
Commun. math. Phys. 38, 157—171 (1974)
© by Springer-Verlag 1974

New Types of Singularity in General Relativity:
The General Cylindrically Symmetric Stationary

Dust Solution

A. R. King

Department of Mathematics, University College London, London, U.K.

Received December 3, 1973

Abstract. The general solution of Einstein's equations for a stationary cylindrically
symmetric distribution of pressure-free matter is obtained. It contains a function which
may be freely prescribed. Using this freedom examples are given of new types of singularity
in General Relativity.

1. Introduction

Recent work [1,2] on the problem of singularities in relativistic
cosmological models has made it clear that a variety of types of singu-
larity may occur, such as Ricci curvature ("big bang") singularities and
intermediate singularities ("whimpers"). In [1] further types were
discussed, including oscillating Ricci singularities and Weyl (conformal)
singularities, but no exact examples could be given. We aim here to
provide such examples, so we begin by making precise the notions of
"oscillating Ricci" and "Weyl" singularities.

In an inextensible spacetime the existence of a singularity is deduced
from that of an inextensible geodesic (or more generally an inextensible
curve) having finite length as measured by a generalised affine parameter.
Let the curve be χ(v), defined for 0^v^v+, and suppose it cannot be
extended beyond υ+. Consider the components Rabcd{v) of the Riemann
tensor in orthonormal bases {ea} defined along χ(v). Both oscillating
Ricci singularities and Weyl singularities are types of curvature singu-
larities: these occur when there is no orthonormal basis defined along
χ(v) such that all Rabcd{v) tend to finite limits as v->v+. The division
into Ricci and Weyl singularities comes from considering which part
of the Riemann tensor is failing to tend to a limit. If the Ricci tensor
components do not tend to finite limits in any orthonormal frame we
have a Ricci singularity, and this is the familiar "big bang" singularity
if some components actually diverge in every such frame. If a Ricci
singularity is such that in some orthonormal frames some components
Rab{v) oscillate finitely (but do not tend to a limit) and the rest do tend
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to limits, while in all other orthonormal frames at least some Rab{v)
diverge, we call it an oscillating Ricd singularity.

Similarly, if the components Cabcd(v) of the Weyl tensor do not tend
to finite limits in any orthonormal frame, but the Ricci tensor components
do tend to finite limits in at least one such frame, we say we have a
Weyl singularity.

(In fact the two examples we shall give will be cases where scalar
polynomials of the relevant tensor (such as RabR

ab) do not tend to
limits; this is clearly sufficient to show that some components of the
tensor do not have limits in any frame. It may moreover be shown [1]
to be also necessary in the case where the source of the gravitational
field is a perfect fluid.)

Two further types of singularity which are not curvature singularities
should be mentioned: first, if the Rabcd(v) go to finite limits in some
orthonormal frame along χ(υ) but not in any such frame parallely
propagated along χ(υ) we have an intermediate singularity ("whimper").
(See [1].) If all the Rabcd(v) have finite limits in some parallely propagated
orthonormal frame as v->v+ this is a locally extensible singularity:
by a theorem of Clarke [3] there exists an open neighbourhood of χ(v)
which can be extended in such a way that χ(υ) can be continued beyond
χ{v+) in this local extension. Cone singularities, covering-space singu-
larities and the Taub-NUT singularity are examples of this type [4].

The question naturally arises as to whether there exist solutions
of the Einstein field equations for a fluid-filled spacetime which exhibit
such singularities. We shall prove this for oscillating Ricci and Weyl
singularities by giving explicit examples.

We consider in fact stationary dust-filled spacetimes possessing
cylindrical symmetry. Several members of this family are known exactly
[5, 6] and our reason for considering it is that, as was first remarked by
Maitra [6], the field equations reduce to an underdetermined system of
ordinary differential equations. This can easily be understood using
the result [7] that the vacuum field inside an infinitely long rotating
cylinder of matter is simply flat space. This is the cylindrical analogue
of Birkhoff s theorem, and just as Birkhoff s theorem shows that con-
centric spherical shells of matter do not interact, therefore allowing
one to specify a "density law" arbitrarily, so here coaxial cylindrical
shells do not interact, and we may specify arbitrarily either the density
law, or a vorticity or shear law. The fluid lines (integral curves of the
fluid 4-velocity ua) are inextensible and incomplete if the vorticity ω(r)
and shear σ(r) do not go to finite limits for some finite value r+ of the
proper radial coordinate r, so this will give us a singularity. This will
not be a Ricci singularity if the density ρ (r) has a finite limit at r+ . Using
the underdetermined nature of the field equations we are able to arrange
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that we get Weyl singularities in some cases. Similarly we can arrange that
ρ(r) oscillates but everything else goes to finite limits, implying an
oscillating Ricci singularity.

