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Abstract. A renormalization method originally proposed by Ashmore is reformulated
and shown to be, in fact, a renormalization. The method involves use of different complex
dimensions associated with various subgraphs of a graph, and appears to combine the best
features of complex dimensional and analytic renormalization.

In an earlier paper Ashmore [1] proposed an ingenious synthesis of
analytic and complex-dimensional renormalization, based on the use
of distinct complex dimensions associated with various subgraphs of a
Feynman graph. Unfortunately, several errors in this paper necessitate
a fairly complete reformulation of the method one such reformulation
is presented here. Our regularization procedure (§ 1) is the same as that
of [1], although we give it in an x-space version which is needed later.
The renormalization procedure, also defined in § 1, differs from that of [1]
by taking a different set of parameters as basic. In § 2 we prove that the
renormalization has an additive structure, as desired.

I. Regularization and Renormalization

Let G be a fixed 2-connected Feynman graph, with vertex set
[70 = {F1 ?..., Vm] and line set ££. We will ignore spin in this paper
(although the methods given extend readily) and thus assume that a line
/ e J2? has propagator

J,(p)=-ιW-p2-'OΓ r,

with m^ > 0. We first establish our terminology.
If H is a subgraph of G, N(H) denotes the number of loops of H,

y(H) the set of lines of H. H naturally decomposes into 2-connected
subgraphs and single lines joining them; these are called the pieces off/.
A generalized vertex U is a subset of C/0, and G(U) denotes the graph
which contains all lines joining any pair of vertices in U; we will drop
the distinction between U and G(U) when no confusion can arise. In
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general, JΓ will denote a set of 2-connected generalized vertices; in
particular jf[C7] - {W C U\ W is 2-connected}, and Jf0 = Jf[C70]. For
( E X with initial and final vertices Vif, Vff e C70, Jf, - {We JΓ0 1 / 6 G(W)}.

Now, given non-negative integers ωv for all (7 in some jf, define

M(Jf) is furnished with Minkowskian inner product in which only the
first component in IRωt/o is timelike [if ωUo = 0 or l/0 <£ jf the inner
product is in fact Euclidean, but this does not arise in practice]. For
Jf'CJf and xeM(Jf), r '̂ denotes the jf' components of x. The
Fourier transform on M(JΓ) is

Mpf)

Definition 1.1. For *f e Jδf, define a propagator on M(jQ by

(/? e M(Jf^)); define a Feynman amplitude for G on M(Jfo)m by

, x) = Π ^XA,) ( χ < - xf ) , (i.i)
JS?

jc e M(jΓ0)
m. Here we have chosen as fundamental variables {ρ^l ί/ e

defined by
^t/^ Σ ωw (1-2)

Remark 1.2. We have introduced the A variables of conventional
analytic renormalization both to make (1.1) well defined (A'f is continuous
for Re/^ sufficiently large [2]) and for use in § 2; here we will specialize to
A = λ° = (l, 1, ..., 1) before renormalizing. Note that the physical point
ρ° is given by ρv = 4, V U e Jf0

For C7 e JT0 with | U\ = k, let S" - R^(k+ 1} be the space of variables
{($ I F^.et/}, let

ύ~ 11 ύ '
1/eJfo

and define φ : M(jΓ0)
m->S by

Lemma 1.3. Γ/ίβ Fourier transform of ( i . i ) is

/•(λ, Q, p)

UeyίT0 [ \VieV I Vjφϋ
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where
F(λ,ρ,s)

= f ( λ , ρ ) J . .J Π α Λ '~ l r f

1 (1.5)
£

and, for any 2-connected subgraph H of G,

VH= Σ λ,-±ΣN(U^H)ωu (1-6)
J2?(H) tfo

Here dv is the usual function for the graph U, and Ds

v is the momentum
part of the function D for U.

Proof. Use the standard techniques of exponentiation of propagators
followed by Gaussian i n t e g i a t i o n [2].

We note that F(λ, ρ, s) depends on the parameters ρ only through
the explicit analytic dependence on the variables ω exhibited in
(1.4)-(1.6). Thus these equations define F as a function of complex
variables ρ. The integral in (1.4) converges only for ReΛ^ sufficiently
large (how large depends on ρ) but we have

Lemma 1 A. F(λ, ρ, s) is a meromorphic function of (λ, ρ) e (C1^1 x (C|3ro1,
with simple poles on the varieties

Vjj = U, 1, 2, . . . ,

for H any 2-connected subgraph of G.

