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Abstract. The irreducible multiplier corepresentations of the extended Poincare
group £P are, for positive and zero mass, determined by generalized inducing from a
generalized little group. This approach is compared with the previous one of Wigner.
For m > 0, and any spin j , a particular realization is noted which is manifestly covariant
on all four components of 0>. The choice of covering group for 0> is discussed, and reasons
are given for preferring a group for which S and T generate the quaternion group of order 8.

§ 1. Introduction

1.1. In this paper we consider, following Parthasarathy [7], Lever [4]
and Shaw and Lever [10], a new approach* to the problem of determining
all the physically relevant irreducible multiplier corepresentations (see,
for example, [10]) of the extended Poincare group 0> (and hence of
determining the corresponding irreducible PlL4-representations -
see [7] - of SF). By "physically relevant" we mean those representations
such that p2 ^ 0, p4 > 0 and, in the case p2 = 0 of zero mass, such that
the spin is finite.

As all physicists know, the positive energy condition p4 > 0 entails
that time reversal T and space-time inversion ST=—I must be re-
presented by antiunitary operators, and space inversion S by a unitary
operator. In other words, in the terminology of [7], we consider only
those PlL4-representations associated with the particular (/^-de-
composition

0> = 0>ϊκj&i . (1.1)

In this paper we will not at all discuss the problems (see [14], [3])
of the physical interpretation or existence of the discrete symmetry
operators. Our object instead is to clarify the possible mathematical
approaches to the problem alluded to in the opening paragraph. In
particular we will describe a new method of attack on the problem which

* Note Added in Proof: See [15] for a simplified account of the approach in the
case of non-zero mass.
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has considerable virtues of clarity and simplicity over the more customary
approach.

In § 2 we outline the usual way (essentially that of Wigner [12], [14])
of tackling the problem. First of all representations of the restricted
Poincare group 0>\ are obtained, using for mass m > 0 the little group
S (7(2) and for m = 0 the little group δ [as defined in Eq. (2.7)]. The difficulty
in this method now comes in adjoining the reflection operators.

The virtue of the new method, as described in § 3, is that the reflections
are incorporated already at the little group level. In particular there
is no need to induce up to the Poincare group level in order to determine
(see §4.4 of [10]) the Wigner type (also the commutant [I/]) of the
corepresentation, and so settle the question of whether or not a doubling
(or even, in the case m = 0, j φ 0, a quadrupling) of spin states occurs
for a given 4-momentum.

Physically it should already be obvious what the generalized little
groups must be. For under the usual Wigner-Liiders interpretation
of time reversal as motion reversal, the representatives of both S and T
will send a state of 4-momentum p0 = (0,0,0, m) into another one of
4-momentum p0. Bearing in mind that S, T commute with spatial
rotations, the generalized little group Lpo in the case m > 0 can be taken
to be the direct product S (7(2) x F 4 , where F 4 , the discrete group generated
by S and T, can be identified1 with the Klein 4-group {e, a, b, c}:

e = I, a = ST, b=T, c = S. (1.2)

Similarly in the case m = 0 we see that the generalized little group of
p0 = (0,0,1,1) is generated by δ together with the y-reversal (xl9 x2, x3, x4)
H>(X1 ? — χ 2 , χ 3 , χ 4 ) and space-time inversion X H > - χ 9 and hence is
given as in Eq. (3.16).

It is quite an easy matter to determine the relevant irreducible
multiplier corepresentations of these generalized little groups. By
applying Mackey's theory ([5], [6]) of group representations, generalized
as in [4], [7], and [10] so as to apply to the case when some group
elements are represented antiunitarily, we thereby obtain all the desired
irreducible multiplier corepresentations of 0>. (It should be noted that
§ 5 of [7] contains an oversight, in that an incorrect action upon the
characters is employed, leading to the incorrect choice SU(2)xF2

for the generalized little group in the physically relevant - Eq. (1.1) -
m > 0 case.)

Whether one adjoints the reflection operators at the Poincare
or at the little group level, "Clifford's Theorem" and its generalizations

1 The notation is chosen so that the element a in Eqs. (1.2) can be set equal to the
fixed element aeG~ used throughout [10].
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will be found useful2, in that it relates representations of a group to
those of a subgroup of index 2. As usually quoted (see for example
Theorem 13.3 in Boerner [1]) it refers to ordinary representations;
its generalization to multiplier representations is easily obtained (see
§ 3.4 of [10]). Of more point is the generalization to ordinary core-
presentations - this was in part sketched already in § 6 of Clifford's
paper [2], but given in full detail by Wigner ([13], Chapter 26), with a
resulting classification of ordinary irreducible corepresentations into
three types I, II, and III. Actually what is needed is a combination of
both generalizations, so as to apply to irreducible multiplier corepre-
sentations; this was carried out in [10] - see especially Theorem B -
and again there are three Wigner types I, II, and III.

Before describing the two methods in more detail, let us first of all
describe the extended Poincare group ^ , and also a certain covering
group Φ we will also take this opportunity to note the possible multipliers
for the Klein 4-group gPj&X and for Φ, and to determine all the irreducible
multiplier corepresentations of the Klein 4-group.

