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Abstract. The nature and uses of self-similarity in general relativity are discussed.
A spacetime may be self-similar (homothetic) along surfaces of any dimensionality, from 1
to 4. A geometric construction is given for all self-similar spacetimes. As an important
special case, the "spatially self-similar cosmological models" are introduced, and their
dynamical properties are studied in some detail: The initial-value problem is posed, the
ADM formulation is established (when applicable), and it is shown that the evolution
equations preserve a self-similarity of initial data. The existence of a conserved quantity
is deduced from self-similarity. Possible applications to cosmology and singularities are
mentioned.

1. Introduction

Similarity solutions in classical hydrodynamics have been a fruitful
source of models for physical systems having no intrinsic scale of length,
or mass, or time. In (classical) general relativity, the fundamental con-
stants G and c reduce the number of independent physical units to one;
take it to be the unit of length. Therefore, the physical notion of self-
similarity for spacetime amounts precisely to the geometric notion of
invariance under scale transformations, as was first pointed out by Cahill
and Taub [1].

If a strongly self-gravitating system evolves in size through many
orders of magnitude, either expanding or contracting, one might rea-
sonably expect it to "forget" its initial conditions and eventually become
scale-invariant. For example, the expansion of the universe from the big
bang and the collapse of a star to a singularity might both exhibit self-
similarity in some form. This expectation is borne out in most of the
popular models for these processes, as will be discussed briefly below.
Conversely, one may hope to discover new facts about cosmology and
singularities by building new models that presume self-similarity from
the out-set.

With these applications in mind, this paper systematically defines
and analyzes the notion of self-similarity in the context of general
relativity. The immediate goal is a set of tools; physical applications
will not be attempted here. The main conclusion is that self-similarity

* Supported in part by the National Science Foundation [GP-36687X].
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is very closely related to isometry, and that for most calculational pur-
poses, a similarity is just as good as an isometry. For example: A simi-
larity simplifies the Einstein equations. A similarity in initial data
generally is preserved by the evolution equations (insofar as matter fields
permit). A similarity entails the existence of a conserved quantity (for
matter of zero rest mass). Similarities seem to be unique among generalized
geometrical symmetries of spacetime, in enjoying these desirable prop-
erties.

Others have obtained many results about what we are calling self-
similar spacetimes. Cahill and Taub [1] analyzed self-similar, spherically
symmetric spacetimes, and Taub [2], plane-symmetric ones, with strong
emphasis on the physical significance of self-similarity in general relativity.
Godfrey [3] constructed all homothetic (= self-similar) Weyl space-
times, and obtained many of the results of Section 3 below in this special
case. The place of homothetic invariance (= similarity) in the scheme of
more general geometric symmetries has been studied by Collinson and
French [4], Katzin, Levine, and Davis [5], and Collinson [6]. Much
of the material of Section 2 below is well known in differential geometry
(see e.g., Yano [7]), but the main result, Proposition 1, is new.

Section 2 deals with the geometry of self-similar spacetimes, con-
centrating on the similarity group Hn and its Lie algebra Hn of infinitesimal
generators u, vector fields on spacetime. A self-similar spacetime usually
is conformally related to another, unphysical spacetime that admits Hn

as an isometry group; this settles the problem of existence and con-
struction. The few exceptions are treated in Appendix A.

Section 3 constructs an important class of self-similar spacetimes,
characterized by a similarity group H3 acting on space slices. These
"self-similar cosmological models" form a natural, inhomogeneous
generalization of the familiar homogeneous cosmological models, and
they share many of the formal properties of the homogeneous models.

Section 4 studies the dynamics of the self-similar cosmological
models, with respect to the initial-value problem and the ADM for-
malism.

Section 5 illustrates the foregoing with some simple examples, and
derives a conservation law.

The spacetime signature is (—h + +). Greek indices run over 0,1,2,3,
lower-case Latin indices over ϊ, 2, 3. Further conventions will be defined
as needed.

2. Geometry of Self-similar Spacetimes

Consider a spacetime (M, g); M is a 4-dimensional differentiable (say
C3) manifold, and g is the physical metric field. (M, g) is further endowed



Self-similar Spacetimes 289

with certain matter fields φΛ. The isometry group Gm of (M, g) is the Lie
group of smooth maps of M onto itself leaving g invariantx. The subscript
m denotes the dimension of Gm as a Lie group.

Now use natural units so that c = G= 1, and let / be the unit of
length. Each physical geometric-object field Φ (e.g., g or φ^ has a
dimension q (usually an integer) such that under the scale transformation

l' = eal, where α = const, (2.1a)

Φ transforms like

Φ=eq«Φ. (2.1b)

It is important here to view as different geometrical objects two tensors
related by raising or lowering of indices with #, because g carries dimen-
sion. Below, when we introduce a geometrical object, we shall specify a
particular arrangement of indices; e.g., g(gμv) has q = 2, but g~1{gμy>)
has q = — 2.

The spacetime interval ds has q — 1 we take q = 2 for g. Coordinates
xμ must have q = 0, since generally they possess no physical significance.
(Sometimes one adopts a particular coordinate that might deserve q=i,
e.g., proper time t of a congruence of observers; but allowing q=ί
generally for coordinates leads to chaos. It is better always to let g carry
the dimension.) Then, e.g., it follows that q = 0 for Riem {Rμ

vρσ\ q = -1
for a velocity vector u(uμ — dxμ/ds\ and q = 0 for the matter stress-
energy tensor T(Tμv). The energy density measured by an observer with
velocity u, ε = u Γ u, has q= —1+0— 1 = — 2.

