excluding nearest neighbor occupancy,
provided only that the lattice is an open one (possessing two sublattices). It is not required
that one sublattice be a translate of the other. Consequently the proof applies to the plane
hexagonal and to the diamond lattices, as well as the "cubic" lattices previously proved to
have phase transitions. The models are converted to equivalent Ising spin 1/2 systems on
one sublattice by a "partial trace" over the other. The spin system has many-spin interactions
including some of odd order, which destroys up-down symmetry, but recent work of
Pirogov and Sinai on such systems is shown to be applicable and to prove the existence of
the phase transition.

I. Introduction

One of the most useful techniques for the rigorous proof of the
existence of phase transitions in model systems has been the ''contour"
method originally due to Peierls [1]. The proof consists in showing that
boundary conditions determine the equilibrium state throughout an
arbitrarily large system- under conditions of sufficiently large interaction
potentials (or sufficiently low temperature). Thus the boundary condi-
tions determine the sign of the magnetization of an Ising system, the
density of an attractive lattice gas, or the relative concentrations in a
multicomponent system.

In each of these cases the proof succeeds only on a portion of some
"symmetry line" appropriate to the model, such as zero magnetic field
in the Ising case. For the attractive lattice gas the corresponding sym-
metry requirement is that the chemical potential (one-body energy) just
balance the pair interactions in the completely filled lattice. For the
multicomponent Widom-Rowlinson model the symmetry condition is
that the chemical potentials of all components be equal [2]. In each case
the symmetry condition insures that there is no term in the Hamiltonian
proportional to volume that favors any of the competing equilibrium
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states — leaving only the boundary, or surface, terms to prevail under
conditions promoting long range order.

A somewhat different application of the Peierls technique was used [3]
to demonstrate the existence of the phase transition for lattice gases with
repulsive (including hard core) interactions. In these cases the competing
equilibrium states correspond to the filling of different sublattices. The
underlying symmetry condition in these cases is that the chemical
potential is the same for a particle on either sublattice, so that at large
values of the chemical potential the sublattice occupied is determined
again by the boundary conditions. The proofs have succeeded only in
cases where the sublattices are translates of each other - square, cubic,
triangular [4]. These proofs fail in cases of lower symmetry - hexagonal
and diamond lattices — although numerical studies [5, 6] show little
qualitative difference between the two classes of lattices.

Recently Pirogov and Sinai [7] have provided a significant extension
of the theory to more general interactions in which the "symmetry line"
is not apparent intuitively. In the language of the Ising model this gener-
alization meant that the spin interactions were no longer restricted to
interactions of even order, with attendant symmetry of positive and
negative magnetizations. The overall interaction must still be essentially
ferromagnetic, however, in a sense to be made more precise below.

It was then shown that the phase transition of binary lattice gases
(of the Widom-Rowlinson type) could be interpreted in terms of the
Pirogov-Sinai development [8]. The technique was first to transform
the binary lattice gas to an equivalent one-component lattice gas with
many-body interactions (through partial summation over configurations
of particles of one type). Then this interacting lattice gas was transformed
in the standard way to an equivalent spin system. The final step was to
show that the conditions of the Pirogov-Sinai theorem are met.

The purpose of this article is to show that the same sort of interpreta-
tion can be applied to hard core lattice gases, provided the hard core
extends only to nearest neighbors and the lattice possesses exactly two
sublattices. This includes the "cubic" lattices (any number of dimensions
greater than one) already proven to have phase transitions, but also the
hexagonal and diamond lattices for which proofs have been lacking.
The body-centered cubic lattice may also be treated by either approach.

The transformation technique is a lattice gas version of the "partial
trace method" used by Gruber and Merlini [9] for spin 1/2 Ising systems.
The partial trace method is a generalization of the "star-triangle" and
the "decoration" transformations [10]. Indeed Widom and coworkers
employed a lattice gas version of the decoration transformation to study
special models of multicomponent lattice gases and to reduce them to
equivalent ordinary lattice gases with nearest neighbor attractions [11].



