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Abstract. We use the properties of subharmonic functions to prove the following
results, First, for any lattice system with finite-range forces there is a gap in the spectrum
of the transfer matrix, which persists in the thermodynamic limit, if the fugacity z lies
in a region E of the complex plane that contains the origin and is free of zeros of the grand
partition function (with periodic boundary conditions) as the thermodynamic limit is
approached. Secondly, if the transfer matrix is symmetric (for example, with nearest
and next-nearest neighbor interactions in two dimensions), and if infinite-volume Ursell
functions exist that are independent of the order in which the various sides of the periodicity
box tend to infinity, then these Ursell functions decay exponentially with distance for
all positive z in E. (For the Ising ferromagnet with two-body interactions, exponential
decay holds for z in E even if the range of interaction is not restricted to one lattice spacing).
Thirdly, if the interaction potential decays more slowly than any decaying exponential,
then so do all the infinite-volume Ursell functions, for almost all sufficiently small fugacities
in the case of general lattice systems, and for all real magnetic fields in the case of Ising
ferromagnets.

1. Introduction

We investigate here how the asymptotic decay of Ursell and co-
variance functions is related to the analyticity of the free energy as a
function of the thermodynamic parameters of the system, in particular
the fugacity z of the magnetic field. It is generally felt that analyticity
ought to imply exponential decay of the correlations, at least for finite-
range potentials and non-crystalline systems. Indeed in many cases where
analyticity can be proven, such as at low fugacities and/or high tempera-
tures (or fugacities corresponding to non-zero external magnetic fields in
Ising spin systems with ferromagnetic pair interactions), exponential
decay can also be proven as an independent result if the interaction has
finite range [1-5]. No general relationship has, however, been found.

In this paper we shall prove that analyticity does indeed imply
exponential decay for certain types of system. We require, however,
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that the free energy be analytic, in a region E of the complex z-plane
containing the origin, for sufficiently large systems; this is stronger than
requiring only that the thermodynamic limit of the free energy be analytic
in the region E. This is analogous to the result [4] that an exponential
bound for the decay of the Ursell functions for sufficiently large Λ, for
all real z in a region E, implies that the thermodynamic free energy is
infinitely differentiable for all real z in E.

A second aim of the paper is to prove the absence of exponential
decay under certain conditions.

The main new idea is the use of the properties of subharmonic
functions. An outline of this work has appeared earlier [5].

We first consider lattice systems with interactions of finite range.
Here our results are based on the properties of the transfer matrix, the
rate of exponential decay being related to the ratio of the moduli of
its two largest eigenvalues [6]. We show that the logarithm of this
ratio is subharmonic in any region E of the complex z-plane which
intersects the real z axis and is free of zeros of the grand partition function
for periodic boundary conditions. We also obtain a negative upper
bound on this logarithm near z = 0, which is independent of the size of
the system. Using the properties of subharmonic functions, we conclude
that if E contains the origin and remains free of zeros as the thermo-
dynamic limit is approached, this logarithm is bounded away from zero
(i.e. there is a gap in the spectrum of the transfer matrix) for all z in E
as the thermodynamic limit is approached. The proof that the infinite-
volume Ursell functions have exponential decay in the direction of
transfer can now be completed provided that the transfer matrix is
symmetric, which is so if the range of interaction does not exceed one
lattice spacing in any direction. (The proof for non-symmetric transfer
matrices has so far eluded us.) Exponential decay in all directions will
hold if the infinite-volume Ursell functions are independent of the order
in which the sides of the periodicity box become infinite.

In the case of attractive two-body interactions (as in the Ising ferro-
magnet) a different method of proving exponential decay is available.
It combines subharmonicity with Lieb and Ruelle's extension [7] of the
Lee-Yang circle theorem. Since we do not use the transfer matrix in this
case, the range of interaction need not be restricted to one lattice spacing.

We also consider systems with slowly decaying interactions, and
show that for them the correlations also decay slowly. We assume that
the fugacity z satisfies the condition 0 ^ z < α, where a is the radius of a
disk in the complex plane within which the expansions of the distribution
functions in powers of z are known to converge. To prove the result we
show that the negative of the rate of exponential decay of the infinite-
volume Ursell functions is a non-positive subharmonic function of z
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within this disk. For interactions that decay slower than exponentially,
the series expansions show that the rate of exponential decay is 0 at
z = 0, and it follows from the properties of subharmonic functions that
it is 0 for almost all z between 0 and a.

In the case of attractive two-body forces (Ising ferromagnets), the
inequalities of Griffiths, Hurst and Sherman [8] enable us to extend
this result to all positive values of z (i.e. all real values of the magnetic
field variable).