A smooth map M^>M under which g suffers the effect of a constant
scale transformation, Eq. (2.1),

g-+g' = e2ag, a constant on M, (2.2a)

is a similarity of (M, g); we shall say that (M, g) is self-similar if it admits
such a map. (The same concept is called a homothetic motion in differential
geometry [7].) It will be understood throughout (unless specified
otherwise) that the matter fields φA suffer the same scale transformation.
So for any physical field Φ of dimension q,

φ^Φ' = eqaΦ, α constant on M . (2.2b)

Repeating, a similarity is a map of spacetime onto itself, the only physical
effect of which is a uniform change in the scale of length.

For α = 0, a similarity reduces to an isometry; a non-trivial similarity
has αφO. The similarities of (M,#) form a Lie group Hn (n = dimension

1 We shall ignore discrete isometries and similarities throughout. All work in this
section is local; in particular, a family of group orbits is taken to be a family of submanifolds
of constant dimension.
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of Hn) [7], Throughout, Hn is the similarity group of (M, g) and Gm the
isometry group. Then Gm£Hn. If Gmή=Hn, then Hn is non-trivial The
groups Gm or #„ may act transitively on surfaces of any dimensionality
in M.

The infinitesimal generators u of Hn are vector fields on M. They
form the Lie algebra Hn each ueHn obeys the infinitesimal versions of
Eq.(2.2):

>g9 (2.3 a)

and more generally

ueHn. (2.3b)

Here <b, u) is a constant (independent of point p e M), depending on the
choice of u; i.e., <fo, > is a linear functional on Hn (linear, because ££ Φ
is linear on Hn). In particular, each v e Gm is a Killing vector field,

So
GM = Kernal<b, >; (2.4)

therefore m = m—ί if Hn is non-trivial. (I.e., GM is exactly the linear sub-
space of the vector space Hn which is "orthogonal" to the covector b.)
Roughly, (M, g) admits at most one independent, non-trivial similarity.
It is then no surprise that the commutator of two similarities is an
isometry: For «, v eHn,

= 0

lHn,Htt-]QGm. (2.5)

Let us turn to the existence and construction of a self-similar space-
time with given Hn. Choose Hn with subgroup Gn^ίcHn satisfying the
necessary condition, Eq. (2.5). Now employ a powerful Ansatz: Construct,
if possible, some spacetime (M, og) (not necessarily physical) with
isometry group 0Gfc, such that Hn ζ 0Gk. Try to construct the physical
metric g by a conformal change of metric

9 = e2\g; (2.6)

Eq. (2.3 a) requires for the scalar field ψ, precisely

<?uψ = <b,u}, ueHn; (2.7a)
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in particular,
JSf> = 0, υeGn^. (2.7b)

Equations (2.7) admit a solution ψ if, and only if, w is pointwise linearly
independent o n M o f G n _ 1 ? that is, if and only if

dimGΛ_1(p) = dimίζ l (p)- 1, (2.8)

where Hn(p) Q M denotes the orbit of p e M under the action of Hn, etc.
If Eq. (2.8) holds, there are local coordinates with one particular co-
ordinate function x such that

u — dx, x = const on each Gπ_ 1{p).

A solution of Eq. (2.7) is then

ψ = βx, where β = <b, dx} = const. (2.9)

Then (M, g) is given by Eqs. (2.6) and (2.9), and (M, g) admits Hn as
similarity group with Gn_γ as isometry subgroup. (The construction can
always be arranged so that the similarity group of (M, g) is no larger
than Hn.) Further, each self-similar field Φ of dimension q can be con-
structed from a dimensionless field 0 Φ , invariant under Hn, by

φ = eqψ

0Φ. (2.10)

A fundamental theorem due to Defrise-Carter, concerning conformal
symmetries of spacetime, implies that this Ansatz gives all self-similar
spacetimes, apart from a few exceptional cases. To summarize:

Proposition 1. Each spacetime (M, g) with non-trivial similarity group
Hn and isometry subgroup GmQHn has these properties:

2) Either:
a) (The usual case) (M, g) is conformally related to a spacetime (M, Qg\

with isometry group 0 G k , such that HnQ0Gk and dim Gm(p) = dim Hn(p) — 1,
peM; or

b) (The exceptional case) (M, g) is a (vacuum or non-vacuum) "plane-
wave spacetime" (see Appendix A).

Proof. Sufficiency of 1) and 2 a), and necessity of 1), were established
above. Necessity of 2): The fundamental result is:

Theorem 1. (Defrise-Carter [8]). Each spacetime {M,g) with con-
formal group Cj is conformally related to another spacetime (M, og\
such that either:

A) Cj is the isometry group of (M, og); or
B) (M, og) is a non-flat, vacuum "plane-wave spacetime" or
C) (M, og) is Minkowski spacetime.
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Apply to the present case: Hn £ Cj9 so A) implies 2 a). It is shown in
Appendix A that B) or C) is equivalent to 2 b). Q.E.D.

The significance of Proposition 1 is that the highly developed art
form of constructing spacetimes with a given isometry group can be
immediately applied to similarity groups; the exceptional cases for which
this procedure fails are few enough to be finished off once and for all.
(Proposition 1 has no direct connection with any field equations; it is
not a device for obtaining "new solutions from old".)

3. Spatially Self-similar Cosmological Models: Geometry

A spacetime (M, g) with isometry group G3 transitive on spacelike
hypersurfaces S is a spatially homogeneous cosmological model2 [9-12].
Let us generalize: A spacetime (M, g) with similarity group H3 transitive
on certain spacelike hypersurfaces S will be called a spatially self-similar
cosmological model (briefly, a self-similar cosmology)3. Such a spacetime
generally admits only the isometry group G2 C H3 and is therefore
spatially inhomogeneous (unless H3 is trivial, i.e., H3 = G3). Nevertheless,
the spatial geometry is quite simple: Each space slice S is a stack of 2-
surfaces, each homogeneous, all geometrically similar to one another;
the distance between successive 2-surfaces is strictly proportional to the
size of the 2-surface. Therefore each slice S admits a self-similarity which
maps the homogeneous 2-surfaces onto one another. Once initial con-
ditions are given on one 5, the time-evolution of the slices S and their
successive stacking in time is determined by the Einstein equations,
which reduce to ordinary differential equations in time, just as in the
homogeneous case.

