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Abstract. For quantum spin systems on a lattice of an arbitrary dimension, the KM S
condition and the variational principle are shown to be equivalent at an arbitrary tempera-
ture for translationally invariant states.

§ 1. Main Result

The KMS condition and the variational principle are known to be
equivalent for classical spin lattice systems [8]. The equivalence has
been shown also for quantum spin lattice systems when either the
dimension of the lattice is one or the temperature is high [7]. We shall
prove the equivalence for any spin lattice system at arbitrary non-zero
temperature.

We use the same notation as in [ 7]. The assumption on the interaction
potential @(I) is as follows:

(i) Translational covariance: ®(I + a) = 1(a) (I).
(ii) Finite-body interaction: @(I)=0 if N(I) = N, for some Nj.
(i) Relatively short range: |®| = Y |®(I)|/N(I) < oo,
JELY

For a state y of the C*-algebra U (of quasi-local operators) and a
finite subset A of the lattice, y, denotes the restriction of v to WA(A)
(the local subalgebra) and ¢} denotes the density matrix for y 4

05 eA(), @ =tr(eiQ) forall QeA(A). (1.1)

The variational principle at the inverse temperature f§ is satisfied
by a translationally invariant state yp of U if

s(tp)—ﬁtp(A)szliArTn N(A)™ ! log tr(e” FY@) (1.2)

where s(i) is the mean entropy of the state y:

s(y)= —lim N(A)~ " p(loge)), (1.3)
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p(A) is the mean energy of the state y:

A= Y N() 'o()e, (1.4)
130
w(d)=lim N~ p(U(A), (1.5)
and U(A) is the total energy in A:
U)= IZ (). (1.6)

The time translation automorphisms o, of 2 are given by

6,Q0= 1%1 VNI QiU g el 1.7

A state p of U satisfies the K MS condition at the inverse temperature f§
if for any given Q, and Q, in U there exists a function F(z) of a complex
variable z in the strip 0 < Imz < 8 such that F is continuous and bounded
on the strip, holomorphic inside the strip and

F()=v(Q,0,04), Fl+if)=v({0.0:}Q,)

for all real t.
We shall prove the following:

Theorem 1. A translationally invariant state v satisfies the KMS
condition at the inverse temperature f if and only if it satisfies the variational
principle at the inverse temperature f.

The proof that y satisfies the K MS condition if it satisfies the vari-
ational principle has been known for some time. (Theorems 4.2, 3.2,
and 3.4 in [9].) We have only to prove the converse.

It has been shown (Theorem 9.1 in [4]) that y satisfies the KMS
condition if and only if it satisfies the following Gibbs condition:

Let 9,,m,, and ¥ be the cyclic Hilbert space, representation and
vector associated with a faithful . Let W, be the interaction energy
across the boundary of A:

W,=S{®(); InA+0, InA+0}. (1.8)
We recall the following notation defined in [1]:
1/2

Yo=Y [ dt;[dey.. | de,
0 0

n=0 0

oo

) (1.8)
Ak Ay kL AT kY

(=exp[(1/2) {logdy+k}]¥P).
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A state y satisfies the Gibbs condition at the inverse temperature f if
and only if it is faithful and the vector state given by the vector ¥(fW,)
is a product of the Gibbs state

@6(Q) =tr(e !V Q)/tr(e” D)

on A(A) and a positive linear functional on W(A°).
We shall show that the Gibbs condition implies the variational
equality (1.2) by using an inequality of Umegaki [10] and Lindblad [11].

§ 2. Continuity Properties of Modular Operators

We need some continuity properties of the modular operators and
the modular conjugation operators when there is a monotonously
increasing net of von Neumann algebras I, with

- (yn)

Let ¥ be a cyclic and separating vector for the von Neumann algebra
9. Let E, be the projection onto the subspace M, P. Let 4 and J be the
modular operator and the modular conjugation operator for ¥ relative
to M. Define 4, and J, to be the same for ¥ relative to MM, on M, ¥. They
are defined to be the identity operator and an antiunitary involution
on (M, ¥)', respectively, and are defined additively on the sum
M, 7+ (M, P)*

Theorem 2. A and J, have strong limits which are A" and J, re-
spectively, where the convergence is uniform in t over any compact set.