2. Subharmonic Functions

A function ψ defined in a region (connected open set) D C1R2 and
taking values in the set [—oo, +oo) is said to be subharmonic [9] if

(a) ψ takes a value other than — oo for some z in D.
(b) ψ is upper semi-continuous in D.
(c) for any region Dί whose closure lies in D, any harmonic function

h satisfying h(z) ̂  ψ(z) for all z on the boundary of D1 satisfies h(z)^ψ(z)
for all z in Dv

Every harmonic function is also subharmonic, and if /(z) is analytic
in a region D of the complex plane then ln|/(z)| = Re[ln/(z)] is sub-
harmonic in D (Ref. [9], p. 23).

The properties of subharmonic functions that we require are expressed
in the following lemma:

Lemma 1. Let vuv2i... be a sequence of non-positive subharmonic
functions on a region D in <C, such that

lim sup υn(z0) = 0
n —> o o .

for some zoeD. Then for any sufficiently smooth closed arc ,4 of finite
length within D, we have

lim sup vn(z) — 0
n—• o o

for almost all z in A.

Proof. Let C be a sufficiently smooth curve in D which encloses
z0 and includes the arc A. Let G(z', z) be the Green's function for this
contour, so that given any continuous real-valued function /(z), defined
for zeC, the function

w{z') = \G{z\z)f{z)dz (2.1)
c

is harmonic inside C and satisfies

lim w{z') = f(z) (zeC).
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Since vn is subharmonic Eq. (2.1) gives, for any / satisfying f(z) ^ vn(z)
(z e C), the inequality

c

and hence, by taking the "inf' over all such functions /,

υH(zo)^$G(zθ9z)vn(z)dz. (2.2)
c

Since C is sufficiently smooth the Green's function G is bounded below
(Ref. [9], p. 6), by the positive number

Gm i n = minG(z 0 ,z).
zeC

It follows by (2.2) that

C (2.3)

A

Fatou's lemma [10] gives

j lim sup vn(z) dz ^ lim sup J vn(z) dz
A n-*oo n-»oo A

^ lim sup vn(z0)/Gmin by (2.3)

= 0

and since lim sup vn(z) is non-positive the theorem is established.

Corollary to Lemma 1. If vl9v2,... is a sequence of non-positive
subharmonic functions on a region D in C, and lim sup vn(z) < 0 for almost

n-> oo

all z ona sufficiently smooth arc in D, then lim sup vn(z) < 0 for all z in D.
(In particular of vn(z) = v(z) < 0 on some are then v(z) < Ofor all z in D.)

3. The Transfer Matrix

In the present section we formulate the transfer matrix method
for many-body interactions of arbitrary finite range, and show that
in a suitable region of the complex plane the gap between the two largest
eigenvalues of the transfer matrix is a subharmonic function of the
complex fugacity z.

We consider a lattice gas on a d-dimensional periodic cuboidal lattice

yl = {x:x = (x l J . . .x d )andx £ e{0, ί, . . . ,L f -I}}

where L l 5 . . .L d are any positive integers. The configuration of the
system is specified by giving the set X of occupied sites.
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For each configuration X, the energy of the periodic system is

HΛ(X)= Σ ΦΛ(Y)
YCX

Here the interaction potential φΛ is a function on the subsets of Λ, given by

ΦΛ({χ,y})= Σ 0({*.
aeG(Λ)

φΛ({x,y,z})= Σ Φ({x, y + a, z + b}), etc.
a,beG(Λ)

where G(A) = {a = (α1? ...,ad): aJL^Έ) and φ is a function on the
subsets ofZd which is independent of Λ This "free" interaction potential
φ has the properties

φ(X)e{R,+oo} (XcΈd),

φ(X + q) = φ(X) (qeΈd),

φ(X) = 0 if d(X)>R,

where X + q is the set obtained by translating every number by X by
an amount q, d(X) is the diameter of the set X, i.e. the largest distance
between any pair of members of X calculated using the distance function

ϊ

and R is a positive integer which represents the range of the interactions.
The grand partition function ΞΛ is defined by

ΞΛ(z)= Σ expί-jSHΛX))ΞΛ(z)= Σ
XCΛ

where the fugacity z is

(which is independent of x because of translational invariance) and
β > 0 is the inverse temperature. To simplify matters we shall not indicate
the explicit dependence of ΞΛ on β or any parameters in φ.

The transfer matrix T is a square matrix whose rows and columns
are labelled by subsets of a layer of A with thickness R — 1, which we
shall call W:

For any pair /, J of subsets of W, the (/, J) element of T is defined to
be 0 if HΛ(I) or HΛ(J) = + oo, and otherwise to be

Σ Σ ΦΛ(XV
XCl, YCτJ
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where τJ means J + (R,0, ...,0), the set obtained by translating the set
J a distance R in the (1,0, ...,0) direction. Provided Lx is an integral
multiple of R, say Lx = mR, with m ^ 3, the grand partition function can
be written [11]

ΞΛz) = trace (Tm)
ΛX) K } (3.1)

k

where fc = 2' ίΓ' and λl9...,λk are the characteristic values of T. We
assume these to be arranged so that

There is a formula similar to (3.1) for values of L that are not integer
multiples of R, but we shall not need it.