Hard Sphere Lattice Gases 39

II. The Pirogov-Sinai Theorem

Due to the central role it plays in our development, we wish to state
here the theorem of Pirogov and Sinai [7]. The theorem deals with Ising
spin systems on d-dimensional cubic lattices, d ̂  2. We write the Hamil-
tonian as 1/ ,<\(1)

P C Λ

where A is a finite lattice,
σP=Y[σx

xeP

and σx=±l. A one-body term J{x} is the magnetic field h, assumed
homogeneous. The two-body terms JP, |P| = 2, are assumed to be non-
negative; moreover, they are strictly positive (ferromagnetic) for P = {x, y}
with x and y being nearest neighbor sites. The number of sites in set P is
denoted |P|. The interactions JP have finite range and thus vanish if P has
sufficiently large diameter.

We call HΛ( + ) and HΛ ( — ) the energies when all spins are 4- 1 and
— 1, respectively. The equation

£
PCΛ

= h\Λ\- Σ (-)|P| Jp (2)
PCΛ

\P\Z2

= HΛ(-)
can always be solved for the magnetic field. We call the solution /z*; it is
the magnetic field in which the ( + ) configuration and the ( —) configura-
tion have the same energy, to be denoted HA(±). For the special case
of only nearest neighbor interactions h* = 0. In general h* can be
yi-dependent, although with periodic couplings this will not occur
(see Section IV).

Any spin configuration defines a set of closed contours in the usual
way: we draw a contour segment of lattice unit length as the perpendicular
bisector of each line joining unlike nearest neighbor spins. The closed
contours are the union of the segments, with the understanding that
closed cycles no more distant from each other than twice the range of
the interaction are parts of the same contour.

We consider first a configuration α0 which produces only one con-
tour γ. We require the outer layers of A to consist of all +(-) spins. The
natural definition of the contour energy of y in the field Λ* is its energy
relative to the +( — ) configuration:

Wy

±=HΛ(κ0)-HΛ(±) (3)

and we notice that Wy

+ is not necessarily equal to Wy . Now if a configura-
tion α produces the family Γ of contours as defined above, we can write
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the total energy of α in the field h* with boundary spins +( — ) as

HA(*)-HA(±)=

In the family Γ the + or — symbol in W^ for outer contours (those
which can be connected to the boundary by a path not intersecting γ)
is that of all the boundary spins. Moving inward in a nested set of con-
tours the symbols alternate.

We can give an alternate and more pictorial description of the contour
energies in the field h*. Remembering that the interactions have finite
range (and are assumed translationally invariant) we can write

HA=Σ U'Eχ(*) (5)
xe A

where U'EX(OL) is an appropriately defined energy of the finite set EX9

which is indexed by a reference site x. In order to avoid overcounting
some interactions, we arrive at the definition

UfEx=- Σ JPσP/VP (6)
PCEX

where vp is the number of translates of set P contained in Ex. The sets Ex

are not uniquely defined, but greater convenience will result from
smaller sets which must, however, be large enough to contain prototypes
of all interactions.

Finally we set
UEχ=WEχ-U'Eχ(±) (7)

where U'Eχ(±) is the energy of the finite set Ex when all contained spins
have the same value and the external field has the value h*. Now we may
express the energy of contour y, produced by configuration α as

Wy±= Σ UEχ(«). (8)
£ x :£ x nyΦO

We say that y intersects Ex if y contains a contour segment bisecting
two sites of Ex. The sign + or — in W^ is determined by the spins at
the periphery of A in the configuration α. We allow only configurations
which have "pure" boundaries — all + or all — . Each contour is thus
"paved" with all finite sets Ex which intersect it. Due to the definitions
of the contours and the sets Ex, no set paves contour segments of more
than one contour, although a set may well cover more than one segment
of the same contour.

We are now in a position to state the Pirogov-Sinai theorem. As usual
β = i/kTis proportional to the inverse temperature, and |y| is the number
of contour segments in y.

Theorem. For a spin system with interactions as described above,
suppose W* >d\y\ for any contour in the field h* with pure boundary
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conditions for some constant d>Q. Then there is a β0, O</? O <GQ, such
that for β> β0 there is a magnetic field h = h(β) at which a phase transition
occurs.