2. The Field Equations

Following Ellis (e.g. [8]) we choose an orthonormal basis {ea} of vec-
tors with e0 = M, normalised so that ea eb = gab = diag(— 1, + 1 , + 1 , +1)
and define the ybc by the commutation relations [_ea,eb~] = yc

abec. A
stationary, cylindrically symmetric spacetime admits a three-parameter
Abelian group of motions acting on timelike hypersurfaces of transitivity.
The vector u is tangent to these surfaces (since otherwise we would
have a "tilted" Bianchi I dust universe, which is forbidden [9]) so without
loss of generality we may take the normal n to the surfaces to be e3.
As shown in [10] the vectors eA (capital letters run from 0 to 2) generate
the group reciprocal to the group of motions, and since the latter is
Abelian so is its reciprocal group, giving

Since the surfaces orthogonal to n = e3 are homogeneous n is geodesic.
Using the relations na;b = dbna- nf Γ/fl, Γabc = \(yabc + ycab- ybca) (where

da(f) = eι

af;i etc.) which follow [8] easily from the definitions, we find
that

yΛ3 = -nA;bn
b = 0. (2.2)

The only non-zero ya

bc are now those of the form y^3 (= - y3B). Since the
pressure in the fluid is zero, the Bianchi identities imply ύa = ua.bu

b = 0,
and from a similar computation to that giving (2.2) we find

7^3 = ύ3 = 0 , (ύ, = y°01 = ώ 2 = y°02 = 0 ) . (2.3)

We find easily that the vorticity vector ωa = jηabcdubuC]d has components

We have still available the freedom to rotate eί,e2 in their 2-space1,
and we choose to align e1 along ω at all points. Thus

ω2 = y?3 = 0 . (2.4)

1 Which is actually a 2-surface, since they commute.



160 A. R. King

Defining the shear tensor σab = u{a;b) — ̂ uc

;c(gab + uaub) and collecting
our results we find the only non-zero ya

bc and σab are

(2.5)

723,

(the fluid expansion ua.a vanishes identically).
Our specialisations of the tetrad now make it possible to use the

forms of the field equations and Jacobi identities given in the Appendix
of [8]. The homogeneity gives d0 = dί = δ2 = 0, and we can choose
coordinates (xΛ, r) such that e3 = n = d/dr, the surfaces of transitivity
being {r = constant}. All variables are then functions of r only, [r is the
proper distance along the spacelike integral curves of w, and is clearly
not the intrinsically defined radial coordinate R, which in general is
some function R(r)J] The Jacobi identities are all identically satisfied
and the (00), (01) field equations are

-2σ\3-2σ\\3-2σ\3

0 = -~- + ωγ23 + σ23γ
2

ί3 + σ13(y2

23 + 2y\3)
(2.6)

(we take the cosmological constant A = 0).
To characterise our solutions as representing infinite rotating cylin-

ders we must require also that the reflections

^ i (*o, eue2, e3)-+(e0; -eue2, e3)

Sfγ\ (eo,el9e29e3)-+{-eo,el9 -e29e3)

should be isometries. (These correspond to the reflections z-^ — z, and
(φ, t) -> (— φ, —t\ of the usual cylindrical polar coordinates (r,φ,z,t).
Stu ^γ will be isometries if [11]

(a) They are automorphisms of the Lie algebra of the eA.
(b) The second fundamental form θab = ha

chb

dnc;d of the ^surfaces
{r = constant} spanned by the eA is invariant under them (hab = gab

+ nanb). Condition (a) is automatically satisfied, and applying (b) in the
case of ̂  implies θQί = θί2 = 0. We get no new conditions from £fx.

2θoi = - ?3i - 7 3 0 = - 2 σ 1 3

and

Thus σ 1 3 = 723 + 7i3 = 0. From the second of (2.6),

0 = ( ω - σ 2 3 ) y ^ 3 .