Since the elements of T depend on z, so do the characteristic values λt.
They also depend on W(but not on Lt\ so that a more complete notation
would be λ{(z) or λfa W).

In addition to giving the useful formula (3.1), the characteristic
values of T also control the decay of the correlation functions: as noted
by Onsager [12] (see also [6]) the rate of exponential decay is given
(under suitable conditions on z) by lnl^/zy. (This quantity is also
related to the mass gap in Euclidean field theory: see Section 7 of this
paper.) The Perron-Frobenius theorem [13] tells us that if all elements
of the matrix T are positive then λί is positive and the rate of decay
In |A1/A2| is also positive. The condition of positive matrix elements can be
satisfied if z > 0 and φ (X) < + oo for all X. Even if φ (X) = + oo for some
X, so that some matrix elements of T are 0, we can still show that λί and
In Iλj/Λ l̂ are strictly positive, by ordering the subsets / so that those
with HΛ(I) < ex) come first. Then T can be written in partitioned form

T = Ό

0

0

0
(3.2)

where the characteristic values of T and To are the same apart from
some zeros. Moreover, the two largest characteristic values of T0

2 are
λ^ and λ2

2, and since

= exp l-$βHΛ(I) - ϊβHA m > 0
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we see from the Perron-Frobenius theorem applied to T 0

2 that

V>μ2|
2^o.

By the same theorem applied to T we know that λγ ^ 0 and hence
we can conclude, as required, that λx > 0 and l n l ^ / ^ l > 0 for all z > 0 .

Unfortunately, when we consider the thermodynamic limit, we find
that these considerations only prove exponential decay for the "one-
dimensional" limit, in which Lx becomes large at fixed cross-section W.
It is still possible that lnl/^/zy might go to zero when one or more of the
L 2,..., Ld also become large. In this and the next section we develop a
technique for dealing with this question. The first step is to show that
ln|Λ,2Mil is a subharmonic function of z in a suitable Region D of the
complex plane. Since In|A2/yL1| is negative for z > 0 and non-positive
for all z, this subharmonicity would be enough to prove that In |A2/yL1|
is negative for all z in D at any fixed W9 but not necessarily in the limit
of large W. We therefore prove further that, as W becomes large, lnlΛ^/λJ
is bounded away from zero on an arc in D; then Lemma 1 will give the
required result that In|yl2/yl1| is bounded away from zero throughout
the region and, in particular, at all points in the region for which z > 0.

Lemma 2. Let G be a region (connected open set) in the complex
z-plane which is simply connected, intersects the positive real axis, and is
free of zeros of ΞΛ(z), the grand partition function for periodic boundary
conditions, for all sufficiently large Lγ (at fixed W). Then

(i) lnl/l^z)! is harmonic in D.
(ii) In 1̂ 2(2-)) is subharmonic in D.

(iii) In|>l2(z)/A1(z)| is subharmonic in D.

Proof. By the Yang-Lee theorem [14], we know that the limit

C(z)= lim *ψL (3.3)
L1-+00 L,γ

exists for any z e D, and defines an analytic function ζ in D. The limit
Lγ ->oo is taken at constant W, and ζ(z) therefore depends on W as well
as z, but we do not show this dependence in our notation. The branch
of the logarithm is chosen to be real at some selected point on the real
positive axis (and hence on any segment of the positive real axis that
lies within D and includes this point). For large L, this branch is unique
once the selected point has been chosen, since ΞΛ(z) has no zeros in D.
If D intersects the positive real axis in two distinct segments, we cannot
be sure that ζ(z) is real on the segment that does not contain the chosen
point, but this does not affect our result.

To show that In \λ1 (z)| is harmonic in D, we show that it is proportional
to the real part of the analytic function ζ. Indeed, the substitution of
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(3.1) into (3.3) gives

)= lim In
™->oo mR

1

Σ λ ^ τ

- lim In Σ -?
The first term of the summation in the last line is 1 and the ones after it
are arranged in order of decreasing magnitude. For large m we need
only consider those for which IV^il = U say the first k! terms (k'^t 1);
(as we shall show their sum does not vanish). The sum of these terms is
[15] an almost periodic function of m and therefore includes among
its limit points as m->oo its value for m = 0, which is k'. The sequence
m~1ln\Σ(λi/λί)

m\ therefore includes among its limit points the number
lim(m~ * Ink') = 0. But since z e D w e know that this sequence converges,
and hence its limit is 0 and our equation reduces to

z)\ (zeD).

This completes the proof of Part (i), that ln^^z) ! is harmonic in D.
To prove Part (ii), let z0 be any point in D, let s be the number of

characteristic values with magnitudes at least as great as λ2(z0\ and
choose M so that

Let C denote a contour in the complex A-plane as shown in Fig. 1.