The (local) construction of the self-similar cosmologies involves two
steps: First, algebraically determine the structure of possible H3 and
G2CH3. Secondly, geometrically construct g in a suitable basis of
1-forms. This construction closely parallels that of the homogeneous
cosmologies [9-12].

Group Structure. Each possible similarity group H3 must be one of
the Bianchi [15] groups, I-IX. Let {va} be a basis of ίf3, with α, b, c,...
running over 1,2,3; use the summation convention. The commutation

2 This form of the definition omits one case: The spatially homogeneous Kantowski-
Sachs-Thorne [13,14] models with G4. = SO3®A1 acting on spacelike hypersurfaces;
here S O3 acts on 2-spheres, and G4 admits no transitive G3 C G4. Likewise, this section
and the next omit the special case of self-similar, spherically symmetric models, with
H4 = SO3(E)A1 admitting no transitive H3CH4. This special case has been treated ex-
tensively by Cahill and Taub [1].

3 Again, all our work is local.
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relations are

where the structure constants Cc

ab=Cc

[ab] obey Jacobi's identities

^ [ab ̂  d]c — u \J'Z')

In the non-trivial case, the isometry subgroup G2 C H3 is characterized,
through Eq. (2.4), by the linear functional <fr, >; let (b, > have com-
ponents ba in the basis {va}. The necessary restriction, Eq. (2.5), reads

baC
a

bc = 0. (3.3)

Decompose Cc

ab into two pieces aa and nab = niab):

where

Ĵ  /^b jηab — f(a p&)cd /o C\

Here εabc and εabc are the unit alternating symbols. All objects bearing
indicies represent (relative) tensors on H3; Cc

ab and aa are absolute
tensors; εabc and nab are tensor densities. The necessary and sufficient
restrictions, Eqs. (3.2) and (3.3), take the respective forms

nabab = 0, (3.6 a)

(nab + acε
acb)bb = 0. (3.6b)

Therefore, to find all possible distinct structures for H3 and G2, just
find all solution sets {nab, aa, ba} of Eq. (3.6) which are inequivalent under
change of basis {va}. These solution sets for all H3, trivial (ba = 0) as
well as non-trivial (ba ή= 0), are specified as follows.

Divide solutions into

Class A: αα = 0, ba = 0;

Class B: αα + 0, ba = 0;

Class C: αfl = 0, baή=0;

Class D: α α φ 0 , ba + 0 .

The following particular subclass of Class D will acquire importance in
Section 4:

Class Do\ aa = ba + 0.

Classes A and B are the homogeneous cosmologies; H3 acts as isometry
group. In Classes C and D, H3 is the non-trivial similarity group, with
isometry subgroup G2. Subdivide the classes into (Bianchi) types
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according to the signature of nab (the overall sign of the tensor density
nab is no significance). Finally, for certain of the types, one or two in-
variant, real parameters hov f are needed to specify aa or ba, respectively.
Define h and / by

aaah= γsace8bdfn
cdnef (Classes B,D), (3.7a)

Kh= ~sacesbdfn
cdnef (Class C), (3.7b)

ba = faa (Class D). (3.7 c)

With these conventions, Table 1 lists all structures for H2 and G2,
distinct under change of basis {va}. A particular basis is adopted for each

Table 1. Distinct structures of similarity group H3 and isometry subgroup G2 for spatially
self-similar cosmological models; see Section 3 for notation. Class D contains the important

subclass Do subclass Do is also given separately

Class

A

B

C

D

Do

a

Type

I
II

VI0

VIIo
VIII

IX
V

IV
III
VIΛ, -ίή=h<

VII,, h>
i l

/VIo,/<0

/VIIo,/>0
V f Φ 0

IV f Φ 0
/IΠ, /ΦO
Tin

/VlC/Φθ!
iV

iIV

i Π I

For fill, bβ = (110).

Signature
of n

000
+00

+ -0
+ +0
+ + -
+ + +

000
+00

+ -0
0 +-0
0 ++0

000
+00

+ -0

+ +0
000

+00

+ -0
+ -0

lφ/ι<0 +-0
h>0 ++0

000
+00

+ -0
0 +-0
0 ++0

a3

0
0
0
0
0
0
1
1

1

(-h)ίl2

fcl/2

0
0
0
0
1
1
1
1

(-h)1/2

h1/2

1
1
1

(-h)112

h1'2

0
0
0
0
0
0
0
0
0
0
0
1
1

(-/)1 / 2

yl/2
/

/

f
a

f(-h)ί/2

fh112

1
1
1

(-hf2

Dimension

0
3
5
5
6
6
3
5
5
6
6
3
5
6
6
4
6
6
7

7
7
3
5
5
6
6
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type so that nab takes Sylvester canonical form and so that (except for
Type fill) aί=a2 = 0 = bί = b2. For Type fill, aί = a2 = 0 = b3, bί = b2

= 1 = α 3 . Listed are class, type, signature of nab, α3, fo3, and dimension
(to be explained below). Some authors prefer to view Type III of Class B
as the special case h = — 1 of Type \lh but we will distinguish it. For
each type except fill, G2 is Abelian.