Hence either ω = σ 2 3 , σ 1 3 = 0 or y23 = y\3 = σ 1 3 = 0.
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Now from the first of (2.6) ω = σ 2 3 , tf13=0 implies ρ = 0 so for
non-vacuum solutions we take

723=^3 = ^ 3 = 0 . (2.7)

Writing now σ 2 3 = σ, y[3 = yι, 723 = 72 t n e field equations reduce to

ρ = 4(ω2-σ2)(00)

(02)

(11)

(22)

and

0 = —- (σ — ω) + (σ — ω) γ1 + 2γ2 σ

0-^+72(71+72)

0 = 7i 7 2 + (ω -

where the last equation is a linear combination of (00), (11), (22), (33).
It is easy to show that it is a first integral of the other equations, so
we drop now (02) from our system. We write

ω = .4 cosh A, a = Asinhλ. (2.8)

where A, λ are (possibly complex) functions of r, and write also

yi + γ2 = Γ. (2.9)

Then the equations become simply

dΓ

dr

dy2

' dr

= -2AZ

a-2λ

(2.10)

where the second equation is (11)+ (22). Writing α = (y2) * we can
express all quantities in terms of α and its derivatives:

y2 = QC-
ί

9 Γ = α ~ 1 α / , y 1 = α " 1 ( α / - l )

2 2oc" 2λ αα" A2 a2

Q~ """~όΓ' 6 =~2(oc'-ί) =Ύ-~aΓ

w h e r e , , ,, „ j 2 / J 2
α =aa/dr, α = α oc/dr .

(2.11)
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This makes explicit the underdetermined nature of the solutions:
we may choose α arbitrarily, subject only to the constraints that A2

and e2λ are positive for some range of r. The resulting solutions are
invariantly distinguished from one another by the differing values of
ρ = 4A2.

3. Global Properties

We are chiefly interested in the singularities of solutions given by
various choices of α in (2.11). In particular we shall require the com-
ponents of the Weyl tensor C f l b c d, so we compute its "electric" and
"magnetic" parts, Eac= Cabcdu

buc, Hac = ^ηab

9hCghcdu
cud. Their non-

vanishing components are

17 2 / 2 2\ i7 5 2 , ω 2 o

En = — (σ — ω ) , E22 = — σ + — 2ωσ

17 7 2 , ω 2 , o TJ < \

£33 = - y σ + -y- + 2ωσ, ί?i3 = 7 i ( ^ - ω)

(Using (02) above).

These determine the Weyl tensor completely, since

Cubed = (tlabpqiicdrs + θabpίθcdrs) U*'U" ^

>s + QabpqVcdrs) uPU* H^

(3.1)

p

where _
Qabcd — QacQbd ~ QadQbc

It follows from (2.11), (3.1) that if α->0 and σ, ω are well behaved,
H13-+co in general. However, from the fact that

it is clear that what is causing H13 to be badly behaved is the focussing
of the radial geodesies tangent to n for some value of the proper distance r
along them, which will occur at any axes of symmetry of our solutions.
In general any such "axis" will be singular, for in view of the fact that u
is the unique (since ρ > 0) timelike eigenvector of the Ricci tensor the
divergence of H13 and hence HabH

ab implies the divergence of a Riemann
tensor scalar polynomial. Our tetrad basis is always singular where
α = 0, but in some cases we may interpret this as the usual removable
singularity r = 0 of cylindrical polar coordinates. From (2.11), (3.1)

we have
2 3 / 2

and it follows easily that for Hί3 to be finite at r = 0 we must have
α = r +(O) (r3) near r.. .0. This will fit in with the condition that y2 must
be an odd function of r derived below.)
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To be able to interpret the singularity α = 0 as an axis we require
certain extra conditions: first, we want to be able to identify all points
(t, — r, φ, z) with (t, r, φ + π, z), so ρ, ω, σ must be even functions of r and
y1? y2 must be odd functions of r. (The radial geodesies converge (Θa

a -• — oo)
as r-+0 from one side and expand out symmetrically (θa

a-+-\-oo) as r
passes through zero to the other side.) Secondly, to be able to identify
points (ί, r, φ, z) with (ί, r, φ + 2nπ, z), n = integer, we must have that the
circumference of a small circle about the axis is equal to 2π x the radius
(elementary flatness). Finally we would like to have no more than two
such "axes", for this is the largest number of axes a spacetime can have
if we demand that moving through an angle of 2π about one axis gives
a rotation of 2π about the other axes (Hawking and Ellis, private com-
munication). (Of course we can have any number of "local" axes, which
do not obey this condition, as for example in LRS spaces [8].) To see
if any intermediate singularities are occurring, we need to consider
parallel propagated tetrads along various curves in the spacetime.
(Although all Riemann tensor components may be finite in our frame,
this might be infinitely Lorentz-rotated relative to a parallely propagated
frame; Riemann tensor components in this frame would diverge, giving
an intermediate singularity - see [1].) An obvious curve to consider is
an integral curve of n; υb is parallel propagated along na if vb