Fig. 1. Contour used in the proof of Lemma 2. In this figure λt means A£(z0

with the radius of the larger circle chosen greater than ^ ( Z Q ) ! , the radius
of the smaller circle chosen equal to M, and the two-way connecting
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path chosen to avoid all the characteristic values Af(z0), and consider the
expression

where

is the characteristic polynomial of T(z\ p'(λ;z) is its derivative with
respect to λ, and the branch of In λ may be chosen arbitrarily. Evaluating
the integral by residues, we see that f(z) is equal to the product of the
characteristic values of T(z) lying between the two circles, and in particular

f(zo) = λ1{zo)...λs(zD).

Since the elements of T(z) depend continuously on z, so do its

characteristic values; hence the formula

holds in some neighborhood N= {z: \z — zo\ <δ} of z0 within which
|As(z)| stays larger than M, Iλ^z)] stays smaller than the outer radius of C,
and no characteristic value lies on the two-way connecting path.

Looking back at the definition of /, we see that the integrand is
analytic as a function of z throughout N and therefore f(z) is also
analytic in N. It follows that ln|/(z)| is subharmonic in JV, and hence
that the function

is subharmonic in N since lnμ^z)! is harmonic by (i). Consequently
we have, for sufficiently small positive δ,

ln |A 2 (z 0 ) |=— ! - Γ lnμ 2 (zo) . . .λ s (z o ) |

^ J \n\λ2(zQ + δeιΘ)... λs(z0 + δeιθ)\ dθ (3.4)
S 1 Z7C o

where the second line comes from the fact that In \λ2... λs\ is subharmonic
in N, and the last from our convention \λ2\ ̂  \λ3\ ̂  .

The inequality (3.4), being true for any z0 in D, is sufficient to prove
(Ref. [9], p. 7) that In|λ2(z)| is subharmonic in D, so that Part (ii) is
proved. Part (iii) now follows immediately from parts (i) and (ii), and so
the proof of Lemma 2 is complete.
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4. The Eigenvalue Gap for Large Cross-Sections

In this section we shall combine the lemma just proved with a further
lemma to prove our main result about the transfer matrix, that under
suitable conditions the gap in its spectrum stays away from zero as the
cross-section becomes very large.

Theorem 1. Let E be a region (connected open set) in the z-plane
which contains the origin z = 0 and is free of zeros of ΞΛ(z) when all of
L i ? L 2,..., Ld are sufficiently large. Then, for any fixed z0 in E, the "gap"
\n\λί(z0)/λ2(z0)\ in the spectrum of the transfer matrix remains positive
(rather than approaching zero) in the limit where any or all of L2,..., Ld

become large.

Proof. For all sufficiently large L l 5 ...,Ld, the region E is free of
zeros of ΞΛ(z) and we can therefore find a simply-connected region D
which satisfies the following conditions

(i) it is a subset of £,
(ii) it contains z0,

(iii) it contains a segment of the positive real axis.
The Region D then satisfies the conditions of Lemma 2, and so

l j is subharmonic in D.
Let vl9 v2,... be the sequence of functions on D defined by

where Wί9W2,... is any increasing sequence of cuboidal subsets of Έd,
all having the same thickness R in the (1,0, ...,0) direction, and with
at least one of their widths L2, ...,Ld in the other directions increasing
without limit as ΐ->oo. The functions u l 5 u 2 , . . . are all negative and,
by Lemma 2 subharmonic on D. Hence, by the corollary to Lemma 1, we
shall have proved our theorem if we can prove the next lemma, which
shows that lnl^/zlj has a negative upper bound, independent of
L 2 , . . . , Ld, on an arc of finite length in D.

Lemma 3. There exists a positive number α, not depending on W,

such that
\z\<a implies |A2(z, W)jλγ{z, W)\ < \z/a\.

Proof. The proof falls into two parts. First, we show that if / and
g are any two functions, one depending only on the configuration in W
and the other only on the configuration in the nth slice in succession
after W, then their covariance (computed in the limit L1-^oo) must
decrease (with increasing ή) at least as fast as \z/a\n when \z\ < a. Second,
we exhibit a pair of such functions /, g whose covariance (in the limit
L1~>co) is exactly \λ2/λ1\

n. It then follows that {λjλ^ S \z/a\ as required.
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For the first part of the proof, let / and g be any real-valued functions
on the subsets W, and define their covariance at distance n as

χ(zin;m,W) = <fτng)-(fy<g>= £ Y[(X)f{XnW)g(τ~"XnW)
XCΛ Λ

- Σ \[{X)f{Xr\W) Σ Y[{X)g{τ-"XnW) (4.1)
, XCΛ Λ XCΛ Λ

where

is the equilibrium measure on the sets X C A, and τ±nX is the set obtained
by translating every element of X by a distance nR in the (1,0, ...,0)
direction, so that A=WvτWvτ2WV'- vτm~1W.

