
Commun. math. Phys. 39, 243—250 (1974)
© by Springer-Verlag 1974

Infinite Volume Asymptotics in P(φ)2 Field
Theory

A. Lenard and CM. Newman

Department of Mathematics, Indiana University, Bloomington, Indiana, USA

Received June 11, 1974; in revised form July 23, 1974

Abstract. We prove a number of asymptotic results in the P{φ)2 theory in the limit
when the space cut-offs are removed, in particular the behavior of Eι and Zul as t, l->co.
Such results are used to study the question of orthogonality of infinite volume Euclidean
measures μm{λ) for varying interaction constants λ.

1. Asymptotics

In this paper we consider any fixed real polynomial P(y) with P(0) = 0
which is bounded below, and the corresponding P(φ)2 quantum field
theory in two-dimensional space-time [1]. The approximate, or cut-off,
Hamiltonian is

1/2

Ht = H0 + λ j :P(φ(x)):dx (1.1)
-1/2

where Ho is the usual free Hamiltonian of mass m0 > 0, and λ ̂  0 is the
coupling constant. ΈLX has a simple eigenvalue Ex at the bottom of its
spectrum, with corresponding eigenvector Ωh the (approximate) physical
vacuum. The positive operator Ht — Et has no spectrum in some interval
(0, mt) where mι > 0. With Ωo denoting the bare vacuum in Fock space,
it is known that (β^Ω^ΦO. Thus \(Ω0,Ωι)\2 = exp(-lηι) defines ηh

where Ωo and Ωt are both taken to have norm 1. The quantity

Ztfl = eG<>> = (Ω0,e-tH>Ω0) (1.2)

is the analogue of the partition function in classical statistical mechanics.
The following asymptotic results are known to hold for any λ^.0

[2,3].

Theorem 1. There are functions α^fl) and β^{X) such that
i) E / = - α 0 0 / - / 5 0 0 + o(l) as J-»oo.

ii) 0 < ^ ^ / / / ^ 5 < o o as Z-»oo.
iii) G ί / = αooίZ + o(ί/) as ί, Z->oo.
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Further results are known when λ is restricted to a sufficiently
small interval. Thus it has been shown by Glimm, Jaffe, and Spencer [4]
that for all sufficiently small λ

m ΞΞ lim inf mι > 0 .
/->00

We write λc = inf {λ : m{λ) = 0}.

Theorem 2 ([5]). There is a positive λo^λc such that for λ<λ0,
m < m(λ\ and C > 0 one has

i) ^ = - ^ 0 0 + 0(1) as l-*co.
ϋ) G^^-tEi-lηi + Oie-**) as ί^C/^oo.

iii) GM = ̂ ^ 7 + /?«,(*+ /) + o(r + /) as t9l-+oo.

Theorem 2 was useful in proving local Lx-convergence of the cut-off
Euclidean fields to the physical (infinite volume) fields, thus it seems
reasonable that further asymptotic properties should also be useful.
In this direction it has been conjectured that Et has an asymptotic
expansion in descending powers of / as Z-»oo [2]. This is indeed the
case, but we can state a much stronger result.

Theorem3. For λ<λ0 there is a yoo^JooW sucn tnat for

i) E^-aJ-βn + Oίe-*1) as J-oo.

m=-β<x>-Jγ+0(e-m) as

iii) G^antl + βΛt+Q + γn + Oile-to + te-*1) as ί,/-oo.
The proof of this theorem will be given in Section 3 of this paper;

meanwhile we make several remarks about Theorem 3, and conclude
this section with an application to the asymptotic properties of the
spectral measure of Ht in the limit /-> oo. Section 2 of the paper concerns
the application of Theorem 3 to the orthogonality between infinite
volume Euclidean measures corresponding to different λ.

Remark ϊ. (—EJΐ) and (Ej + α^ί) are known to be positive non-
decreasing functions of I when λ>0: hence α o o>0 and βao<0 in this
case [2]. We do not know any corresponding monotonicity property
of ηh hence know nothing about the sign of γ^1.

Remark 2. It seems likely that the introduction of λ0 in Theorem 2
is only a technicality necessitated by the method of proof. We conjecture
that in fact λo = λc. This would follow if it were known, for example,
that ηt= —β^ + o(l) as /->oo for all λ<λc, as explained in [5].