In § 4 we will make out a case for preferring another covering group
of 0>. However Φ is good enough for most purposes.

1.2. The extended Poincare group SP, and its identity component
0*1, are semi-direct products

^ = <ίΓθ^?, ^l=^Q^U (1-3)

of the abelian invariant subgroup ^ , consisting of all the spacetime
translations, with the appropriate homogeneous Lorentz group S£ or ££\.
As usual, it helps instead to work with the simplyconnected covering
group of &>l, namely

)9 (1.4)

with multiplication law defined by

(x, A) (*', A') = (x + A(A) x\ A A'), (1.5)

where A^->A(A) denotes the familiar covering homomorphism from
SL(2,C) onto <£\, with kernel Z 2 = {/, -/} .

Now the extended Lorentz group is a semi-direct product

se = sex Θ F 4 , F 4 = {/, ST, r, s}, (1.6)

where F4 is isomorphic to the Klein 4-group, as in Eq. (1.2), and where
FeF4 acts upon S£\ by inner automorphism: A\-*FAF~ι. Since

2 Of course - see § 4 of [10] - Clifford's Theorem, and its generalization to corepresen-
tations, can be viewed as very simple instances of the ordinary, and generalized, Mackey
theory.
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SL(2, C) is the universal covering group of S£\, there is a corresponding
unique automorphic action Av-*F{A) of FeF4 upon SL(2,C) which
satisfies

. (1.7)

Hence we may define a covering group ££ of if by

j£ = SL(2, C) OF 4 . (1.8)

Explicitly the action of F 4 upon SL(2, C) is given by

S(A)=T{A) = {A1f)-l

9 ST{A) = A. (1.9)

We can now define a covering group Φ of ̂  by

^ = ̂ θJSf, (1.10)

where the action of (4, F)e£? upon ^ is given by

(yl,F)x = /l(/l)Fx. (1.11)

In full detail the multiplication law for the group Φ = ?Γ Θ(SL(2, C) OF4)
thus reads

(x, A, F) (x', A\ F ) = (x + Λ(A) Fx', AF{A'\ FF'), (1.12)

and the covering homomorphism A: Φ-+0* is given by

(x,A,F)^{x,A(A\F). (1.13)

It is known (see for example Corollary 1 on page 51 of [8], or
Theorem 10.40 of [11]) that every multiplier of Φ\ is trivial, and that
accordingly the projective unitary representations of S?l are in J — 1
correspondence with the ordinary unitary representations of Φ\. It
is also known (see Table 1 in [14], or Table (ii) in [7]) that every multiplier
for the Klein 4-group {e, a, b, c}, with respect to the [/^-decomposition
{e9 c}u{α, b} (see Eq. (1.2) in [10]), is equivalent to one of the four
multipliers σaβ (where α = + l,/?= + l) given by Table 1.

Piecing together these two items of information, and using the facts
that Φ can also be viewed as the semi-direct product Φ\ OF 4, and that
Φ\ has no non-trivial characters, one can prove (see Lemma 5.2 of [7])

Table 1. The inequivalent multipliers of the Klein 4-group (with G+ = {e, c})

e
c
b
a

e

1
1
1
1

c

1
1
aβ
aβ

b

1
1
a
a

a

1
1

β
β
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that every multiplier for Φ, with respect to the ^-decomposition
Φ^KJΦ^', is equivalent to one of the four multipliers σaβ defined by

σ«β((x, A, F)9 (*', A\ F)) = σ«β(F, F ) . (1.14)

13. Using Theorem B of [10], it is an easy matter to determine,
for each choice of multiplier σaβ in Table 1, all the irreducible σaβ-
corepresentations of the Klein 4-group, up to unitary equivalence.
[There are of course only two choices D± (both of dimension 1) for the
irreducible representation D of H={e,c}, namely D + , D ~ , where
D±(c)= ± 1.] The results are displayed in the following table:

Table 2. The irreducible σa ^-^representations U;β of the Klein 4-group (the label η = ±ί
being required only in the two cases ct = β)

Value of

a

1

- 1

1

- 1

β

1

-1

•;}

Wigner

type

I

II

III

Di-

mension

1

2

2

Uaβ

±1

(ί

c

(c)

l)

- 3 -

/0 - κ \
± U 0/

/ 0 βκ\

\-κ 0 /

K

\κ

(°
0/

βκ\

0 /

The carrier space has been taken to be C in the case (x = β = \ and to be
C@C in the other cases, with /c:C-»C denoting complex conjugation

Observe that each of the four choices σaβ of multiplier gives rise
to just one irreducible PCL4-representation Uaβ. In the two cases α = j8,
but noί in the two cases α = - j5, observe that t/α/? possesses two unitarily
inequivalent versions t/α^, U~β (obtained by choosing the upper and
lower signs in the first two entries in the table) - both U+β9 U~β having
the same multiplier σaβ.