The covariance χ(z, n;m,W) can (see [4]) be expressed in terms of the
distribution functions and thus as a finite sum of products of Ursell
functions u(X, z; A) (called cluster functions in [2]) such that (for m > In)
at least one of the Ursell functions in each product refers to a set X with
diameter ^{n— ί)R. It was shown by Gallavotti and Miracle-Sole [3]
that such Ursell functions have a bound independent of A (for sufficiently
large A) of the form

\u(X,z;A)\^C(X,z')\z/α\" for \z\<,z'

where z' is any positive number less than α, and α is a known lower
bound on the radius of convergence of the Mayer fugacity expansions.
Hence, by expressing the averages in (4.1) in terms of Ursell functions,
we can prove that

lim for \z\£z' (4.2)

where A depends on /, g, and z! but is independent of n. When / and g
depend on W then A will also depend on W.

For the second part of the proof, we choose/and g so that χ(z, n m.W)
is equal, in the limit m-»oo, to l^/zlj"; then it will follow, by considering
the ratio of the two sides of (4.2) for very large n, that \λ2/λx\i^\z/α\.
Let P be a non-singular square matrix such that Q = P~λ TP is in Jordan
normal form with λx in the top left-hand corner and λ2 next to it on the
diagonal. Denoting the columns of P by |1>, |2>,... we have, for z real,
since λ2=¥λί9

A1|1> and T\2} = λ2\2}. (4.3)

For each / C W we define

g(I) - ^ j ^ if HΛ(I) < oo and - 0 if not,

where </| denotes the row matrix with a 1 in the position labelled by
/ and zeros everywhere else; thus </|l> is the entry labelled by / in
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the column matrix |1>. We also define

/(/) = j ^ if HΛ(I) < oo and = 0 if not,

where |/> is the transpose of </|, and <1|, <2|,... are the rows of P " 1 ,
(which are proportional to the transposes of |1>, |2>,... if and only if
T is symmetric). The Perron-Frobenius theorem guarantees that the
denominators in /(/) and g(I) are not zero.

The usual transfer matrix methods [6, 11,12,16] give

tr (FTnGTm'n) tr(FΓm) tr (GTm)

Σ ^ (Σ λι
r \ r

where F and G are diagonal matrices with entries

These matrices have the properties

<1 |F = <2|
(4.4)

G|l> = |2>

since, for example, G | i > = £ |/> g(I) </11 > = £ |/> </12> = |2>.
lew i

We can evaluate χ(z, n;m,W) in the limit m^oo by using the formula

lim trμT m -")/trT m = <iμ|l>ylΓ"
m-* oo

which holds (if z > 0 ) for any 2 | ί r | x 2 | ί F | matrix v4 and is proved by
noting that tr{A Tm~n) is the sum of the diagonal elements of P " ιA Tm~nP;
this method gives

= (λ2/λiγ (z>0)^j

by (4.4) and (4.3). Combining (4.5) with (4.2) and considering large
values of n as indicated above, we complete the proof that |/l2Ail =z/a

for all positive z < a.

5. Proof of Exponential Decay

To see what is still necessary for a proof of exponential decay, consider
the two-point Ursell function u(x9 y Λ) for some fixed z in D. Our result
about the gap in the spectrum implies (see below for a proof) that

lim \u{x,y;Λ)\SΛe~κ^~y^ (5.1)
m • oom—• oo

with K independent of W (i.e. of L 2,..., Ld). To deduce that the infinite-
volume Ursell functions decay exponentially as xί —yί becomes large,
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we want to take a limit W^oo (i.e. L2,..., Ld->oo) on both sides of (5.1)
and we therefore want to ensure that A remains bounded in this limit.
This will be done in Theorem 2. Unfortunately, our proof only works if
the transfer matrix is symmetric, and to ensure this we restrict the range
of interaction by taking # = 1 . For example, in two dimensions this
restricts us to nearest and next-nearest neighbor interactions (and
hence to no more than four-body interactions).

We also want to prove exponential decay when \x1 — y j stays finite
but some other component of the separation, say \x2 — y2l becomes large.
Provided the Ursell functions are independent of the order in which the
sides Lί9L2,... of our periodicity box tend to infinity, we can prove
exponential decay in this case by reversing the roles of the Lγ and L2

directions throughout, using a transfer matrix that transfers in the L2

direction. On the other hand, if the Ursell functions do depend on
the way the limit is taken, our theorem only proves exponential decay
in a direction parallel to the direction of transfer. We know, since the
Ursell functions are bounded on the real z-axis (cf. [17]), that for any
increasing sequence of boxes with L l 5 ...,Ld-+oo there will be a sub-
sequence on which the Ursell functions approach a limit, but this
limit need not be the same for a sequence that starts with Lί-*co as for
one that starts with L2->oo.

Theorem 2. Let ΞΛ(z) and E be as in Theorem 1, but with the range
of interaction R restricted to be 1: and let z0 be any positive element of E.
Let WUW2,... be an increasing sequence of "cross-sections" [i.e. cuboidal
subsets of Έd having the form {(1, x2,..., xd): Orgx^L; — 1}] and select
a subsequence on which the limit

u(X)= lim lim u(X,zo;Λ)
W-+ oo Lι-*co

exists. Then u(X) decays exponentially in the (1,0,...,0) direction; that is

< 0 if \X\*2 (5.2)
di(X)-oo d^X)

where dx{X) is the diameter of the projection ofXonthe{ί,09...,0) axis.