Remark 3. In view of the connection between the Euclidean P(φ)2

theory and certain two-dimensional Ising models [3], one can presumably
prove results for Ising models analogous to Theorem 3 with the methods
discussed in this paper.

1 Second order perturbation theory suggests however, that ηt and —l{y]ι + βx) are
positive non-decreasing functions of /, so that y^ > 0.
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We define ρz via the spectral theorem by the equation

( Ω o , e x p ( - ί ( f l ί - £ ί ) ) 0 0 ) = ]e~^dQl(q). (1.3)

= \(Ω0,Ωι)\2 = exp( — lηι). A reasonable conjecture is that for any
gi^O, £/[0> #]/(?/[0] has a limit as /->oo: we have only been able to
obtain the weaker result:

Theorem 4. For λ<λΌ,m<m9 and any fixed q9 ρ,[0, g]/ρ,[O] = O(P^)
as /->oo.

Proo/. We first note that

exp(GM + tEt) = J e'^'dQM) ^ *~ tβft[0, g] (1.4)

1 o
so that

I ^ &[0, <?]M0] ^ exp(Gfi/ + ί£ z + \r\x + ίg). (1.5)

It follows from Theorem 3 that

Gtl + ίJEf + \r\x = O(/exp(-m'ί) + ί exp(-m'/))

as ί, /-^oo for any m' < m; we choose m < m; < m, let ί = logί/m, and then
apply this estimate to (1.5). This yields

(M//"> + te/m) log/) =

as desired. Q.E.D.

2. Orthogonality of Euclidean Measures

We recall some notation for the P(φ)2 theory. The basic measurable
space is Ω = ίF(lR2) equipped with the σ-algebra $ generated by functions
on Ω of the form φu: F - > F ( M ) where u is a test-function in ®(IR2). The
free Euclidean measure is denoted μ0. It is Gaussian with mean zero and
covariance E0(φuφv) = ^u( — Δ + ml)~1vdxdt. The cut-off interacting
measures are defined by άμx = Xιdμ0, where

111 1/2 \

-A j f :P(F(x,ί)):^rfί (2.1)
-112 -1/2 I

with F GΩ = ^'(IR2). (In this discussion we take square cutoffs for the
sake of convenience.) The quantity Zlfl is a normalisation constant, so
determined that μL is a probability measure. It can be shown by the
Feynman-Kac formula that this definition is consistent with the right
hand side of (1.2), but this relationship will not concern us in the following.
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We let 081 be the σ-algebra generated by only those φu for which u
has support in the square —l/2<x,t< 1/2, and let Eι denote conditional
expectation with respect to 081. With λ<λ0 and I arbitrarily fixed,
Et(Xv) converges in Lγ(Ω,0$,μ0) as /'->oo. This yields the infinite
volume Euclidean measure μ^ which is absolutely continuous with
respect to μ0 when both are restricted to ^ [ 5 ] :

= }}m Eι\xv

μ^ and associated quantities depend on λ, of course.
The Euclidean version of Haag's theorem states the orthogonality

(mutual singularity) of μ^λ) and μ^{λ') for λΦΛΛ Before discussing
the relevance of Theorem 3 to this orthogonality question, we wish to
point out that there is a very simple proposition of ergodic theory which,
when applied to Euclidean field theory, yields the Euclidean version
of Haag's theorem. This proposition is certainly not new [6] and its
relevance to field theory has also been remarked by Frohlich [7] and by
J. Rosen and Simon [8].

Theorem 5. // T is a measurable transformation on a measurable
space (Ω, 08\ measure preserving and ergodic with respect to two probability
measures μ1 and μ2, then either μ1 = μ2 or else μί and μ2 are orthogonal

Proof. Suppose μx φ μ2 then there is an A e 08 such that μγ (A) φ μ2{A).
Let

Sf = (ω G Ω: lim — " ^ χA(Tjω) = μi(A)\

for i= 1,2 where χA is the indicator function of the set A. By Birkhoffs
ergodic theorem μ1(Sί) = μ2(S2) = 1. But S1 and S2 are disjoint, hence
the orthogonality of μ1 and μ2. Q.E.D.