Let us analyse this last situation a little further. As discussed in
§ 1.3 of [10, for a given multiplier σ for a group G one can be interested
in classifying the irreducible σ-corepresentations of G up to (ordinary)
unitary equivalence - and not merely up to projective unitary equivalence.
In general we obtain thereby a finer classification, since (as we have just
seen) a P£L4-representation U may possess versions Uί9 U2, having
moreover the same multiplier σ1 = σ2 = σ, which are unitarily
inequivalent.
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Now two σ-corepresentations U1, U2 are versions of the same
PUΛ-representation U if and only if they satisfy

U2(g) = λ(g)Ui(g) (1.15)

for some generalized character A for G:

λ(g)λ(g'Y = λ(gg'), (μfa)| = ί ) . (1.16)

It may or may not be the case that U1 and U2 are unitarily equivalent.
When A is a trivial generalized character, i.e. one of the form Aα (for some
α e C o f unit modulus) given by

then l^ and (72 are always unitarily equivalent, since we obtain

upon taking P = βl, with /?2 = α. Clearly we are only interested in
determining the generalized characters of a group G up to equivalence,
two characters A, A' being defined to be equivalent if A' = λaλ for some
trivial character Aα.

Up to equivalence the Klein 4-group has just 2 generalised characters
(with respect to the U^-decomposition {e, c}u{α, b}) A+, A", given by

A ± ( α ) = l , A±(&) = ± 1 , A±(c) = ± l . (1.19)

As indicated in the above table, an irreducible multiplier corepresentation
U of {e, a, b, c} of type I or II, but not of type III, is unitarily inequivalent
to A" U.

§ 2. Irreducible Multiplier Corepresentations of # — Method 1

2.1. If U is an irreducible σa^-corepresentation of Φ, then (by con-
sidering £ / j # r - see Theorem A in [10] - and using Schur's lemma)
we find that the element — IeSL(2, C), which belongs to the centre of
Φ, is represented by +/ . It follows that the irreducible PUA-representa-
tions V of 0> are in 1 — 1 correspondence with the irreducible PUA-
representations U of Φ by means of the relation U = F° A, with A as in
Eq.(1.13).

Now the only representations of Φ\ of dimension 1 is the trivial
one. Hence, by §1.3, if U1,U2 are distinct σaβ-corepresentations of
Φ = Φ\ OF4 which are versions of the PίΛ4-representation U of Φ,
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then, up to unitary equivalence, the only possibility is that U2 and U1

are related by
U2(x9A9F) = λ-(F)U1(x9A9F).

Of course it may still be the case that U1 and U2 are unitarily equivalent.
Corresponding to Uu U2 we can find versions F l 5 V2, having the same
multiplier ωα/?, say, of the PlL4-representation Kof & such that

U^V^Λ, U2 = V2oΛ and V2{x9 A,F) = λ~(F) Vχ{x9Λ9F).
Since the only representation of 0>\ of dimension 1 is the trivial one,
up to unitary equivalence there are no other versions of V with multiplier
ωaβ other than Vl9V2. Thus in order to determine the irreducible
multiplier corepresentations of ̂ , it suffices to determine the irreducible
σα/?-corepresentations of Φ for each of the four choices α = ± l , / ? = ± l
of σaβ.

2.2. Irreducible Unitary Representations of Φ\. Restricting our
attention now to Φ\9 and recalling that σaβ, thus restricted, is = 1, we
see that the P C/-representations of 3P\ are in 1 — 1 correspondence with
the ordinary unitary representations of Φ\. Since the latter group is a
regular semi-direct product 3ΓQSL(2,C\ its unitary representations
are most powerfully determined by applying Mackey's theory of induced
representations. Although the details are very well known, we repeat
them here so as to allow the generalization in § 3 to stand out in full
clarity.

The characters χpe^ {= the dual group of 2Γ) are of the form
χp(x) = exp(ip x). The natural action of A e SX(2, C) upon 2Γ is χκ>^4χ,
where

= χ(A(A-1)x); (2.1)

in terms of the 4-momentum p rather the character χp it reads simply

p^Λ(A)p. (2.2)

The isotropy group Gp of χp is accordingly

Gp = ^OLp, (2.3)

where the little group Lp is given by

Lp={A:Aχp = χp,AeSL(2,C)}

= {A:Λ(A)p = p,AeSL(2,C)}.

On each of the physically relevant (m ̂  0) orbits p2 = m2, p 4 > 0 we
choose a particular 4-momentum p0. The [m,j] representation of
Φ\ is then obtained as the induced representation

(2.5)
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where Uj is a (finite-dimensional) irreducible unitary representation of
Lpo = GVJ3~. If m > 0 and we take p0 = (0,0,0, m), then the little group is

Lpo = SU(2) (2.6)

and Uj is the familiar spin j representation Dj of dimension 2 / + 1 ,
j = 0, \, 1, f,.... If m = 0 and we take p 0 = (0,0,1,1), then the little group is

p δ)^.^c,N = i| (2.7)

and the (physically relevant) irreducible unitary representations Uj are
the 1-dimensional ones Vj given by

KVζ fω) = ω2^ 0 = 0, ± i ± 1 , i f , . . . ) , (2.8)
where y4ζ ω denotes the 5L(2, C) matrix in Eq. (2.7).