Corollary. // u(X) = lim u(X, zo;Λ) exists, then Eq. (5.2) holds
L\,...,Ld~* oo

with d(X) replacing dx(X).

Proof. We can [4] write u(X, z0 A) as a finite sum of terms of the form

±Q(X';Λ)IQ{Y1VY2',Λ)-Q(Y1 9Λ)Q(Y2;Λ)-]

where (X\ Y1? Y2) is a partition of X such that the largest (1,0, ...,0)
coordinate in Yx differs from the smallest in Y2 by at least d(X)/(s— 1),
and ρ(...) denotes the usual distribution functions (often called correlation
functions). Since \Q(X'I A)\ ̂  1 when z0 > 0, it is sufficient to show that the
quantity in square brackets is bounded above by |/12MIΓ where

k — 1). The proof of this fact is given in the following lemma.



178 O. Penrose and J. L. Lebowitz

Lemma 4. // Yl9 Y2 are two finite subsets of Έd, such that every
element of Yx has a smaller (1,0, ...,0)-coordinate than every element
of Y2, then

\ρ(Y1uτnY2;A)-ρ(Y1;A)ρ(τnY2;A)\^(λ2/λ1)\

Proof. Let Y1 occupy the first /q slices of A and Y2 the next k2, i.e.

Then we have

ρ(Y1;Λ) =
XCΛ I XCΛ
XDYl

= tr{FTm-k>)/tτTm^(ί\F\ί} λϊkί as m-+oo

where F = F0TF1T...Fkι_2TFkί_1T and Ft is a diagonal matrix with

ίl if

Similarly

where
G = GklTGkl + 1...TGkl+k2_1T

and Gf is a diagonal matrix with

(0 if not.

[0 if not.
Finally we have

lim ρ(y 1uτ f IY 2;yl)= lim tτ{FTnGTm-kl-k2~n)/tτTm

since T, being symmetric, has a complete set of eigenvectors. Hence

\imlρ(Y1uτnY2;A)-ρ(Y1;A)ρ(τnY2;A)-]

< l | F | r ) < r | G | 1> λr

n/λί

kι + k2 + n (5.3)
Ί
1 Γ/i\F\r\l2 V Γ/rl ίi\\ \121 χ/2 Π "/J Λi+fc2 + «|

_̂  L x ^ ^ K / J 2^ L \ r l ( j r l 1 / J \ \λ2 IA\ I
r Φ l r Φ l J

by the Schwarz inequality.
To estimate the right-hand side of (5.3) we introduce, for each kxk

real matrix A, the usual norm ||^4|| = m a x | < p M | g > | where <p| and \q)
PA



Decay of Correlations 179

are row and column vectors of unit Euclidean length. This norm has the
property \\AB\\ ^ \\A\\ \\B\\. Since T is symmetric, the matrix P which
diagonalizes T may be chosen to be real orthogonal, and then each left
eigenvector <r| is the transpose of the corresponding right eigenvector |r>.
Hence we obtain

r Φ l

S\\Fo\\\\T\\\\Fί\\\\T\\...\\Fkι_ί\\\\T\\

since F is symmetric and || T || = λl9 \\Ft || = 1. Using this and the analogous
estimate for £ |<r| G| 1>| in (5.2) we obtain

rΦl

lim

This completes the proof of the lemma.
A more concise version of the argument based on (5.3) is this:

[Urn lρ(Y1uτnY2;Λ)-ρ(Y1;Λ)ρ(τnY2;Λ)\

= |<l |F(T- | l>λ 1 <l |)"G| l>/V 1 + fc2 + Ί

^\\F\\\\T-\ί>λ1<t\\\n\\G\\/λ1

k* + k> + n

since \\T— \ί}λ1(κί\ \\ = \λ2\. This shows why we need a symmetric T;
for if T— |1> A1<1| were non-symmetric then its norm could greatly
exceed its largest eigenvalue λ2.

6. Potentials of Longer Range

In what follows we shall apply our lemmas about subharmonic
functions directly to the infinite-volume Ursell functions (or more general
covariances) to study their decay properties. The idea is contained in the
following lemma:

Lemma 5. Let S be any positive integer and f{X; z) be a function of
X = {x(1\ ...,x(s)} with x{i)eZd or Rd, and of zeD where D is a region
in the complex plane, such that

(i) for any fixed X, the function f(X, z) is analytic in z throughout D,
(ii) \f(X;z)\^i.
Let S(X) be some positive-valued function of X which goes to infinity

as d(X)~^co \e.g. S(X) could be d(X) itself, or the length of the shortest
path connecting all points in X]. Finally, let A be any smooth arc in D.