Corollary ΐ . I f H Λ may be written as

where HΛ° contains all one- and two-body terms and the latter are all
ferromagnetic, the conditions of the theorem will be met for some sufficiently
small value of the "perturbation parameter' λ.

Corollary 2. A sufficient but not necessary condition for the requirements
of the theorem to be met is that

(9)

with equality holding only if all spins in Ex have the same sign and inequality
holding otherwise.

The proof of the theorem proceeds by showing that different equilib-
rium states (Gibbs distributions) exist at some field value for the two pure
boundary conditions. That there is such a field at conditions of strong
coupling (low temperature) follows from the solubility of two sets of

coupled "integral" equations for the probability of contours with +,
respectively —, spins outside, after the manner of Minlos and Sinai [12].

In order to apply the Pirogov-Sinai theorem to the problem of hard
core lattice gases it is necessary first to transform them into equivalent
spin systems, then to determine the field /z*, and finally to show that the
conditions of the theorem (actually Corollary 2) are met. These steps are
taken in the following sections.

III. Equivalent Spin System

Let us denote the two sublattices of the total system as AA and AB,
so that A = AAuAB. Throughout this section and the next we assume
periodic couplings. For xeAA(AB) let FxcAB(AA) denote the c nearest
neighbors of site x. If we also denote by μA(μB) the chemical potential of
a particle at a site of sublattice A(B\ we may write the grand partition
function as

Σ ZAM Σ
RCΛΛ SCΛB\R +

where zA, B = exp(βμA, B) and

R+= (j Fx. (11)
xeR
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It is clear from Eq. (10) that we are using in a basic way the two
characteristics of the models under consideration: nearest neighbor
exclusions and the existence of only two sublattices. The similarity between
this partition function and that of the lattice version of the "A-B" model
of Widom and Rowlinson [2] should be obvious. In fact, to convert the
present problem to an "A-B" model it is necessary only to identify ΛA

with AB and replace Fx by Fx u {x}.
In any event the previously exploited technique may be used here to

sum over configurations of B particles to obtain an equivalent one
component lattice gas on lattice ΛA. This one component lattice gas,
however, has short ranged interactions which we write as

H(R) = -μ\R\-Φ(R)ε, (12)

where ε is a positive constant with dimensions of energy. The one-
component partition function may then be written as

exp[- ]8H(R)] , (13)

where the intensive parameters activity z and inverse temperature β are
related to ZA and ZB by (see Eq. (4) of Ref. [8])

B)w (14)
zA .

We will henceforth discard the analytic factor exp (βε\AB\) preceeding
the summation in Eq. (13).

The analog potential function Φ(R) contains many-body terms - up
to obody terms - and may be decomposed [8] as

Φ(R)= X φp

PCR

-T<-Λ,
PcR

where vp is given by the following prescription: If there is some xe ΛB

such that P C Fx, then vp is the number of translates of P contained
in Fxι if there is no such x, then vp = 0. (This applies only for |P| ^2.)
In equations such as Eq. (15), we use the convention that a set used as an
exponent, such as ( — )p or 2P, stands for the cardinality |P| of the set.

The work of Gruber and Merlini [9] contains a careful study of the
symmetry characteristics of the original spin system and the equivalent
sublattice spin system. There is one point that should be mentioned here
by way of contrast. An important conclusion of the Gruber-Merlini
approach is a description of the nature of the many-spin interactions
in the equivalent sublattice system (derived from an ordinary Ising
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model on an open sublattice). If the original Ising system possesses only
nearest neighbor pair interactions, then in zero field the sublattice system

(after the partial trace) possesses many-spin interactions of only even
order. For the present model this elimination of odd-order interactions
does not occur since the lattice gas equivalent of zero field is an infinitely
large chemical potential (a consequence of the hard core repulsion).
Consequently interactions of odd order occur here as they would for
the Ising model with finite interactions and nonvanishing field.