[The group SjZ2 is isomorphic to the non-compact group of proper
Euclidean motions in the plane; only when the "translations" AζΛ are
represented trivially can we obtain a finite- (in fact a one-) dimensional
irreducible unitary representation; the infinite-dimensional represen-
tations of $ are ruled out by the physical requirement that, for a given
4-momentum, only a finite number of linearly independent spin states
should be possible.]

2.3. Adjoining the Reflections. The problem now is to construct
all those irreducible multiplier corepresentations of Φ which decompose
on restriction to Φ\ into direct sums of the representations [m,j].
This problem was solved by Wigner [14], who first of all adjoined space
inversion S - using essentially "Cliffords Theorem" (see § 3.4 of [10]) -
and then carried on to adjoin time reversal T and space-time inversion
ST- using essentially Theorem B of [10]. However, operating as Wigner
does at the Poincare group level, the problem is far from trivial; even the
adjoining of S can involve a "surprising amount of computation"
(Wigner [14], § 8). In § 3 we will demonstrate how much simpler it is to
adjoint the reflections at the little group level, using "generalized
inducing" from a "generalized little group".

2.4. Irreducible Unitary Representations of 0*^. Actually if we are
only interested in the lesser problem of adjoining space inversion, then
only ordinary inducing is involved; it may therefore be worthwhile
seeing how simple this lesser problem becomes at the little group level
before moving on to generalized inducing. For m > 0 the little group is
now

with irreducible representions3 Dj± given by

Dj±(A,F) = Dj(A)D±(F)9 where D ± ( S ) = ± 1 , (2.10)
3 According to Eq. (1.14) and Table ί,σ=ίϊoτΦ\



Irreducible Multiplier Corepresentations of the Extended Poincare Group 287

and having therefore the same dimension 2/ + 1 as Dj. Thus by operating
at the little group level it is immediate that no doubling of dimension
occurs upon incorporating space inversion. Upon inducing we obtain
the required representations Um'j'±, say, of ̂ r :

P0 (2.11)

Of course UmJ'+ is projectively equivalent to UmJ'~, and so both
representations define the same P£Λ4-representation UmJ of Φ\

For m = 0 the little group is now

^ δ9 (2.12)

where A(Y) is the "y-reversal" (x l 9 x2, x3, x4)->(x l 5 —x2?
x3?-x4) Thus

Y = (Πy9S) = (iσy9S) (2.13)

where A(Πy) has to be the π-rotation (x l 5 x2, x3, x4)->( — x1 ? x 2 ? — *3> 4̂)?
and so 77̂  = + ί σ r Take note of the properties

Y2 = (Π^9S
2) = (-I9I) (2.14)

and, writing (v4, /) e SL(2, C) x F 4 simply as A,

^ A, AeSL(2,C), (2.15)

(assuming the usual choice of Pauli matrices, viz. σx, iσy, σz all real).
The conjugate3 by Y of the representation Vj of $ is therefore V~j:

(YVj)(A)=Vj(A)=V-j(A), for AeS. (2.16)

Hence, for non-zero helicity j , a doubling must occur upon adjoining 7,
the relevant irreducible representations3 being the 2-dimensional ones
W\ j = i 1, f,..., (of Clifford type "ΠΓ - see [10], § 3.4) defined by

the sign (-)2-' coming from Vj(Y2)=Vj(-I) = (-)2j. For zero helicity
no doubling occurs (i.e. Clifford type "/ + "), the relevant irreducible
representations being the 1-dimensional ones Wo + , W°~ defined by

W0±(A)=ί9 W0±{Y)=±l. (2.18)

§ 3. Irreducible Multiplier Corepresentations of # — Method 2

3.1. The Action of & upon 2Γ. In order to carry out our plan of
obtaining the irreducible σa^-corepresentations of Φ by generalized
inducing from a generalised little group, we need to be aware of the
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correct generalization4 of Eqs. (2.1), (2.2) - i.e. we need to determine
the relevant action of g e <£ upon #". As noted in § 4.2 of [10], for the
given lL4-decomposition Φ^\JΦK the relevant action is mathematically
forced upon us, and - setting σ = σaβ in Eq. (4.1) of [10] - reads

(χ(Λ(g-*)x)9 ge£\
(3!)i Λ ([χ(Λ(g ι)x),

where, for g = (A, F) e <£ = SL(2, C) Θ F 4 , we have written Λ(g) = Λ{A)
- F eJ£. In terms of p rather than χp it reads

p^ε(g)A(g)p (3.2)

where ε(#) =ί,iίge &\ and = - 1 , if # e ^ .
On account of the presence of ε(g) in the last equation [i.e. of complex

conjugation in Eq. (3.1)], note that the $! - orbits in 2Γ coincide with the
££\ -orbits, and hence satisfy p 4 > 0 in the physically relevant cases.
Physically of course the argument is in the reverse direction - the
requirement p4 > 0 of positive energy forces us to adopt the IL4-de-
composition 9 = ̂  u ̂ .