180 O. Penrose and J. L. Lebowitz

Then
\n\f(X;z)\

(a) if lim sup < — K for almost all z e A
s(x)-*£ S(X)

where K is a positive number, then

ln|/(X;z)|
lim sup < 0 for all zeD ,
S(X) S(X)

ln|/(X;zo)|
(b) if lim sup = 0 for some zne D

d(x)-+£ s{x)
then

ln|/(X;z)|
lim sup = 0 for almost all ze A.
sw->» S(X)

Proof. Since ln|/(X;z)| is a non-positive subharmonic function
of z for ze D, the Statements (a) and (b) are direct consequence of Lemma 1
and its corollary.

To apply this lemma, we need some kind of upper bound on the
infinite-volume Ursell function u(X, z) or whatever other function we
are interested in. For example suppose we know an upper bound
\u(X,z)\SM(X)(zeD) such that lnM(X)/S(X)-+0 as d(X)->oo. Then
our lemma applied to the function f(X;z) = u(X;z)/M, tells us that
if u(X, z) decays exponentially as exp [ — κS(X)~\ on some arc in D then it
does so throughout D. Conversely, if there is a z in D such that u(X, z)
decays more slowly than exp[ — κS(X)\ however small we choose K,
then it decays slower than exponentially at almost all points on any arc
A in D; in particular, it decays slowly at almost all points on the real
axis contained in D.

Ising Spin System with Ferromagnetic Pair Interaction

Our first application of the lemma is to a lattice system in which
φ(X) ^ 0 when X contains two sites and φ(X) = 0 if X contains more than
two sites. This system is isomorphic to an Ising spin system with ferro-
magnetic pair interactions J{x, y)= — ̂  </>(*, y) and external field
h = (\nz)/2β-±Σφ(x,0\ i.e. z = z0e

2βh where zo = exp[-ijB£0(*,O].
X X

The lemma enables us to dispense with the condition R= 1, which we
had to impose in Theorem 2 to make the transfer matrix symmetric.

It is known [21] that the infinite-volume Ursell functions exist
for this system and are independent of boundary conditions for all
positive β when h φ 0 and for all positive β < βc when h = 0, where βc

is the reciprocal of the temperature at which spontaneous magnetization
sets in. It is also known [1] that when the interaction has finite range
the Ursell functions decay exponentially for all positive β when h Φ 0.
For h = 0 Gallavotti and Miracle-Sole [3] proved exponential decay
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of the correlations at sufficiently small values of β, i.e. β < β' where β'
is much smaller than βc. It is now possible by the use of our lemma to
extend this result to larger values of β, those satisfying β < β"9 where β"
is the smallest reciprocal temperature at which the point h = 0 (i.e. z = z0)
is a limit point of zeros of ΞA. One would expect to find β" = βc, though
this has never been proven; at any rate the Gallavotti-Miracle result
shows that β" ̂  β'. To accomplish this extension, we need a bound of the
form \u(X, z)\ < M(\X\) for z e D where D is a region containing the point
z = z0. Such a bound can be obtained either from the work of Lebowitz
and Penrose [1] or more elegantly [18] from a theorem of Lieb and
Ruelle [7]. We shall not go into any detail here since a similar result,
giving stronger decay properties of the Ursell functions, was recently
obtained by Duneau, Iagolnitzer and Souillard [19] using a method
which does not use subharmonicity arguments. Their method does,
however, use the Lieb-Ruelle theorem for proving that the Ursell
functions are bounded in a suitable domain. We refer the reader to
their paper for further details.

As an application of Part (b) of our Lemma we shall prove the
absence of exponential decay of the Ursell functions at small values of
z for lattice systems for which the two-body part of the interaction
potential decays with distance more slowly than any exponential -
for example an interaction proportional to r~6. (In our earlier note [5]
we stated that the two-body interaction potential must have constant
sign at large distances, but this restriction is unnecessary.) The result
can also be proved for continuous systems (for pair interactions, at least)
but we shall, for simplicity, only consider explicitly the lattice case and
the two-point Ursell function here.

Theorem 3. In a lattice system for which the two-body part of the
interaction potential satisfies

hι\φ(x9y)\ Λhm sup — — — — = 0
d(x,jo-o d(x,y)

where d(x, y) means max \xt — yt\, there exists a positive number a such
i

that the infinite-volume two-point Ursell function u({x,y},z) satisfies

( )

d(x,y)

for almost all fugacities z satisfying 0 < z < α.
Proof. In Lemma 5 we take 5 = 2 and D any region which contains

z = 0 and whose closure is contained within the set {z: |z |^α} where
a is any one of the known lower bounds on the radius of convergence
of the Mayer fugacity expansion (for Ref. see [3]). Then we can take
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where M is the upper bound on W({JC, y}, z)/z2, independent of x and y,
given in [2] or [3]. By continuity at z = 0, we have from the Mayer
series formula

Applying Part (b) of Lemma 4, with S{X) = d{X) and z0 = 0, we complete
the proof of Theorem 3.

Like its predecessor, Theorem 3 can be strengthened in the case of
ferromagnetic pair interactions.