Our equivalent lattice gas may, as always, be interpreted as an Ising
spin system with Hamiltonian given by Eq. (1). The general relationship
between the coefficients JR and φp, [13]

was exploited in Ref. [8] to show that

JR = 2~c(-)RvR8 (17)
for \R\ ̂  2.

We may also obtain explicit formulas for the one-body terms (magnetic
fields) h = J{x} and the constant term Jφ. For the former we notice that
Eq. (16) for # = {*} can be written

Σ 2-p(-)FvP(|P|/Vp) (18)
PC EX

according to the definition of vp. Here and below, for x e AA, Ex = Fy where
y E AB is any one specified nearest neighbor of x. We will henceforth
use the special notation that Σ' means a summation over certain sets,
restricted to cardinality two or greater. Using the formula (A 4) from the
Appendix this reduces to

J{x} = h = μ/2 + εlc/2-c2-cl. (19)

. With periodic boundary connections the constant term Jφ is propor-
tional to \A\9 andjφ =Jφ/\Λ\ is given by

jφ = μ/2 + s Σ' 2-p(-)pvP/vP (20)
PCEX

for any choice of x. Using Eq. (A 1) this becomes

[c/2 + 2-c-l]. (21)

Equations (17), (19), and (21) define the Ising spin system equivalent to
the original hard-core lattice gas. Notice that it is possible to have
periodic boundary connections between the spins and still be able to
employ special boundary configurations of those spins.

The spin system resides on one of the two sublattices of the lattice
in question. Thus if the original lattice is the two-dimensional square
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Fig. 1. Hard square lattice gas. The equivalent Ising spin system resides on one of the sub-
lattices, which is also a square lattice. Each "exclusion sphere" £λ consists of four sites.

For any PCEX there is a nonvanishing coefficient JP in the Hamiltonian

Fig. 2. Hexagonal lattice gas. The sublattice spin system occupies the triangular lattice.
Nearest neighbor pair interactions are ferromagnetic (JP > 0). For the three-body terms,
operating around half of the triangles, JP < 0. The Ising system can also be represented
on the square lattice, with pair interactions along each bond and three-body interactions

around the shaded triangles

lattice, each sublattice is again the square lattice, with interactions among
nearest and next nearest neighbor sites (see Fig. 1). The sublattices of the
hexagonal lattice are triangular lattices, with two- and three-body forces
(Fig. 2). The sublattices of the bodycentered cubic lattice are simple
cubic, with interactions of order through eighth (among the eight spins
at the corners of the sublattice unit cell).

Both the diamond and the simple cubic lattices have face-centered
cubic sublattices - the former with two-, three-, and four-body forces
among tetrahedrally disposed sublattice sites, and the latter with inter-
actions among octahedrally arranged sites.

With a reduction of visual symmetry the non-cubic sublattices may be
distorted into cubic lattices in the appropriate number of dimensions
(with skew interactions), in order to apply the Pirogov-Sinai theorem.
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The triangular sublattice of the hexagonal lattice thus becomes a square
lattice, with interactions among spins at sites (x, y),(x + 1, y)and(x, y + 1)-
see Fig. 2. Similarly the face-centered cubic lattice distorts into a simple
cubic lattice with interactions determined by the original lattice. For the
diamond lattice, the equivalent spin system has interactions among
spins at the sites (x, y, z), (x+l,y, z), (x, j;+l,z), (x, y, z— 1). For the
simple cubic original lattice, six sites interact in the equivalent spin
system: (x, y, z\ (x + 1, y, z), (x, y + 1, z), (x + l,y,z + 1), (x, y + 1, z + 1),

None of the details of the geometry is important, however, for we
can show applicability of the Pirogov-Sinai theorem without reference
to the geometry.

IV. Critical Field and Contour Energies

We first compute the energy density of the ( —) and the ( + ) configura-
tions. The former is given by

TT / \

ΠjΊ = Jv ~ ̂ W + I/ (~~ ) JP/VP
\A\ PCEX

= ε[(c + l)2-'-l]+ε2- c £' 1.
PCEX

We have used Eqs. (19) and (21) for the first two terms and Eq. (17) for
the last. By virtue of the summation formula (A 3), the entire expression
vanishes: HΛ( — ) = Q. This is correct since the ( —) configuration corre-
sponds to the completely empty lattice gas, which has zero energy.