;an
a = 0 i.e.

Using (2.5), (2.7) this gives v1 = constant, v3 = constant,

dv° , λ 2 dυ2 , . o
— — = —(σ + ω)v, —— = — (σ + ω) υ .

dr dr

Thus if e.g. va = vδa

2 at r = r0 we find

va(r) = (v sinhβ, 0,0, υ coshβ(r))

W h e Γ e , Γ (3-2)
β = — j (σ + ω) dr = — j Aeλ dr.

Thus a parallel propagated frame along an integral curve of n suffers
a finite Lorentz rotation (boost) if the integral in (3.2) converges. This
will certainly be so (for finite r, r0) if σ, ω are bounded, and may even be
so if they are not. Parallel propagation along the integral curves of the
various eA produces rotations at a constant rate of the parallel propagated
basis relative to our basis. These therefore will always give finite Lorentz
transformations for propagation through finite affine distances. Thus
for the purpose of discovering whether the parallel propagated basis
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along a given curve suffers a finite or infinite Lorentz rotation we need
only consider the component of the curve parallel to e3, and the cor-
responding β(r) in (3.2).

Given a solution (2.11) we may find coordinates xι (although we
shall not actually do this for the solutions considered here) by letting
ea = ej d/dxι and choosing the ea

ι so that the commutation relations

\.eA,eB\ = Q, leo,e3] = -2σe2, [e1,e3] = γ1eί, O 2 , e 3 ] = -2ωeo + y2e2

hold identically. We have already set e3 = d/dr, and letting e1 = a(r) d/dz

we find a = exp ( — J y1 drj for suitable choice of z.
We set

u = eo = b d/dt + c d/dφ

e2 = ed/dt + fd/dφ,

where b, c, e, f are functions of r only. With this choice of coordinates the
vectors d/dt, d/dφ, d/dz are Killing vectors since they commute with
all the ea [10]. The commutation relations are satisfied if

db/dr = 2σe, dc/dr = f

de/dr = 2ωb — y2e, df/dr = 2ωc — γ2f
which imply

[- \y2dr

for suitable ί, φ. The matrix ej has determinant

(bf-ce)exp[- jy1drj=Qxp[- $ {y1+y2)dr )= a 1

so the transformation between the ea and the xι is non-singular for α φ 0
and singular when α = 0. Thus it is possible for (ί, r, φ, z) to be good
coordinates even where the tetrad ea is singular, i.e. on the "axis" α = 0.
The coordinate metric gtj is given by

e
J

where e\ is the inverse matrix to e\. We find

/
ds2 = exp 12 j y2 dr

I \
+ dr2 + exp 12 J y1 dr) dz2 .
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Coordinates are often used [6] in which the invariantly defined (r, z)
plane is given in conformally flat coordinates; to achieve this, let

where (3.5)

Ψ=\yidr.

Then the last two terms in (3.4) become e2ψ (dr2 Λ-dz1) as required.
We may re-express the transformation (3.5) as

γ1=dΨ/dr = e-ψdΨ/dr.

Using (2.11) we find

e'ψ dφr-<*e-ψ dΨ/dr = l
s o a = reψ (3.6)

with suitable choice of r. (3.6) and the relation y2 = oΓ1 imply now

expl J y2 drj = exp J _ eψ dr\ = r . (3.7)

From (3.4) we may also restate the "elementary flatness" conditions for
α = 0 to be an axis; if φ is our angular coordinate at a = r = 0 the
circumference of a small circle is

y2dr){b2 - e2f .