The (generalized) isotropy group Gp of χp is accordingly

P P (3.3)

where the generalized little group Lp is given by

Lp={g:A(g)p = ε(g)p, ge#} . (3.4)

Corresponding to Eq. (3.5), we now obtain the irreducible σα/?-corepre-
sentation U™β

jη of Φ by generalized inducing (cf. §4 of [10]):

where [/^ is an irreducible σα/?-corepresentation of Lpo = GpJ3Γ, the
label j having the usual (spin or helicity) significance, as in § 2.2, and the
label η (when it is required — see later) taking the values + 1 , — 1. We will
now determine the generalized little group Lpo, and its irreducible-
corepresentations U$, in the cases of physical interest.

3.2. The Case m > 0 . Taking p o = (0,0,0, m) again, it follows from
Eq. (3.4) that the generalized little group is

Lpo = SU(2)xF4, (3.6)

the product being direct since, by Eq. (1.9),-

F(A) = A9 for F e F 4 , AeSU(2). (3.7)

4 Parthasarathy (in § 5 of [7]) incorrectly adheres to the ungeneralized form of the
action - i.e. omits the complex conjugation in Eq. (3.1).
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One method of determining the UJ

a

η

β is to set G = SU(2)xFA,
H = SU(2)xF2 [see Eq.(2.9)], D = Djη [see Eq.(2.10)], a = ST9 σ = σaβ,
in Theorem B of [10]. By Eq. (2.15) of [10] we need also to set E = Ej±,
where

(a) E^(A) = D^(Λ)( = D^A))ί AeSU(2),

(b) Ej± (S) = ocβDj± (S) ( = ± ocβl).

If (χβ= - 1 , then Eq. (3.8b) shows that E and D are not antiunitarily
equivalent, so that U = U{β is necessarily of Wigner type III, being
given as in Eq. (2.18) of [10], with σ(a, a) = σaβ{ST, ST) = j8. If αj8 = + 1 ,
then it follows from Eq. (3.8) that Ej± and Dj± are antiunirarily equivalent
by means of the well-known antiunitary operator K which satisfies, for
AeSU(2),

(a) KDj(A)K~1=Dj(A), (b) K2 = (-)2jI. (3.9)

Thus when α = β the σα/Γcorepresentation U = UJ

af is necessarily of
Wigner type I or II; since in our case σ(a,a)D(a2) = βI, we see from
Eq.(3.9b) that UJ

af is of type I if α = β = {-)2j and of type II if <x = β
= - ( - ) 2 >, being given respectively by Eqs.(2.16) and (2.17) of [10].

These results are displayed in Table 3. Of course the restriction of
Uίη

β to SU(2) is Dj (type I) and Dj@Dj (types II and III). Our results
(after inducing up to 3P) agree with those of Wigner (see Table 3 of [14]) -
the link-up of notation being

) = α, εI = σaβ(ST,ST) = β. (3.10)

Observe that each of the four choices σaβ of multiplier gives rise
(for a given spin j) to just one irreducible P(^-representation UJ

aβ.
In each of the two cases α = /? = ( — ) 2 j and ot = β=— ( — ) 2 j , observe
that two unitarily inequivalent σα/*-corepresentations UJ

aβ, UJ

aβ belong
to the same P(^-representation U{β. On the other hand in the two
cases α = — β = (— ) 2 j and α = — β= — (— ) 2 j , l/^ is realized (up to

Table 3. The irreducible σα/?-corepresentations U$ of the generalized little group S U{2)

Value of
α(-)2-> β(-):

1 1

- 1 - 1

Wigner
2j type

I

II

III

Dimension

2/+1

2(2;+1)

2(2;+1)

Value of U$(g) for g equal
S

m

"(ί 1

Γ

)\ /O -K\

') ΛK oj

) (-K Γ 1

to

K

U o/

U o J
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unitary equivalence) by just one σα/*-corepresentation U{β (the label η
not being required in this case). These facts are of course consistent
with remarks made previously at the end of § 1.3 and in § 2.1.

A second method of determining the Ufy is to set G = G' = SU(2) x F 4,
H = SU(2)9 D = Dj, σ = σ«β in §4.4 of [10]. [That G = Gf - i.e. that the
representation Dj is self-conjugate with respect to G: FDj~Dj, for
F e F 4 - follows immediately from Eqs. (3.7), (3.9), since the relevant
multipliers (in Eq. (4.1) of [10]) equal 1.] According to Eqs. (4.18),
(4.19), and (4.27) of [10], we obtain U{} in the form

Uί}=P®ΩZβ (3.11)

where the irreducible τJ-corepresentation Tj of G is given in our case by

;
and where Ω\β is an irreducible ω^-corepresentation of F 4 , with
multiplier ωf = σaβ/τj. Now, by Eqs. (3.9), (3.12), the multiplier of Tj is

and hence that of Ω\β is

ωf = σ«β/τJ = σ«jβj (3.13)

where α7 , βj are defined in terms of α, β by

αj. = ( - ) 2 ^ , βj = (-)2Jβ. (3.14)

Hence the possible choices of the Ω\β in Eq. (3.11) are

Qlβ = U2jβj (as defined in Table 2), (3.15)

and we thereby immediately derive the results of Table 3 from those of
T a b l e !