We have emphasized the distinctions among types by insisting on
inequivalence under change of basis. Now, let us emphasize the generic
relationships among the types, by fixing the basis {υa}, and allowing the
solution set {nab, aω ba} to wander freely. All solutions sets form a
7-dimensional manifold; each type is a submanifold of dimension (given
in Table 1) ̂  7. One type can be viewed as a special case of another if the
former forms part or all of the boundary of the latter (equivalent to
Lie-group contraction [16]). These relations by specialization are
depicted in Fig. 1 (compare MacCallum [17], Collins and Hawking [12]).
It is disappointing that the homogeneous Type VIII and IX cosmologies
do not generalize.

Construction. Construct, as follows, a standard basis of 1-forms
{dz, σa} on a self-similar cosmology (M, g). Label the space slices S{z)
that are invariant under H3 by a scalar parameter z; then z is a scalar
field on M, invariant under H3, and freely redefinable by z^z' = z'(z)
[constrained by the requirement Fz Φθ, so that z is a nondegenerate

Class C

Fig. 1. Specialization diagram for spatially self-similar cosmological models. A line de-
scending from one type to another indicates that the second type lies in the boundary of
(i.e., "is a special case of) the first. The number on the right is the dimension of type, reading
across horizontally. Classes A and B are homogeneous; Classes C and D are non-trivially

self-similar. See Section 3
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label for the S(z)]. Choose a point p e S(0) on some particular slice S(0).
Define a spatial basis of 1-forms σa(p) at p by

<σa(p\ vb(p)> = 91, <**(p), V z{p)} = 0,

for a basis {i?α} of H3 here < , > is inner product of 1-form and vector
on M. Act with H3 to drag the <f all over S(0), J^ α σ & = 0 on S(0). The
i-form &,<*" on S(0) is closed [Eq. (3.3)], d{baσ

a)a=0; hence (locally)
exact, baσ

a = dψ, for some scalar field ψ on S(0), fixed uniquely by the
condition ψ(p) = 0. Drag y> all over M along integral curves of Vz9

(dψ, Vz} = 0 on M. Drag the <j* all over M with the vector field e2ψ V z.
(All these draggings are in fact integrable, by Jacobi's identities on the
Lie algebra H3®e2φ Vz.) Then the standard basis of 1-forms is {dz, σa)
with

dψ = baσ
a, (3.8 a)

dσa= -\Ca

bcσ
h Aβ\ (3.8b)

g = e2*{-dz2 + ^α b(z)σα®σ 6). (3.8c)

(The freedom to redefine z has been used up to set gzz— —e2ψ.)
Alternatively, derive Eqs. (3.8) by applying Proposition 1 to a spatially

homogeneous cosmology (M, og). Note that the timelike coordinate z
is not a proper time, nor does the standard basis belong to a Gaussian-
normal coordinate system. For many purposes, one would actually
prefer a Gaussian-normal coordinate system, but for this paper, the
standard basis will suffice.

Taub's plane-symmetric similarity solutions [2] are special cases of
Types xl and fV.

4. Spatially Self-similar Cosmological Models: Dynamics

Einstein Equations. The Einstein tensor for the self-similar cosmo-
logies is best calculated in an orthonormal basis of 1-forms {ω°,ω1},
obtained from the standard basis of Eqs. (3.8). (We follow the notation
of [12] rather closely.) Split up the matrix gab(z) of Eq. (3.8 c) by

gab = e2«(e2β)ab, (4.1)

where α(z) is a scalar, and βab{z) is a 3 x 3, traceless, symmetric matrix.
Let

ω° = e"'dz, (4.2 a)

"; (4.2b)ί
then

° (4.3)
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Here indices i,j,k,... =1,2,3, run over the orthonormal, spatial
basis e>'; upper and lower need not be distinguished for these spatial
indices; and repeated indices are summed. A calculation yields for the
Einstein tensor (see Appendix B):

\ = \ σ y σ y - 3α2 - \ • \R - 2bkFkjJ + bjbj, (4.4a)

\ = σijCijk-σjkCiίj-2biσik-2bka (4.4b)

\ = -6α"-9α 2-\a i f i i-\-\^-4b kF k J j + 5bjbj, (4.4c)

e2v(Gι, - i <Si;&j) = σu + 3

-τδdKFkjj + bjb). (4.4d)

[Riem and Ric(Rμv) have dimension q = 0; the mixed components Gμ

v

have q = — 2, since an index has been raised.] Here ' = d/dz, and

0u = (e" r e ( i (e~V. (4.5a)

Vy = (eO'.ti(e-V. (4 5b)

Cm = iΛa(e-%b(e-\eσbe, (4.5c)

ίij^iίQy + C^-Cy,), (4.5d)

h = (e-%aba, (4.5 e)

O î/ = ~~ C(jk)i Cjkl — C(il)kCjjk + 4 QjfcQjk (4.5 f)

In Eqs. (4.5), (β"Ό«α denotes the matrix inverse to (eβ)ia. The right-hand
sides of Eqs. (4.4) are functions of z alone.

Let us presume that the equations of motion of the matter fields φA

follow from the conservation relations V Γ = 0, where Γ is the stress-
energy tensor of matter. (Analogous results can usually be obtained if
this presumption is untrue.) The Einstein equations are

, (4.6a)

G ° k = 8 π T V (4.6b)

σ^&πΓi, (4.6 c)

G\ -1 δ\ &j = Sπ(T\ - i δ\ Pj) (4.6d)

these are ordinary differential equations in z. The initial-value problem
has the usual structure: Given an initial space slice S(0), the initial data
{oc,βab,<x\βab,φA(O)} on S(0) must satisfy the constraint equations,
Eqs. (4.6a), (4.6b) (σab may be given instead of βab; here, φA(0) denotes
initial values for the matter fields). Then the evolution equations, Eqs.
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(4.6c), (4.6d), have a unique solution {α, βab} for some finite interval
z e [0, z{\ and the constraint equations, Eqs. (4.6 a), (4.6 b), are necessarily
satisfied over this entire interval. Alternatively, given the same con-
ditions on initial data, if Eqs. (4.6 a) and (4.6 d) hold over z e [ 0 , z J ,
then Eqs. (4.6 b) and (4.6 c) necessarily hold. (All these results follow from
the twice-contracted Bianchi identities and the conservation relations.)