Theorem 4. In an I sing ferromagnet for which

hm sup ——̂ —f̂ - = 0
du.jo-oo d(x,y)

the infinite-volume two-point Ursell function u({x,y};z) satisfies

lni/ίίx, y}, z)
hm sup u y[ J = 0
du, 30-00 d(x,y)

at all positive values of z: that is, all real values of the magnetic field.

Proof. The inequalities of Griffiths, Hurst, and Sherman [8] show
that the two-point Ursell function at fixed JC, y does not decrease as
the magnitude of the (real) magnetic field decreases. We have shown
in Theorem 3, however, that the rate of exponential decay in this Ursell
function is zero for almost all sufficiently small z—i.e. almost all sufficiently
large negative h. Therefore the GHS inequalities imply that it is zero
at all negative values of h and at 0 too. By symmetry under the reversal
of h, it is also zero at all positive values of h. This completes the proof of
Theorem 4.

7. Discussion

1. The main result in Lemma 2 is the proof of Part(ii), that In|/I2|
is subharmonic. This result is not specific to transfer matrices, nor to the
second largest eigenvalue λ2. In fact if T(z) is any compact operator
on a Banach space, which depends analytically on z when z lies in a
Region D of the complex plane, and if ^(z), λ2(z\ ... are its eigenvalues
arranged in decreasing order of magnitude, then for any fixed integer s
the function In|λ1(z)λ2(z)...λ s(z)| is subharmonic for z in D. The proof
is similar to that of part (ii) of Lemma 2: if λr(z0)... λt(z0) are the eigenvalues
with modulus equal to λs(z0) we show that f(z) = λr(z)λr+ί(z)...λt(z)
is an analytic function of z in some neighborhood z0, hence that ln\f(zo)\
is no greater than the average of ln\f{z)\ over a small circle centered
at z0, and the result follows. Parts (i) and (iii) of Lemma 2 also have
natural analogues for compact operators.
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The resulting generalization of Lemma 2 is practically the same
as the one used by Guerra, Rosen, and Simon [21] in their proof that for
suitable boundary conditions the P(φ)2 Euclidean field with P(φ) = αφ4

+ bφ2 — hφ, α>0 and h>0 has a non-zero mass gap. This field is
analogous to a two-dimensional Ising ferromagnet with nearest neighbor
interactions in a finite external magnetic field. There were however
great additional technical difficulties in the field theory case since
there is no simple proof, analogous to that given in section 4, for the
existence of a gap at small fugacities (high magnetic fields) independent
of the boundary conditions on the transfer matrix.

2. In our results involving the transfer matrix in Sections 3-5
we restricted ourselves to periodic boundary conditions. In general the
transfer matrix method is applicable to a cubodial domain A with
arbitrary boundary conditions bx on the faces of A perpendicular to the
direction of transfer (the planes xί = 0 and x1 = L1 — 1 in our notation)
and boundary conditions bw, which are invariant under τ, on the other
faces. Writing such boundary conditions as bΛ = (b1,bw) it seems
essential for the results of Section 3 (subharmonicity of lnl/î /yij in
the Region E) to use periodic boundary conditions for b1; for only then
does Eq. (3.1), ΞΛ = YJλi

m, hold. The eigenvalues λt will, of course,
i

depend on PFand bw as well as on z. The theorems proven in Sections 3—5
then hold (with the appropriate change in the definition of the Region E)
for arbitrary bw. A further relaxation of the conditions is that in order to
obtain exponential decay in the xx -direction we need require in Section 5
that the range of interactions be 1 only in the xx -direction. To obtain
true exponential decay we need of course the restrictions and additional
unproven assumptions discussed in Section 5. How to dispense with
these remains an open question.

3. Our analysis in Section 6 does not assume any particular boundary
conditions, i.e. it holds for all equilibrium states whose Ursell functions
satisfy the appropriate analyticity and boundedness conditions. Hence
it applies in particular to the nearest-neighbor planar Ising antiferro-
magnet studied by Brascamp and Kunz [22]. They showed that at low
temperatures there is an annulus, centered at the origin of the z plane
and containing the zero-magnetic-field point z = z0, within which the
infinite-volume Ursell distribution functions obtained using 'alternating
boundary conditions' are bounded and unique. This is therefore a
further case in which our Lemma 5 could be applied.

4. We have only considered subharmonicity in the fugacity plane
here, but very similar results can be obtained for any other parameter
in the function βH, for example the inverse temperature β. There are
even some generalizations using spaces of many complex variables.
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5. A further application of subharmonicity has been made by
Guerra, Rosen and Simon [21]. They point out that a non-positive
function subharmonic in a Region D can approach zero no faster than
linearly as the boundary of D is approached. Consequently for an Ising
ferromagnet, the gap ln|22//l1| goes to zero no faster than linearly as the
magnetic field goes to zero at constant temperature. As they point out,
this result implies some bounds for critical exponents.

6. There appears to be some relation between the arguments used
in this paper, especially those in Section 6, and some very general
results of Zerner on the asymptotic behavior of functions depending
on a complex parameter [23].
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