This must equal 2π x the radius, which is dr ~ r, so the condition is

\im(b2-e2f= limrexp(- ]y2dr). (3.8)

4. Solutions

We turn now to the discussion of exact solutions (2.11), discussing
first the known solutions. The Ehlers-van Stockum solution [5] (see
also [8]) are shear-free, so λ = 0. From (2.11) this gives

a d2a/dr2-2da/dr+ 2 = 0,

which can easily be solved using the coordinates (3.5), (3.6), leading to

Ψ = kr2 + /

where k, I are constants. Letting k = — m2/8 we quickly find ρ = 4ω 2

= m2 exp
m2r2

4
— 21 . Thus ρ, ω become infinite as r->oo. Since
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r2 + ϊ\dr we see that r-» finite value as
- m 2

r->oo. Thus, as remarked by Shepley [12] in connection with van
Stockum's solution there is a Ricci curvature singularity at a finite
proper distance from the axis of symmetry. The axis is certainly non-
singular since Ψ is even in r (and hence r), and we find b = constant,
e = bmr/2, so the elementary flatness condition (3.8) is satisfied. (r~r
as r -• 0 since Ψ -» constant.)

We turn next to the geodesically complete solution discovered by
Maitra [6]. This solution is everywhere analytic and contains no closed
timelike lines. It is characterised by the fact that there is a timelike
Killing vector of unit length. In Maitra's coordinates (3.5), (3.6) this
solution is easily obtained by writing

dΨ/dr = -y2/4r.

Then using (2.11), (3.5), (3.6) it follows that

e~ψ Idy y\ e~ψ Idy y
ω 4 \dr + > ] ' ° 4 \dr r

From (3.4) the timelike Killing vector d/dt has unit length if

(f2-c2)exp(2]y2dr) = i.

Using (3.7) we therefore set

f=r~1 cosh(5(r), c = r~x sinh<5(r).

Equations (3.3) [using (3.5) and the above expressions for ω and σ]
now imply on eliminating δ (F)

leading to

' -~2~ + 4) — ~ | a = constant

Ψ = - ~^τ [(1 +x 2)*- 1] + j - j l o g γ Kl +*2)* + l]

where x = 2r/α, the value given by Maitra. The expressions for other
quantities ρ, b, e etc. now follow easily and the conditions for a good
axis are all satisfied. We give now some solutions which as far as the
author is aware, are new.

We consider first solutions with

ρ = 4Λ2 = IB2 = constant.
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From (2.11) we find that a solution is

D-i r» 2λ 2 sin2 Br

oc = B sm Br, e = .

1 — cosJSr
These solutions are clearly highly pathological, as we have an infinite
number of candidates for "axes" a = 0. In fact this choice of α satisfies
the regularity conditions for an axis at r = 0, but the fact that e2 A->0
means that there is a Weyl singularity there. We see from (2.11) that
ω-»oo, σ-± — oo with σ~ — ω. (3.1) shows that £ n - > 0 , £ 2 2 ~ 4 ω 2 ,
£ 3 3 ~ — 4ω2 so

EabE
ab~32ω2-+co.

Because all Ricci tensor components are either zero or proportional
to ρ, which is finite, this must be a Weyl singularity.

To give an example of an "oscillating Ricci" singularity, we consider
solutions (2.11) with a of the form

then

and

We try to find a suitable v with

d2v

A2 = -

2 λ Λ'Λ

1

! 2λ

d2v

d'r2 +

l - e v

\d

dv

"dr

r J \

- 1
(4.1)

dr2 = - ! •
• s i n 2 — .

We can choose our integration constant so that

dv } . 2 1 ,
= — r — sin — ds.

dr I s

For r > 0, dv/dr is monotonically decreasing in r, and so A2 (and hence ρ)

has the oscillatory character of the function sin2 —. We have also to

check that A2, e2λ>0 for 0 ^ r ^ some r o > 0 . The above expression
implies ,

-r>- J->-2r.
" dr "Thus we can choose a v such that

— r"> v > - r2

and
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From (4.1) this implies

where
k>rev>0.

Thus for O ^ r ^ ^ both A2 and e2λ are strictly positive and finite,
ρ, ω, σ (and y1? γ2) are finite and defined. However as r->0, ρ = 4A2

(which is a scalar polynomial: ρ2 = RabR
ab) oscillates finitely and does

not tend to a limit it has the form 2 sin2 \- f (r) where / is mono tonic ,

so this is an "oscillating Ricci" singularity. This solution is again highly
pathological, the density becoming negative for some r between \ and
2, and there being two "axes" α = 0 a t r = ±oo.