We shall present the proof as a series of Lemmas. We first recall
Sakai’s theorem on the linear Radon-Nicodym derivative. (For example,
see Lemmas 1 and 2 in [6].) Let v and ¢ be normal positive linear
functionals on a von Neumann algebra 9t and assume that y is faithful
and ¢ <y (ie. (Q)Zw(Q) for all positive Q in ). Then there exists
a unique he MM™ (the positive elements of M) such that |[h|| <1 and

@(Q)=w(hQ+Qh)/2 2.1)

for all Q e M.
Lemma 1. Let ¥ be a cyclic and separating vector for I such that
wp=v (herewy(Q)=(¥,09)). 2.2)

Then h¥ is in the domain of the modular operator Ay and

Agh® =210'F —h¥ 2.3)
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where I’ is the unique positive element in ' satisfying
P(Q)=(?,Q0¥). 2.4)
Proof. For all Q € M we have
200Q)=Q2HYP,Q¥)=(hV,Q¥)+(Q*V,hY).
By properties of 4y and Ji,, we have
(AY*hY, AY* QW) = (JuAY*QY, Ju AY*h¥P)
=(Q*¥,h?)=(2h - h) ¥,QP).
Since MY is a core of A2, we see that Ay/>h Y is in the domain of 4¢* and
A A hP)=Q2W —h) ¥ .

This proves Lemma 1.

We now investigate the linear Radon-Nikodym derivatives h,
of the restrictions ¢, and y, of ¢ and  to M, C M. Since ¢, <y, follows
from ¢ < and v, is faithful, we have the unique existence of h, e M,
with |[h,]| < 1.

Lemma 2. h, and A, h,¥ strongly tend to h and Ah'P, respectively.

Proof. By weak compactness, there exists a weak accumulation
point h, of h,. We then have

P Q) =vh,0+0Qh,)2, Qe
for an arbitrary o due to (2.1) for ¢,, y = a. Since (U ima)” =9I, we have

ho, =h. Hence h, has a weak limit which is h. From (2.1) for ¢, again,
we obtain
[hP]*=@(h)= lign o(hy) = liarzn p(h?) = liogl (R

This implies that h,Q'¥ tends strongly to hQ'¥ for Q'=1 and hence
for any Q'€ ' CIN,. Therefore h, tends strongly to h.

Since ' e M’ in Lemma 1 satisfies h' e M, (DM') and ¢,(Q)= ¢(Q)
=Y, Q%) for Qe M,, we obtain

A0, P =20V —-hY¥.
Hence 4,h, ¥ tends strongly to
AhY =2n'Y — LY .

This proves Lemma 2.

Lemma 3. The set of vectors (Ag+ 1) h'P, when ¢ runs over normal
linear functionals on I satisfying ¢ <, is total.
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Proof. Let Qe M*, |Q|| = 1. Consider
h=(1/2) {1+ 4, [ 6?(Q) f(1) d1} (2.5)

where o} denotes the modular automorphisms and the Fourier transform
of f is an arbitrary C®-function with a compact support. Then ¢} (h)
is an entire function of t and hY¥ is an analytic vector of 4y (because h¥
has compact support relative to the spectral measure of 4y). We choose
sufficiently small real positive 4, satisfying

A [ 1f(e+G2) de<t . 26)

t'=(1/2) jgla? ;2 (h) + ol (b)) 2.7

is obviously a selfadjoint element of 9 and satisfies 1 > ¢’ > 0 due to (2.6).
Hence
PQ)='¥,0%), QeM

defines a normal positive linear functional of I satisfying ¢ <wp.
Furthermore

20(Q) = (Jpd¥*h¥, QW) + (¥, Qju(at,()* P)
=hY,Q¥)+ (V,Qh¥Y)=yphQ+ Qh).

The linear span of h'¥ with h given by (2.5) contains ¥ (for A,=0)
and [6¥(Q) f()dt¥. Hence it is a dense set of analytic vectors of Ay
and is a core of the selfadjoint positive operator Ay. Hence (4y+ 1) h'P
is total.