Remark4. Theorem 4 applies to field theory by taking μι = μCXi(λ1)
and μ2 = μoo(̂ 2) w i ώ ^i + ^2 a n < i T a non-zero translation acting on Q)'.
The fact that T is measure preserving is nothing more than the Euclidean
invariance of the theory, while its ergodicity with respect to μ^iλ) for
λ < λ0 follows from the fact that T is mixing, and this follows from the
existence of a uniform mass gap (m > 0) [4, 7].

Remarks. The results of Dimock [9] on the asymptotic nature
of the perturbation series (expansion in powers of λ) of the Schwinger
functions shows that μ^λ)^ μ^iλ') at least for very small λφλ'; thus
Theorem 5 and Remark 4 show that in fact μ^iλ) is orthogonal to

Proofs of the orthogonality of μ^iλ) and μ^iλ') have also been
obtained by Schrader [10], Frohlich [7], and J.Rosen and Simon [8]
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for various regions of coupling constant values. Although Schrader's
results are not the most general of these, they are particularly inter-
esting in that they relate orthogonality of measures to convexity pro-
perties of otooiλ). It is known that this function is convex [11]; Schrader's
result is

Theorem 6. If λ<λ' < λ0 and α^ is not affine (inhomogeneous linear)
on the closed interval [A, λ'\ then μ^iλ) and μ^iλ') are orthogonal.

Although it is probably true in these two-dimensional models that
μ^{λ) is orthogonal to μ^ΐλ') for any λ φ λ' and that α^ is strictly convex
for all λ, it nevertheless seems to us of interest to extend Schrader's
result by strengthening the relation between orthogonality of measures
("distinctness of field theories") and convexity properties of "thermo-
dynamic" parameters. In higher dimensional models, perhaps certain
physical coupling constant values are singled out by the requirement
of orthogonality, which means that such a theory would so to speak
predict its own permissible interaction strengths. Thus the relationship
alluded to may be of more than passing interest.

Theorem 7. Suppose λ<λ'<λ0. If α^ is affine on [λ, λ'~\ then β^
is convex on [A, λ'~\. If α^ and β^ are both affine on [A, λ'~], then μ^iλ)

The proof of Theorem 7 depends on the notion of the Kakutani
product of two finite measures defined on the same measurable space
(Ω, &). In the following δ is a fixed but arbitrary number, 0 < δ < 1.

Definition. The Kakutani product of two finite measures μ and μ' is

*<**>-ί(£)'(£p
where v is any measure with respect to which both μ and μ' are absolutely
continuous (the definition is independent of the choice of v).

The Kakutani product has the following simple properties [12].

Proposition 8. Suppose μ and μ' are probability measures. Then

ii) K(μ, μ') = 0 if and only if μ and μ! are orthogonal.
iii) K(μ, μr) = ί if and only if μ = μ!'.

If άS1 is a sub-σ-algebra of J1, we write K(μ, μ' \ ̂ ) for the Kakutani
product of the restricted measures μ\&1 and μ'\^ί. The following
technical lemma is useful [12]:

Lemma 9. If dίxcSS2

 the^ K{μ,μf\^1)^K{μ,μ!\^2). If {<#,} is an
increasing family of σ-algebras generating & then \im K(μ, μf \ ^^
= K(μ,μ').



248 A. Lenard and C. M. Newman

Proof of Theorem 7. Assume temporarily that K(μO0(λ), μ^iλ'))
^ lim K{μt{λ\ μt{λ% Recalling the definition of μt [see (2.1) above]

ί-> oo

and ZZjZ = exρ(G,,), we see that

K(μι(λ\ μt{λ')) = exp [_Gu(δλ + (ί-δ) λ)

-δGu(λ)-(ί-δ)Gu(λ')-].

Thus by Theorem 3

A),Moo(A'))^lim exp[α00/
2 + 2fe00/+c00] (2.5)

1

where α^ = a^δλ + (t-δ) λ') - δot^λ) -(ί-δ) ocMΊ and b^ (resp. cj
is analogously defined in terms of β^ (resp. y^). By Proposition 8(z) it is
clear that a^ = 0 (i.e., α^ affine) implies b^ ^ 0 (i.e., β^ convex), and that
aoo = bOD=0 implies c^ S 0. But the latter case would imply by
Proposition 8(ii) that μ^iλ) is not orthogonal to μ^λ'X and thus by
Theorem 5 (and Remark 4) that μ^iλ) = μ^iλ').