For the (-f ) configuration we have

PCEX

PCEX

using formula (A 2). Eliminating μ in favor of h = J{x} we have

\Λ\

which we can solve for the critical field h* which makes HA( 4-) = HΛ( —) = 0:

/ι* = ε(l/2-c2-c) (22)

According to the development of Pirogov and Sinai, h* is the value
of the magnetic field at the phase transition at T— 0. For small but
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nonzero temperature the critical field value is near h*. It should be noted
that /ι* is always positive (since c > 2).

We now turn to the contour energies. Equation (6) for the energy
(density) of the finite set Ex in the field h* may be written as

-U'Eχ-jφ=(h*/c)Σ σy+ % JPσP/vP.
yeEx PcEx

This is a function of the spin configuration on £x, which is conveniently
characterized by the set QcEx:

σ = f + 1 X G β

Using Eq. (22) we have

7 PCEXwhere

and«=|Q|.
It is shown in the Appendix [Eq. (A 7)] that

This means that

= UEχ9 (23)

since U'Eχ = 0 for g = c or g = 0. Since 0 rg f̂ rg c this last result establishes
the conditions of Corollary 2.

V. Discussion

The proof is now complete that there is at least one magnetic field
value at which the equivalent Ising spin system has more than one
(boundary-controlled) equilibrium state, at sufficiently low temperature.
By virtue of Eqs. (19) and (14) the corresponding statement for the
original hard sphere lattice gas is that for sufficiently large activity ZB

on one sublattice there is as least one value of the activity ZA on the other
at which more than one equilibrium state exists. We believe that "at
least" could be replaced by "exactly" and the statement would still be
true, but that is not proven.

The presumption that the region of nonuniqueness is described
completely by a condition of the form ZA = ZB ^ z0 is tantamount to an
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explicit expression for the temperature dependence of the transition
field value whose existence is guaranteed by the Pirogov-Sinai theorem.
We need only set zA = zB in Eqs. (14) and eliminate μ in favor of h by
Eq. (19). We thus obtain

2βh = In (eβε-i)-βεc2-(c-1} . (24)

This has the low temperature limit

Iimh/ε=i-c2-(c-1) (25)
/?->oo

but we do not know the critical temperature above which Eq. (24) is
simply a symmetry line but not a phase transition line.

Appendix

We derive here several useful summation formulas. We let E be an
arbitrary set of c elements, c ̂  0. We first calculate

PCE

= (i-x/2)c + cx/2-i

from the binomial theorem. Special cases are conveniently written
explicity: For x = i we have

Σ'(-)p2-p = c/2 + 2-c-i. (Aί)
PCE

By setting x = 2 we have

£'(-)* = c- l , (A2)
PCE

which, however, is not valid for c = 0. By letting x = — 2 we have

£ ' l=2 c - l-c . (A3)
PCE

The derivative (8G/dx)x=ί gives us

Σ'(-)P2-p\P\ = c/2-c2-c. (A 4)
PCE

Finally we consider the function

s(Q)= Σ'MQ) = Σ Σ ί-V1. (AS)
PCE P2CE\QPίcQ
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where σP(Q) = ( — )PnQ. Assuming q = \Q\>0 we expand the right-hand
side to obtain

s(0= Σ' 1-9 Σ ι+ Σ Σ'(-)Pl

P2CE\Q

Equation (A3) is easily modified to give

Σ 1=2<-1, £1=2*. (A6)
Pc£ PcE

|P |£i

With the help of (A 2) we have then

where the g = 0 case follows directly from Eqs. (A 5) and (A3).
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Note Added in Proof. It has recently been shown [Heilmann,O.J.: Commun. math.
Phys.36, 91 — 1 14 (1974)] how the Peierls contour approach can be adapted to lattice prob-
lems having two sublattices related by reflection rather than by translation. The hexagonal
and diamond lattices fall in this category.
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