Then

Lemma 4. A7 tends strongly to A™ uniformly in t over any compact set.
Proof. By Lemma 2, we have
lign [(4,+ 1) h,¥ —(A+ 1) h¥|=0.
Since |(4,+1)7!| <1, we have
li;n [h, ¥ —(4,+ 1) 4+ 1)h¥P|=0.

Hence we have
lia{n {4, + 1) ' —(A+1) "} x=0

for x=(4+ 1) h¥.Since ||(4,+ 1) '|| = 1 and since x is total by Lemma 3,
we have

lim (4, + 1) ' =4+ 1)7".

This implies the conclusion of Lemma 4.

Lemma 5. J, tends strongly to J.
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Proof. Let s

X, (z) =€ (4ih, ¥ — A7hYP).
By Lemma 2 and Lemma 4, we have
lim sup [x,(s +it)| =0
for s=0and s= 1. For example
X, (1 +it)= AT (A b W — ARW) + e T4 — A7) ALY
By the three lines theorem, we have

lim sup sup |(x, X,(s+ i) =0
t

a |lxll=1

for 0 <s< 1. Hence we have
liar[n [4zh, ¥ — A°h¥||=0.
By setting z =4, we obtain
li;n [Jh ¥ — Jh¥P||=0.
Hence
liortn [(J,— ) h¥|=0.
By the proof of Lemma 3, the set of A is total and we have lim J, = J.
Lemmas 4 and 5 prove Theorem 2.
Corollary. Assume that Q,e M, Qe IN, li;rn 0,=0 and 1i£n QF=0Q*
(strongly). For any z with (Rez) e [0,41],

li;n A2Q, W =A47QY, (2.8)
where the convergence is uniform in z over any compact subset of the
strip0=Rez=1/2.

Proof. We have
4,20, —APQY = 1,08V — JQ* ¥V = J(QF Y — Q*¥) + (J,— J) O* Y.

By Theorem 2, we have (2.8) for (Rez)=4% and (Rez)=0 uniformly
on any compact set of values of Imz. By the three lines theorem,
(with ¢** multiplied), we obtain (2.8) for (Rez)e[0,3], with the stated
uniformity.
Lemma 6. If k, e M,, kf=k,, sup [l k|l < oo and lim k, =k (strongly),
then
lig‘n Yk,)=Y(k) (29

where W(k,) is defined in terms of A,.
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Proof. By the preceding Corollary, we have
1i01:n Li=0,
L= sup e ” “ij(l/ZH—itkn—ij_ ij(l/ZH'itkn—jT”
J w0 <1<w a= o a
— sup e~ |(x, kAL it i _ g QD+ it g i

;—oo<t<oo,|x|| <1},

For the vector
Y(zy,...,z)=e* {Ak, ... Ak, ¥ — A%k ... A kW)

with Re(z, +---+2z,) <7 and Rez;>0, we have the following estimate
by Corollary 2.2 of [1]:

[¥(zy, ..o zp) | =sup {Ix, P(zy, ... z,)) 5 | x| £ 1}
<esup{L5;0=j=n}.

Hence we have

1/2 ty th-1
lim [ i (dey . [ di Ak, e 7ok, L A8k
a O 0 0

1/2 t1 ty—

= [ de [diy.. [ dedvkdn=Tine AnTREY
0

0 0
Since
53] 1/2 ty th—1
ST ae, [dey. | dtnA;"kaA;"-l“"ka...A;*“Zkaq’”
n=0 0 0 0

< 3 @07 [kl [ < 2] expfsup [} <oo.
we obtain (2.9).

§ 3. An Inequality
The main tool for our proof of Theorem 1 is the following:

Theorem 3. Let %t be a finite Type 1 subfactor of a hyperfinite von
Neumann algebra I, ¥ be a cyclic and separating unit vector for
M, k=k*eM, ¢™(¥) and ¢"(¥(k) be the density matrices for the
restrictions of vector states wy and wyyy to N, ie. the unique positive
elements in M satisfying

(P, 0P)=tr(e™(P)Q), (¥(k), Q¥ (k)=1tr(c™(¥(K) Q)
for all Qe N. Then

(¥, k) < (¥, {loge™(¥ (k) — loge™(¥)} ¥) <log {[¥(H)[*}. (3.1)
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First we prove the finite matrix case:
Lemma 7. If M is a finite Type1 factor, then (3.1) holds.