Consider for a moment an arbitrary spacetime (M, g) with a space
slice S(0). Give initial data {gab(x% Ka

b(x% φA(0)} on S(0), satisfying the
constraint equations, G 0 0 = 8 π T 0 0 , GOfl = 8πTOfl (here {xa} are coor-
dinates on S(0), gab the metric of S(0), and Ka

b the second fundamental
form). If the initial data are self-similar under a transitive H3, the discus-
sion above shows that a self-similar solution to the evolution equations
exists; by uniqueness of the Cauchy problem [18],

Proposition 2. Self-similarity of initial data is preserved by the
evolution equations of the Einstein equations, for the case H3 transitive
on initial space slice <S(0).

It is reasonable to expect that this result generalizes to the case of an
arbitrary self-similarity.

This result seems surprising at first; it is a familiar fact in classical
hydrodynamics that an equation of state may exhibit a self-similarity
which holds in a certain regime of conditions, but which fails eventually
when new physical processes become important (e.g., radiative cooling
sufficiently far behind a shock). So one wonders, why can't the matter in
such a spacetime eventually enter such a new regime and spoil the self-
similarity? The answer is that all regimes are already present in the
initial slice, because of initial self-similarity; therefore any such "new"
regimes would simply spoil self-similarity of the initial data. The implica-
tion is that, strictly speaking, only the simplest kinds of matter are allowed
in a self-similar spacetime; e.g., dust, electromagnetic field, photon gas.
Even mixtures of these are generally disallowed, since the boundary of
a region where one component of the mixture dominates another would
define an intrinsic scale, spoiling self-similarity. In previous work [1, 2],
the possibilities are enriched by allowing matter to be self-similarly
shocked, changing equation of state, as it passes a particular timelike
S(z); such a shock is necessarily due to a singularity in matter fields at
some point. We will not attempt to discuss such self-similar shock
surfaces.

Lest Proposition 2 seem trivial, let us point out that it seems that
this crucial result fails miserably for any other generalized geometric
symmetry. E.g., Schwarzschild spacetime admits a conformally flat, time-
symmetric Cauchy slice; this slice therefore admits a group C 1 0 of
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conformal symmetries of the initial data; but the conformal group of the
spacetime is no larger than the isometry group, G4.

Action Principle. The value of an action principle as a vehicle for
intuition in the study of homogeneous cosmologies was demonstrated by
Misner [19]; see also [20]. Let us construct the ADM [21] Hamiltonian
action principle for the self-similar cosmologies, working for simplicity
only in vacuum.

For homogeneous cosmologies, such an action principle sometimes
leads to wrong field equations [22,23]. The danger is that imposing the
symmetry does not generally commute with varying the action. The
origin of this danger is in spatial surface terms, which need not vanish
automatically after imposing the symmetry, since homogeneous varia-
tions of the dynamical fields cannot generally be made to vanish on the
spatial surface, if these variations are not to vanish identically throughout
the interior of the volume of integration. For a complete discussion, see
[23]. As for most other properties of homogeneous cosmologies, this
danger generalizes to the self-similar case.

The action for a vacuum, self-similar cosmology is

ί$πI=$d4xL{x(x), (4.7)

where the Lagrangian density L = ( - 4 # ) 1 / 2 4R is a self-similar scalar
density of dimension q = 2, and is therefore of the form

All dangerous, spatial surface terms derive, upon variation of I, from
spatial divergence terms of the form

KFa=Va(e2\Fa(z))

where Fa is a self-similar, spatial, vector-density field of dimension
q = 2, and Va is here covariant differentiation in the metric e2ψgab{z)
of the space slices S(z). One computes

VaF
a = 2{ba-aa)F\

so'ύbo = aa, then all dangerous spatial surface terms vanish. Conversely,
from detailed inspection of the action principle, if ba φ aai then non-
vanishing surface terms are present for all types of cosmologies:

Proposition 3. The ADM action principle, Eqs. (4.10) below, gives
correct field equations for a self-similar cosmology if and only if aa = ba;
i.e., if and only if the cosmology is of Class A or Class Do.

This result generalizes the result of MacCallum and Taub [23]. It
may sometimes be possible to "fix up" the Lagrangian for classes other
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than A and Do to cancel the offending surface terms, but it is unlikely
that such a procedure can generally succeed.

To proceed with the details: work in the standard basis, Eqs. (3.8);
gab is the inverse of gab\ raise and lower with gab. The dynamical variables
are to be gab(z) and πab(z), both of dimension g = 0; e2ψgab{z) is the
physical metric of the space slices S(z), while the tensor density πab on
S{z) is defined by

nab = hgίl2(a-ab-gabg
cdgcd)\ (4-8)

here g = detgab. Also needed are the Ricci tensor lRab belonging to the
(unphysical) metric gab, and the Ricci scalar lR:

lRab= -C^\Ccdb-C(ab)cCd

dc + iCacdCb

cd, (4.9a)

lR = lRabg
ab (4.9b)

Follow the procedure of A D M [21] to rewrite Eq. (4.7) in first-order
form, and then integrate over a unit volume of the space slices 5(z),
ignoring all surface terms. There results the action

-ah, (4.10a)

to be varied subject to the constraints

C° = 0 = C α , (4.10b)

where

C°= - ^ 1 / 2 [ ^ + (8αα-2bα)ί7a + ̂ - 1 ( έ π > ^ - π ^ π J ] , (4.10c)

Ca= -20Vbπ
ab-4bbπ

ab + 2baπb

b

= 2gacl(πd

b - i δd

bK) Cb

dc + 2πb(ab - bb)
(4.10d)

here, 0Va denotes covariant differentiation in a S(z) with respect to gab.
Equations (4.10) (with aa = ba) constitute the ADM action principle for
vacuum, self-similar cosmologies of Classes A and D o .