It remains to show K(μJ(λ), μ^λ'))^ lim K{μt(λ\ μt{λ% By the

first part of Lemma 9, K{μt{λ\ μ^λ'^^K^λX μ^λ'^^t) while by the
second part of Lemma 9, K(μoΰ(λl μM'))= lim K(μJλlμΰO(λf)\@v).

l'-κx>

It thus suffices to show that, for any fixed Γ, ε/>r-^0 as /->oo where

ε/iΓ = \K{μι(λl

Letting Wl)V = Er(Xι), we have

β|,r = lί WltV{λ)δ WlfV{λΎ-δ dμ0 - J Yv(λ)δ Yv{λ'Y~δ dμo\

By Holder's inequality the first integral on the right hand side is bounded
by {S\Wltl,(λ)δ-Yv{λ)δ\llδ)δ. Now for a,b^0 and 0<δ<ί one has
\aδ - bδ\ d\a- b\δ, whence the above quantity is bounded by

U\WltV(λ)-Yv(λ)\dμoγ.

The local Lγ -convergence results of [5] state that this quantity tends
to zero as /-• oo the other term in the right hand side of (2.7) is handled
similarly. Q.E.D.

Remark 6. We conjecture that K{μaΰ{λ\μa0{λ'))=\\m K{μt(λ)9μt(λ%
/-•oo

If this were known, Theorems 6 and 7 could be immediately strengthened
to yield that μ^iλ) is orthogonal to μ^iλ') unless α^ and β^ are both
affine on [A, λ'~\ in which case y^ is also affine and μ^{λ) = μ^(λ').
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3. Proof of Theorem 3

Let g(l) = - Et - ax I - βM and h(l) = - Zfa, + βj + lg{l). Theorem 1 (i)

lim 0(/) = O. (3.1)
/->oo

Theorem 2(ii) may be restated in the form

-l)g(t) + h(l)

+ O(e~m) as ί^CZ-^oo.

This, together with Nelson's symmetry Gttl = Glt yields

h(ή - h(l) = {t-ΐ) [g{ή + g(Γβ + O(e~m)

as l/C^t^Cl-^oo.

Let τ > 0, and consider the above equation, when for the pair (t, ΐ) one
substitutes in turn (l9l + τ), (/ + τ,Z + 2τ), and (Z + 2τ,/). Adding these
three equations, h cancels out, and for fixed τ one obtains

τ[^(/ + 2 τ ) - ^ + τ ) ] - τ [ ^ + τ)-^(0] = O(^--z) as Z-oo. (3.4)

We now replace I in (3.4) by I, Z + τ, Z + 2τ,... and sum the resulting
infinite series. In view of the vanishing of g at infinity, and observing

Σ e~m+Jτ) = * -»τ = O(e-*"), (3.5)
j=o L e

one obtains

τg(l + τ)-τg(l) = O(e-mί), (3.6)

and then repeating the argument

m (3.7)
This proves Part (i) of Theorem 3. Returning to (3.3), we note that when
I ̂  t ^ / + 1 it now asserts

When t ^ I + 1 we write t = l + nτ with τ < 1 then

ft(J + jτ + τ) - Λ(/ + jτ) = τ[_g(l +jτ + τ

+ O(e^ ( ί + j τ ) ) = O ( β ^ ( / + j τ ) ) . '

Summing over j yields as before

We see then that

lim
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Thus h has a limit at infinity, say y^; moreover, passing to the limit
i-»oo in (3.9) yields

Since ηt= — β^ — h(/)// + g(l), the Conclusion (ii) of Theorem 3 follows.
Finally, we combine Part (ii) of Theorem 2 with the asymptotics

of E{ and ηL to see that as t ̂  C/->oo,

G ^ ^ - ί ^ - ί ^ - α ^ ί ί + ̂  + O ί ^ - ^ + ίβ-™'). (3.10)

We now use Nelson's symmetry, together with the fact that t exp(— fh't)
= O(exp(— mi)) for m<ίh'<m. Thus (3.10) is replaced by the uniform
estimate:

Gt^-tEt-lEt-a^tl + y^ + Oie-^ + e-*1) (3.11)

as t, /->oo. Part (iii) of Theorem 3 is now obtained by substituting the
asymptotic expansion for Et and Et into (3.11). Q.E.D.
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