Proof. As is well known, there exists a unitary map u from the
underlying Hilbert space to 9t [considered as the Hilbert space with
inner product (Q;,Q,)=tr(Q¥Q,)] such that u(Qx)=Q(ux) for all
QeI and (u¥)>0. From the characterization of Jy and 4y in [3],
it is easy to see that u(Jyx)=(ux)* and u(4%x)=o(¥)* xo(¥) * where
o(¥)=(u'¥)? is the density matrix for wy. Hence

o 1/2 th-y
wPR=Y [ dey... [ de,o(P)ko(Py=— k...
n=0 0 0

Lo(PY T kg (P) DT
By the formula (5.4) in [2], with 4 =k/2 and B = (logo(¥))/2, we obtain
u‘P(k) = gtk Tlogo(¥)/2

logo(¥(k)) —loge(¥)=k. (32)

Hence

We now recall an inequality derived by Lindblad. Let A and B be
strictly positive elements of 9t which we assume to be a finite Type I
factor. Let 9t be a subfactor of M and = be the conditional expectation
from 9 onto . Namely, for each C e IN, n(C) is defined as the element
of N satisfying ¢o(n(C) Q)= ¢, (CQ) for all Q € N where ¢, denotes the
tracial state on 9. If trA=trB, Umegaki defines the information
between 4 and B by

I(A, By=tr(AlogA4 — AlogB)

which is always positive. (Umegaki’s definition is for any semifinite I
and operators A and B affiliated with I satisfying A >0, B=0, s(4)=s(B)
and ¢y(A4) = ¢(B) <oo where s(C) denotes the support projection of C.)
Lindblad obtains the following inequality in Theorem 1 of [11] (also see
Theorem 4 of [10]).

0= I(n(A), n(B)) < I(A, B). (3.3)

We set A= o(¥)and B = o(¥(k))/|¥(k)|* We then have n(4) = g"(¥),
n(B) = o™(¥(k)/| ¥ (k)|*> Substituting these into (3.3) and using (3.2),
trA=trB=trr(d)=trn(B)=1(|¥|=1), rAQ=(¥,Q¥) for Qe
and trn(4) Q = (¥, QP) for Q € N, we obtain (3.1).

Proof of Theorem 3. There exists an increasing sequence of finite
Type I factors M, with M, DN and M = (U SJE,,)” since ' NI is hyper-

finite. Let k,e 9, be such that |k,|| < ||I;1 |, ki =k, and lim k, = k. By
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Lemma 7, we have
(¥, k, V) = (¥, {log@™(¥(k,) — logg™(¥)} ¥) <log {||¥(k,)[*}. (3.4

By Lemma 6, we have lign ¥(k,)=¥(k). Then the vector state wy,

of M tends to w§, in norm. Hence limg”(¥(k,)="(¥ (k). Since
¥ (k) is separating by Corollary 4.4 of [1], o"(¥(k)) is a strictly positive
matrix. Hence li'{n log ¢™(¥(k,)) =log @™ (¥ (k)). We then obtain (3.1)
as the limit of (3.4).

§ 4. Proof of Theorem 1
By Theorem 1 of [ 5], we have
log {||¥(k)||*} <log(¥, ¥P).
Hence we have the estimate
2|[k||=e(k) =0,
e(k)=log {|¥(k)|*} — (¥, {loge™ (¥ (k) — log¢™(¥)}¥).
For k= fW,, we have l}irTn [k[l/N(A4)=0 by Lemma 4 of [7]. Therefore

lim (N(4) " (k)} =0. @.1)

By the Gibbs condition as formulated in Section i (see [4]), the
restriction wy gy, of the vector state wy gy ) to N=A(A) is the Gibbs
state @& up to a proportionality constant, which is O (1)
= |P(BW,|?> Since o™(pd) = e PV W /tr(ePYD), we obtain

—N(A) ™! yp(log™(¥)) — AN(A) ™! p(U(4))
=—N()"Le(W,)+N(A) ! logtr(e PVW),
By taking the limit of large A and using (4.1), (1.3), (1.5) and the definition
of P in (1.2), we obtain the variational equality:

P=s(y)—py(4).

4.2)
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