Example. Let us only sketch the further development of the A D M
method, for only the particular case of vacuum, Type iVII^, Class Do (this
case is "generic" in Class Do: see Fig. 1). The limiting case as /i->0 in
Class A is Type VΠ^, which has been studied [20].

Let the 3 x 3 matrix N denote nab, G denote gab, and Π denote na

b.
Choose a standard basis, Eqs. (3.8), so that for all z

(4.11)



Self-similar Spacetimes 301

Now solve the spatial constraints, Cα = 0, explicitly: Diagonalize G(0)
in the initial slice S(0). The spatial constraints are equivalent to

GMTG' = G'MC

The general solution of
a rotating basis [which

G(z) =

where G*{z) is diagonal
j8±(z),O(z)as

G* = exp2 diag(β+ +

and where

Θ(

J, where M

Eq. (4.12) for
still preserves

ΘG*ΘT, 1

we write G* :

/ COS0

z)= - s i n β

\ 0

/
r = Λί + /i1/2 -

\

all z is given
Eq.(4.11)]:

Ί(z) = ΘΠ*ΘΊ

0 1
-1 0

0 0

°\
0 . (4.12)

0/

by transforming to

r
?

in terms of dynamical

-l/3j?_-Ω,

sin θ 0 \

cos0 0 ;

0 1/

-2β+

(4.13)

[ coordinates

- Ω ) ; (4.14)

(4.15)

here the angle of rotation θ(z) is not a dynamical coordinate, but is
fixed in terms of β± and Ω by

0(0) = 0, dθ = -h1/2 csch2(2l/3β-)(dβ+ -dΩ). (4.16)

The momentum i7*(z) takes the general form (dictated by the requirement
that p±, pΩ be canonically conjugate to β±,Ω)

12/7* = diag(p+ + |/3p_ - 2pΩ, p + - ]/3p_ - 2pΩ, -2p+ - 2pΩ)

+ /i1/2csch(2|/3 iβ_)

exp(2|/3iS_) -/ l

1 / 2csch(2|/3 iβ_) 0 ( p + + p o ) .

0 0 0/ (4.17)

With the substitutions, Eqs. (4.13)—(4.17), the ADM action, Eqs. (4.10),
takes the form

to be varied subject to the "Hamiltonian" constraint, C° = 0, which is now

j \ , (4.18b)

where
/ (4.18c)
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Fig. 2. Dynamical histories of vacuum, Class Do>, Type ^11^, self-similar cosmologies,
traced (lines with arrowheads) in the plane of the dynamical coordinates β+ (see Section 4).
Far from the walls or ditch, the system point moves at velocity ί. The "curvature walls"
(heavy lines) move with velocity 1/2 (dotted arrows). The "Cauchy ditch" (hatched line)

remains fixed it represents the boundary of our coordinate patch

The usual methods of exegesis (see [20] and references cited therein)
may now be employed to discover the qualitative behavior of the of the
cosmology. Take the Hamiltonian H = -pΩ to be defined by Eq. (4.18 b);
then the equations of motion in Ω of β+ and p± are given by δIAΌM = 0,
yielding Hamilton's equations.

Two loci in the β± -plane (space of dynamical coordinates) are of
great importance (Fig. 2):

1) The "curvature walΓ is defined by e~AΩV(β+) = ί (it moves at
velocity 1/2). The system point moves at velocity ^ 1; it must lie to the
left of the wall. If the system point encounters the wall, it "bounces".

2) The Hamiltonian H is singular at /?_ = 0 ; this fixed locus we call
the "Cauchy ditch". If the system point encounters the Cauchy ditch, it
fall in and disappears (see further discussion below).

Then the history of the system point takes three generic forms
(sketched in Fig. 2). Emerging from the Cauchy ditch, the system point
can: 1) coast infinitely far to the left, never hitting the curvature wall,
or 2) bounce once off the wall and coast infinitely far to the left, or 3)
bounce once off the wall and fall back into the ditch. As is well known,
coasting far to the left represents a "Kasner-like" [24] or "velocity-
dominated" [25] singularity in spacetime.
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The "Cauchy ditch" has the following significance: When we con-
structed (locally) a coordinate patch for the spatially self-similar
cosmologies in Section 3, we assumed that the hypersurfaces S(z) of
transitivity of H3 were spacelike. But there is no necessary global geometric
restriction on the causal structure of the S(z); in an inextensible spacetime
(M, g\ self-similar under H3, some of the S(z) may be spacelike and some
timelike, with a null hypersurface S(z0) at the boundary between regions
(see Section 5 for examples). From the dynamical point of view, this null
S(z0) is a Cauchy horizon [18] of the initial slice S(0). The vacuum
spacetime is not singular on the Cauchy horizon, but there is generally
no unique extension through the horizon. If one assumes analyticity
(i.e., assumes "no news" on the other side), it should be possible to
uniquely or almost uniquely extend a spatially self-similar cosmology
through a Cauchy horizon (as it is possible for certain homogeneous
cosmologies [26]), but this procedure has not been carried out. In the
present formalism, "falling in the Cauchy ditch" in Fig. 2 is equivalent
to the spacetime evolving up to such a Cauchy horizon, and thus
reaching the boundary of the present coordinate patch.

5. Discussion

Examples. Let us discuss the self-similarity of some simple
cosmological models; here, g is the physical metric, and u a generator of
similarities. (Most of these models are treated in [18].)