5.5. The Case m = 0. Taking p0 = (0,0,1,1), the generalized little
group is now

Lpo = <?u YS'u Y'&KJ YY'S (3.16)

where Λ(Y) is, as previously, y-reversal and where Λ(Y')= — A(Y) and
A(YY') = -I = ST. Thus we can take

γ={πy,S), Y' = {Π;\T), y r = (/,sτ), (3.17)
with Πy{= -Π;ι) as in Eq. (2.13).

One way of determining the U{η

β is to set H = £'vY£>, G = HvaH,
a=YY\D= Wjη [see Eqs. (2.17), (2.18)], σ = σ«β in Theorem B of [10].
Consider first of all the case j > 0 of non-zero helicity (in which case the
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(3.18)

label η is not required). By Eq. (2.15) of [10] we need also to set E =
where

(a) Ej(Λ) = Wj(Λ), Aeδ,

(b) Ej(Y) = aβWj{Y).

It follows that, for all four choices of α, β, Ej, and Wj are antiunitarily
equivalent by means of the antiunitary operator

(0 (~)2jocβκ\
K =

K 0
(TC = complex conjugation). (3.19)

Hence U = U{β is always of Wigner type I or II. Since K2 = ( — ) 2 j ocβ,
while σaβ(YY\ YYf) Wj((YYf) = βl, we deduce that UJ

aβ is of type I or II
according as α is equal to ( — ) 2 j or — ( — ) 2 j . On referring to Eqs. (2.16),
(2.17) of [10], we obtain the results displayed in Table 4(a). (As in Table 3,
we give, in the first two columns, the values of α, , β, [see Eq. (3.14)]
rather than α, β; however in the matrices in the last three columns we
have for reasons of space used α, β rather than their ±( — ) 2 j equivalents.)
We repeat the the label η is not required in the cases j = %9 l,f,... of
non-zero helicity just discussed. Of course the restriction of U{β to S
is Wj (type I) and Wj® Wj (type II).

In the case j = 0 of zero helicity, the subgroup S of Lpo is represented
trivially, so that U^ is the σα/*-corepresentation U£β of the Klein 4-group
LpJg, as determined previously in Table 2. The results in the first four
columns of Table 4 agree with those of Wigner (see Table 4 of [14]).

Table 4. The irreducible σα/?-corepresentations Ufy of the generalized little group

Value of Type Di- Value of UJ

a

η

p(g) for g equal to

(a)
1

1

- 1

- 1

(b)

1

- 1
1

- 1

βj

The case j φ 0:

n
- i ί

n
-J

T

1

TT
1 1

The case j = 0

1
i

- 1
1

I

II
III
III

mension

2 ί2 \

A

1

\
2

Y

Ό α\

.1 θj

. - α . . \

1 . . . I

. — ccj
. . 1 ./

C/α°; equals u;f

r YY' = ST

lκ 0 \ (0 βκ\
\0 aβK) \κ 0 j '

1. . -.K .

. . . -aβκ

L . . .
\. otβκ . .

. . . βκ\

,-βκ . .
K . . . )

as given in Table 2)
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§ 4. Covering Groups for^ and Manifestly Covariant Representations

4.1. The Choice of Covering Group for the Extended Poincare
Group SP. Let X, Y e i f l denote respectively x-reversal, y-reversal;
then Πz = XYe 5£\ is the π-rotation (xl9 x2, x3, x 4 ) ^ ( —x1? — x2, x3, x4).
Define also X'e^ί and Πze&i by X'= -X,Π'Z = -Πz. Then
F4= {I,ΠZ,X\ Y} is a group, which can be identified with the Klein
4-group {e, α, b, c} by

e = I, a = Πz, b = X'9 c=Y. (4.1)

Since i f is the semi-direct product

<£ = S£XOF±, (4.2)

(where FeF4 acts by inner automorphism: Λ\-*FΛF~ι) we can [cf.
Eqs. (1.6)—(1.9)] define a covering group $£ of i f by

(4.3)

where the action of F 4 upon SL(2, C) is determined by Eq. (1.7) to be

Y(A) = A , X\A) = σzAσ-', Π'Z{A) = σzAσ~z

 1 , (4.4)

and where the covering map J^->if is (A, F)-*Λ(A) F.
Since S = ΠyY, T = ΠXX\ ST = ΠZΠ2, the corresponding elements of

i f are given (up choices of signs) by

S = {iσy,Y)9 f = (-iσx,X')9 Sf = (iσz9Π'z). (4.5)

Writing (-/,/) e & simply as - / e SL(2, C), note that S, f, Sf form an
anticommuting triad whose squares are all equal to —/:

(S)2 = (f)2 = (sf)2 = -Ie SL(2, C),
(4.6)

ST=-TS, etc.