We give finally a family of solutions which are non-pathological
in the sense that they have a proper axis and their Riemann tensor
components are always finite in a parallely-propagated frame.

We let

a = f

then

and

n = integer > 1

' ds

e2λ=~τ
r ( l + r 2 " ) J

o

ί
ds

O2n

(4.2)

Thus e2λ, A2>0 for r > 0 or r < 0 . At r = 0 we have to investigate
s ds 1

l imr" 1 ί =—. By ΓHόpitaΓs Rule this is equal to lim ~— = 1.
r-+o 5 1 + s2" r-+o ί + r2n

Hence e2λ-+n and A2-+ί (if n = 1) or 0 (if n > 1) as r->0, and A2, e2λ are
positive and bounded for all r, since

j: ds r

{ ds π

Asr-^oo, ^l2-^ O.We find

1
ωσ = —

nrn~

( 1 + r 2 " ) - + (4.3)

so as r—XX), ω and σ tend to the same finite limit. The solutions are
invariantly distinguished from Maitra's by the fact that ρ = O(r~ 2"~ 1)



New Types of Singularity in General Relativity 169

as r-*oo whereas Maitra's ρ = O(r *), and from the Ehlers-van Stockum
solutions by the presence of shear. We must check that the "axis" r = 0
is a good axis. First α = 0 only for r = 0. Secondly, since α is an odd
function, ρ, σ, ω are even and y1? y2 are odd as required. Finally, to check
the "elementary flatness" condition (3.8) we need the asymptotic form
of b, e and y2 as r->0.

Now r r

α = J ds(ί + 52")"1 = } [1 ~ s2 n + s4 n ] ds

= r 1 -
2n

Thus

and hence

exp(- ]y2dr) exp — + O(r 4 n + 2)

so

lim r exp ( — j y2 dr ) = 1.

From (3.8) the elementary flatness condition is then

I i m ( b 2 - e 2 ) = l .

From (4.3) we have ω, σ~\nrn~x for n > 1, and ω ~ 1 — Jr 2 , σ^
for n = 1. Using (4.4) the Eq. (3.3) become

(4.4)

(4.5)

| r 2

and

dfe/dr = - y i

d(er)/dr=(2r-2j-)b

These equations admit the solutions

n>\

n=ί.
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Thus in all cases (4.5) is satisfied, and all solutions have a good axis.
To see what happens to Rabcd in a parallely-propagated basis, we examine
the integral β{r) in (3.2); here this gives

-β= j nsn-ί/{ί+s2nγds

which is bounded for all r0, r for consider the "worst" case r0 = 0, r = oo.
Then β < 0 and

Hence all Riemann tensor components are finite (analytic!) in any parallel
propagated orthonormal frame. This follows since all such frames, by the
above result, suffer a finite Lorentz rotation relative to our frame,
and all Rabcd are finite in our frame as ρ, σ, ω are everywhere finite and
yί9 y2 are finite except on the axis r = 0. Thus the only singularities that

r

the family of solutions α = j ds(ί + s2")"1 can have are locally extensible,
o

and it is highly probable that in fact there are no singularities in these
spacetimes. Unfortunately we are unable to confirm this by explicit
examination of the geodesies because of the difficulty of solving exactly
the system (3.3): this would give us the metric, or equivalently the Kil-
ling vector components in the tetrad basis, leading to constants of the
motion. Similarly we are unable to check whether there are any closed
timelike lines; a sufficient condition for their absence is b2 — e2^0 for
allr.

5. Conclusion

We have given a method of constructing all solutions of the field
equations (with Λ = 0) for stationary cylindrical symmetric distributions
of pressure-free matter. Since the field equations give an underdetermined
system in this case, there are arbitrarily many such solutions, and after
showing how known solutions fit into our construction we have given
some solutions which so far as the author is aware are new. Some of
these were designed to exhibit new kinds of singularity not previously
given in the literature. In all cases the matter is flowing past these singu-
larities (u lies in the surfaces {r = constant}, and the singularities appear
at particular values of r). This makes it seem highly likely that at least
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the Weyl singularities are unstable against degenerating into "big bang"
singularities: should any matter be projected into them it seems certain
that we would get ρ-»oo here. Investigation of wave propagation in
these spaces on the lines of [13] should help to resolve this point.
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