Minkowski Spacetime:

g=-dt2 + dxidxί (i= 1,2,3); (5.1a)

u = tdt + xidi. (5.1b)

The vector field u is unique only up to spatial translations u -> u + cί dt

(true also for examples below), and time translations u-+u + bdt. The
similarity group is HίίjG10; here G 1 0 = Poincare group.

k = 0 Robertson-Walker:

g = _ dt2 + R2(t) dxι dx\ tR'/R = const (5.2a)

u = tdt + (1 - tR/R)xidi. (5.2b)

Here ' = d/dt, and the restriction tR'/R = const is equivalent to Roctp,
where p is a constant exponent. For p ^ 2/3, these are solutions of the
Einstein equations for hydrodynamic matter with equation of state
P = (γ— ί)ρ, where γ = 2/(3/?). Other equations of state generally break
self-similarity. E.g., the standard, k — 0, "hot big-bang", model of our
universe is asymptotically self-similar before and after onset of "matter
dominance," but not during. The similarity group of the spacetime,
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Eqs. (5.2), is HΊDG6; HΊ is transitive on spacetime. Note that u is spacelike
in some regions and timelike in others, as is the case in all these examples.

k φ 0 Robertson-Walker:
None of these models admit exact, non-trivial self-similarities (except

for unphysical equation of state, P = — ρ/3). As is well known, these
models approximate k = 0 models sufficiently close to the big bang; we
may say that at times sufficiently early that the intrinsic scale defined by
spatial curvature is dynamically unimportant, the models are
asymptotically self-similar. At large times, k = — 1 models approach
Minkowski spacetime, and are again asymptotically self-similar.

Kasner:

g=-dt2 + Σit
2pidxi)\ ΣiPi=ί=ΣiPf (5.3a)

u = tdt + Σi(ί-pi)xidi. (5.3b)

Here, the p( are constants. These vacuum spacetimes are exactly self-
similar, with H4rDG3. A wide class of spacetime singularities [24,25] are
approximated by this metric sufficiently near the singularity. Therefore,
such singularities are asymptotically self-similar: there are no dynamically
important, intrinsic scales, sufficiently close to the singularity.

Heckmann-Schϋcking:

g=-dt2 + Σ^(t + ίo)4 / 3"2 p ι (dxι)\ t0 = const,

Pi = const as in (5.3 a).

These anisotropic, dust universes have only a G3, with no non-trivial
self-similarities. But for t <̂  t0 (matter dynamically unimportant) they are
approximated by Kasner models; for t>t0 (anisotropy dynamically
unimportant) they are approximated by fc=0 Friedmann (dust Robertson-
Walker) models. In each of these two regimes of ί, the Heckmann-
Schϋcking models are asymptotically self-similar.

Mixmaster:
These are vacuum, Type IX homogeneous cosmologies; see

[19, 20, 27]. Generally, these remarkable models never settle down to
asymptotic self-similarity near the "oscilliatory" [27] singularity. Each
"bounce" represents an evanescently important scale; there are an
infinite number of dynamically important scales, tending to zero.
Perhaps the average conservation of Misner's Hamiltonian signifies an
approximate, stochastic scale invariance, analogously to the case of
hydrodynamic turbulence.

Self-Similar Cosmologies that Admit fc = 0 Robertson-Walker:
The /c = 0 Robertson-Walker spacetimes, Eqs. (5.2), are special cases

of self-similar cosmologies of Types ylll, fY, and /VΊIΛ [for b3 = (ί
— ίΛ'/R)"1]. Therefore, exploration of "nearby" self-similar cosmologies
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may possibly be of astrophysical relevance; compare [12]. Since u,
Eq. (5.2 b), is timelike in some regions, Cauchy horizons appear in these
self-similar cosmologies.

A Conservation Law. Let u generate a non-trivial self-similarity on
a spacetime (M, g\ endowed with a matter stress-energy tensor Γ. Here,
T need not be self-similar; e.g., T may belong to any arbitrary distribution
of test matter. Define the current P,

pβ=Tμvuy. (5.4)

From Eqs. (2.3), and the conservation relations V - T = 0,

V P = (b,u>T, where T = Trace(Γ). (5.5)

So if T ΞΞ 0 (matter of zero rest-mass), then P is conserved. In particular,
there is a conserved quantity k u along an (affinely parametrized) null
geodesic with tangent k in any self-similar spacetime:

Vk(k-u) = 0. (5.6)

Even if TΦO in Eq. (5.5), this equation may be of use. In particular,
for a timelike geodesic with tangent k, k k = — 1,

Vk(k - u) = - <6, i*> => k u = - <&, w> t + const, (5.7)

where t = proper time along geodesic. The first integral, Eq. (5.7), helps
one to integrate the geodesic equations.

Let us examine the physical consequences of this conservation law,
as applied to null geodesies, Eq. (5.6). Consider a fc = 0 Robertson-
Walker model, Eqs. (5.2). The deceleration parameter,

qo=-RR"/R2,

is a dimensionless physical observable, and therefore must be constant
on M, because the similarity group HΊ acts transitively on M. But let us
forget this argument, and rederive the result, qo = const, using self-
similarity only in the form of Eq. (5.6). Adopt coordinates so that our
galaxy lies at x = 0, t = t0. Observe other, "standard-candle", galaxies
at various distances along a single, narrow pencil & of past-pointing
null geodesies, with tangent k. Assign thereby pairs (rL, z) to these
galaxies, where rL = luminosity-distance, and z = redshift. Consider rL

as independent variable; therefore express the observational data as a
function z(rL). One has

ί+z = R(to)/R(t), (5.8a)

rL = R(t0)x, where X Ξ ^ X ' V ) , (5.8b)
or

drL = -{t+z)dt along φ\ (5.8c)
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and
χ-1xidi). (5.8d)