In other words, S, T generate the quaternion group (of order 8). Clearly
then the cover ^ of i f is not isomorphic to the previously used cover Jίf,
since previously S,T,ST formed a commuting triad with square equal
to + / - i.e. 5, T previously generated the Klein 4-grouρ.

Introducing the four multipliers σaβ [defined as in Eq. (1.14) but with
F 4 replaced by F 4 ] for the cover

zS t/ _j_ ^-S-*- 4

of ^ , then on the same lines as in § 3 we can determine the irreducible
σα/?-corepresentations ϋ™β

jη of Θ>, with results of course in agreement with
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Tables 3 and 4. The main point to note is that the pair α, β now switch
roles with the pair α j? βy For example, instead of

U(T)2 = σ«β(T, T) U(T2) = a U(I) = ocl (4.7)

we now have

U(f)2 = σaβ(tΫ)U(f2) = ocU(-I) = oCjI, (4.8)

since Uj(-I) = (~)2jL Thus Tables 3 and 4 will list the σα^-corepresen-
tations ϋίη

β of the relevant little groups provided that elsewhere in the
tables α, β are replaced by &pβy A further point is that extra phase
factors ί2j and (~ί)2j are required in U(S)9 U(f) [also in U{Ϋ), U{Ϋ')\
arising from the switch from Uj(S)2 = I to Uj(S)2 = Uj(-I) = (-)2jI
[and from Uj(Y)2 = (-)2jI toUj(Ϋ)2 = + / ] .

Other covering groups Φ of 9 exist, all satisfying ΦjZ2 ~ &
and ΦlΦχ~&l&\~F4. Is there any reason why we should prefer
one covering group to another? In partial answer to this question, we
note here several respects in which Φ is to be preferred to 3P.

(a) According to Eq. (3.2) the group F4 leaves fixed both (0,0,0, m)
and (0,0,1,1). Hence if one proceeds using P, the little groups for m> 0
and m = 0 emerge on a somewhat equal footing, being respectively
S E / ( 2 ) Θ F d ί Θ F

(b) The normal assumption concerning Umj, (m>0), is that no
doubling of states occurs, i.e. U is of Wigner type /. By Table 3 this means
that Umj is a multiplier corepresentation of & which has the non-trivial
multiplier σ~ ~ whenever 2/ is odd. In contrast, this normal assumption
corresponds to choosing the ordinary corepresentation U™j

+ (i.e.
α = β = 1) of 0* for all values of the spin j .

(c) As introduced above, via Eqs. (4.1)-(4.4), the group if hardly
appears worthy of especial attention. Nevertheless, as we will point
out in § 4.2, a group JSf (C2) isomorphic to & is forced upon us if we
demand that the covering group JS?(C2) of 5£ should - like that SL(2, C)
of S£\ - consist of linear or antilinear operators on a 2-dimensional
complex space C2 (=the space of 2-component Lorentz spinors).
The group J # ^ i ? ( C 2 ) thereby appears in a much more favourable
(and coordinate-free) light.

Actually - see § 4.3 - virtues (b) and (c) are not entirely unrelated.
4.2. The Group J5?(C2). In recent years one of us has been putting

together a rather thorough coordinate-free account (now nearing
completion [9]) of Minkowski space M and of associated spaces and
groups. In the course of carrying out this project, the group «5?(C2) was
discovered, as sketched below, and applied in several different contexts -
for example if! (C2) is useful in treating the symmetry properties of the
Wigner 3 — j symbols. Of relevance to the subject matter of this article
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is the use of i f (C2) in arriving at manifestly co variant5 realizations of the
representations Umj of the extended Poincare group, as we will sketch
briefly in § 4.3.

Let C 2 denote a complex 2-dimensional vector space which is
equipped with sympletic geometry by means of a (non-degenerate)
skew symmetric bilinear form [ , ] . Let AL(C2) and GΛL(C2) denote
respectively all the antilinear mappings and antilinear isomorphisms

C2->C2. Then
GALL(C) = GL(C2)vGAL(C2) (4.9)

is a group. If A is a linear or antilinear mapping C2-^C2, its adjoint A
is defined by

ΓΛy π ry A ^\ ξ,ηeC2. (4.10)

Minkowski space M is now introduced as the (real) vector space
ALSk(C2) consisting of all the skew symmetric elements of AL(C2):

M = ALSk(C2)={A:AeAL(C2)9A=-A}9 (4.11)

the Lorentz scalar product on M being defined by

p q=-iti{poq) (4.12)

and having signature ( h). Each time-like vector peM gives
rise to a £/(2)-geometry on C2 by means of the hermitian inner product
(,) defined by

(ξ,ri)p = [pξ,ηl, ξ,ηeC2, (4.13)

which is positive or negative definite according as p is future - or past -
pointing.