By Eqs. (5.8), qo(rL) along our past light cone can be extracted directly
from the observational data:

qo = {l+z)z"/z'2-ί, (5.9a)

where z' = dz/drL, etc. Now let

σ = k u = {ί+z-rLzf)t + rL; (5.9b)

if the universe is self-similar, i.e., if

tR'/R = const, (5.10)

then σ is conserved along έP [Eq. (5.6)]. From Eqs. (5.9),

Therefore, self-similarity of the universe implies σ' = 0, which in turn
implies by Eq. (5.11) constancy of q0 along our past light cone.
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Appendix A. Exceptional Self-similar Spacetimes

Here we complete the discussion and proof of Proposition 1, Section 2.
A (vacuum or non-vacuum) plane-wave spacetime (M, g) is a specetime

with metric form [28]

g = 2KAB(u)xΛxBdu2 + A B ,
(A.I)

A,B,...=2,3,

in some local coordinates. Let K(u) denote the 2x 2-matrix function of
u with components KAB(u). (M, g) is vacuum if and only if K(u) is identi-
cally traceless; (M, g) is always conformal to a vacuum plane-wave
spacetime. (M, g) is conformally flat if an only if K(u) is a pure trace,
K(u) = f(u) /, where f(u) is an arbitrary scalar function, and / is the 2 x 2
identity. (M, g) is flat if and only if K (u) = 0.

Generally, (M,g) admits a G5 transitive on the null hypersurfaces
u = const. [28]. Generally, (M, g) admits a non-trivial H6, the additional
generator being

(The conformal group C6 is generally equal to H6. Higher symmetries
arise in special cases; Hn is always non-trivial.)
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The physical nature of this similarity is simple. For each observer,
w generates a transformation which is a composition of a boost in the
direction of propagation of the wave, with a scale transformation which
exactly cancels the Doppler shift induced by the boost, leaving the wave
invariant. Since wu = 0, the vector field w is pointwise linearly dependent
upon the generators of Gm therefore Eqs. (2.7) admit no solution, and
(M,g) cannot fall under Case 2a) of Proposition 1.

By long and tedious calculations based on Cases B) and C) of Theo-
rem 1, one shows conversely: Any spacetime (M, g) obeying the hypo-
theses of Proposition 1 that does not fall under Case 2a), necessarily is
of the plane-wave form, Eq. (A.I) and therefore falls under Case 2b).
(Such a simple result begs for a simple demonstration, but the author is
unaware of one.) These are all the "exceptional self-similar spacetimes"
that fall under Case 2b) (c denotes a real constant):

G5 C H6 (general case): K(u) not as below.

G6CHΊ\ Let h(u) be a scalar function, not c or cu~2 then

G6CH7: Let R(θ) be a 2 x 2 rotation matrix,

/cos0 — sin0\
A β \sin# cosθ/

let L be a 2 x 2 constant matrix, not a pure trace; then

K(w) = K(cw)LKT(cu).

G6CHΊ: Let /?(0) and L be as above; then

Jί(tt) = u~2R(c lnw) LRτ(c lnw).

GΊCHS: Here

K{u) = cl, c φ O .

GΊCH8: Here

Gί0CHn (Minkowski spacetime):

K(u) = 0.

Appendix B. Useful Formulae for Spatially Self-similar Cosmologies

It is not necessary to have explicit formulae for ψ and the σa;
Eqs. (3.8a), (3.8b) are sufficient.
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In the orthonormal basis, Eqs. (4.2), the connection forms ωμ

v,
defined by dωμ = — ω"v A ώ", ηβ[μ(oβ

v] = 0, are

ωo

ι = e-ψbiω
o + e~'t κijω>, (B.ia)

ωi

J = -e^viJω° + e^ίFiJk~biδjk + bjδik]ωk; (B.lb)

the curvature forms, Ω"v = ίZω"v + ω"λ Λ ω \ , are

Ω°. = e~2ψ [κik + Kij κjk + κi} vJk- vυ κJk

+ bjFm) + bibk-bjbjδik] ω° Aωk (B.2a)

+ e~2ψίκjkFju - \ KijCjkl - bj(cjk<5π] ω
k Aωι,

Ωtj = e-^[i2κιιFu^iΛ + κuCιii-{2bικιJδιύιl^ ω°Aωk

+ e-2ψίκuκJm - $FlJkCUm-FluFJkm (B.2b)

- 2(hFkφ) &im + bj b, δim\iΛ - δa δjm bkb J ωΆωm;

Eqs. (4.4) follow from Ω"v = \R\βaω
eA<O°, Rvσ = R"vμσ.

Here, notation follows Eqs. (4.5), plus

K,j = atj + d,ja. (B.3)

For subclass D0(aa = b"φθ) and Class A(cf = 0 = ba), the Einstein
tensor is very simple; in the standard basis, Eqs. (3.8),

2-r\υ, (B.4a)

U{) εdac-2a ac, (B.4b)

0

 2 + 2C/, (B.4c)

e^(Ga

b-ίδ''bG%) = (σγb + 3aσ' b+ U\; (B.4d)
where

(B 5a)

L/ = g(- 1(n f l 6n c ' ί-inα ' ;n 6 ί i) g( a c 9- i ) ί i, (B.5b)

L/a6 = δ U/δgab - \gabgcd δ U/δgcd (B.5c)
so

U\ = g-1 rrcrPgeBghA + i τf*rf'*„&„?'

gab is as in Eq. (4.1). Observe that aa enters only through Eq. (B.4b).
Therefore, in the ADM formulation, aa enters only in the spatial con-
straints, Eq. (4.10d). The Hamiltonian constraint and the evolution
equations are the same for a subclass Do cosmology as for the corre-
sponding, limiting Class A cosmology.
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