The group

.S?(C2) = JS?i(C2)uJS?i(C2)uJSPi(C2)uJS?ί(C2) (4.14)

is defined as follows:

Se\(C2) = Sp(C2) ={A:Ae GL(C2), AA = I},

Sei.(C2) = ALSp(C2) ={A:Ae GAL(C2), AA = I}9

<ei (C2) = ίSp(C2) = {A:Ae GL(C2), AA=*-I},

i f ί (C2) = ίALSp(C2) ={A:Ae GAL(C2)9 AA = -I}.

Hence

Se{C2) = {A: A G GALL{C2\ A A = ± 1} . (4.16)

Define, for A e $£{C2\ the linear operator A(A) on M by

= AopoA~1, peM. (4.17)
i.e. on all four components of ̂ .
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Then ±A^Λ(A) = Λ(-A) defines a 2 - 1 homomorphism J£?(C2)-+J£?
whose restriction to the identity component is the familar homo-
morphism Sp(C2)(~SL(2, €))-+££\. We thus obtain a group iso-
morphism

iz2^se. (4.18)

Note that A{il) = — J, since z ° p ° Γ * = —p. The property

iA = ±Ai, Ae£?

±(C2), (4.19)

corresponds to the commutativity of —/eJS? with every AeJ£. [In
fact one easily sees that the choice of operator A e GALL{C2) which
corresponds to the element — / e <£ is forced upon us to be A = + il,
and hence determines our definition of S£\.{C2) in Eq. (4.14).]

One can check that the $£(C2)-versions S9 f, Sf=il of S, T, ST
satisfy Eq. (4.6), and so we find that JS?(C2) is isomorphic to J^. Never-
theless the virtues of JS?(C2) as defined in Eq. (4.14) are more manifest
than those of ££ as defined in §4.1. [Incidentally any other choice of
skew-symmetric form on C2 is a scalar multiple of the original choice,
and leads to a group isomorphic to ^ ( C 2 ) . ]

Remark. The intersection of i f I (C2) with the group U(C2)p of the
linear isometries of (9)p is a group SU(C2)p(^SU(2)) consisting of
those SfL(C2)-transformations A which commute with p:A°p = p° A.
[Moreover, by Eq. (4.17), the image of SU(C2)p under A is the group
£0(3)^(^50(3)) of those i f I -transformations which preserve the
preferred time axis defined by p.] The full commutant of p thus consists
of all the real scalar multiples of SU(C2)P, and so is isomorphic to the
quaternions H. Since a unit time-like vector k = p/m, p-p = m2>0,
satisfies6 k2 = — /, we can use Eq. (2.5r) of [10] to deduce directly the
result that a corepresentation of Wigner type // has commutant ~H.

4.3. Manifestly Covariant Corepresentations of &*(C2). Let Vj denote
the 2/th symmetrized tensorial power v2jC2 of C 2, and, for any
AeGALL{C2\ define Dj(A) to be the restriction to Vj of ®2jA. The
map Ah+Dj(A) defines a corepresentation of GALL(C2\ and hence
also of £?{C2\ with carrier space the (2j+ l)-dimensional space Vj;
its restriction to A e 5£\ (C2) is of course the familiar spin j representation
of SL(2, C).

For m > 0, let H^ denote the two sheets ± p4 > 0 of the momentum
space hyperboloid p p = m2, and let J4?± denote the Hubert space of
functions φ: H* -> Vj which have finite norm with respect to the inner
product defined below in Eq. (4.20). The corresponding configuration
space functions ψ (using a covariant Fourier transform) are the positive

6 Here k2 denotes /e° k (and not k.k).
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and negative energy solutions of the Klein-Gordan equation
-ψ = 0. We are now going to define a decomposable corepresentation
U=U+®U~ of

having carrier space Jf7 = J f + 0 J f ~.
The inner product on j f is defined to be

^2)pdθ m (p) (4.20)

where dΩm(p) = d3p/\p^\ and where - cf. Eq. (4.13) -

(Φu Φi\ = lDj(s(p) p/m) φ,{p\ φ2{pj\ , (4.21)

with ε(p) = sgnp4.
The corepresentation U oϊ0*(C2) is now defined by the (configuration

space) transformation law ψ->ψ' = U(x, A)ψ given by

where the map C: J f -• J>f is defined by

(/> κ> 0C, where φc(p) = Dj( - ίp/m) φ(-p). (4.23)

Note that charge conjugation C is (at the present first quartization
level) antilinear, and satisfies

(a) C2 = I (b) 0 C = I (c) C C/(x, A) =U(x,A)C,

(d) C gives rise to bijections J f ± -> J T T .

Bearing in mind that Dj(A) is antilinear on the coset JS?_(C2), the
presence of C in Eq. (4.22) is essential in order to produce a corepresen-
tation U of ^ ( C 2 ) with respect to the physically relevant UA-dQ-
composition SP^KJSP^.

The subspaces J"f± of Jf7 are invariant under U and so carry co-
representations U± which are interwined by C (suitably restricted):

CU±(x,A)=Uτ(x,A)C, xeJ", Ae£?(C2). (4.25)

We thus arrive at a manifestly covariant realization U+ of the (positive
mass) PCL4-representation Umj of & of Wigner type /. We repeat that
U+ is an ordinary corepresentation of
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