Proof. If $ denotes an s-family of subgraphs of G ([2]; see also [3],
where the analogous concept is that of a labelled s-family), we may
decompose F as

E _ y pr — 2_j Γ $ '
s

with

\ Ί\
*•' '

Here Eυ is non-vanishing for non-negative t. Treating tvjj* 1 as a distribu-
tion [4], we arrive at the conclusion of the lemma.

Remark 1.5. This is a corrected version of Theorem 2.2 of [1], in
which an erroneous formula for VH is given. The error has propagated to
an incorrect definition of renormalization, as we discuss below.
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We may now descend from our arbitrarily large space M(JΓ0) to a
more comfortable environment. Let Mn denote π-dimensional Min-
kowski space (first component timelike) and φn:Mn

m->S the map with

j> if U=U0,

if 1 7 Φ C / Q .
For p E Mn9 let

lm \

3Γn(λ, Q, p) = (2π)"/2 δ(Σpι} F(λ, ρ, φn(p)}
\ 1 /

Then ^~4(λ°, Q, p) is the regularized amplitude as defined in [1].
For the rest of this section we set λ = λ°. We wish to define a re-

normalized amplitude by applying an e valuator to 2Γ^ as m the case of
analytic renormalization [2,3,5]. In [1] this is done by taking the
variables ω as fundamental; in fact, however, this does not appear to
yield a renormalization. We will modify this approach by working with
the variables ρ; our justification is Theorem 2.7, which states that this
procedure yields a renormalization. See also Remark 2.4.

Since (1.2) may be solved for ω in terms of ρ, (1.6) becomes

v*=-i Σ βπ.uQu + l

with βHfϋ integer coefficients. This form of singularity is not as simple
as that occurring in analytic renormalization (where in effect βH υ is
always zero or one), but can be treated with a slight modification of the
standard evaluator. Suppose that g(ρ) is a meromorphic function with
a finite number of series of singularities of the form

(1.8)

with yv an integer. Then for \ρu — 4\<R1, define

(^)(ρ) = (2πO-κ(K!)-1Σ Π [ ί
σ Ueyίf0lCσ(U)

where K = \Jf0\, the sum is over all 1 — 1 onto maps σ: JΓ0->{1, ...,K},
and for l ^ i g X , Q is the contour \z-4\=Rt. The {Rt} must satisfy

with A = ma.x\γv\, the maximum taken over all U e JΓ0 and all singular-
ities (1.8).

Finally we have
Definition 1.6. The renormalized amplitude for the graph G is

(where it must be understood that we first set λ = λ°, then apply ̂  then
set ρ = ρ°).
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II. Structure of the Renormalization

In this section we show that the renormalization of Definition 1.6
has an additive structure and hence is indeed a renormalization. As
was done in [1], we base our proof on the structure of analytic evaluators
developed in [5]. In applying this structure, however, we face what
appears to be a fundamental complication in complex dimensional
regularization - the fact that the regularized amplitude is no longer a
product of propagators. Here we treat this difficulty by using the product
structure of the regularized amplitude (1.1) in a preliminary stage, then
extending results to non-integral ρ by Carlson's theorem. For an
additional discussion of the general character of our result, see
Remark 2.8.

Definition 2.1. For U C C/0 a 2-connected generalized vertex, let SΓ^
denote the amplitude of Definition 1.1 for the graph G(U). Note that Jf0

will be replaced by Jf [[/] throughout, so that SΓ^ will depend on
{ρw\ WE Jf [E7]}, and (1.2) will become

Qw= Σ ωx- t2-1)

^~v will be singular on varieties

V H = Σ ^~i Σ N(WnH)ωw = 0,-i,-29..., (2.2)
JSf(H) Weyίf[U]

for H any 2-connected subset of G(U). The various quantities of § 1 will
be subscripted with U when they refer to the graph G(ί7).

Definition 2.2. For any jf e Jf [[/], let

H= U G(W), (2.3)
Wetf

and let P^ υ be the partition of U induced by the following equivalence
relation: Vt ~ Vj if i =j or Vt and Vj lie in the same connected component
of H. (Note: the union in (2.3) is a true union of graphs, i.e., f ε&(H)
iff { G JS?(G(WO) for some W e Jf thus H is not necessarily a generalized
vertex.)

Lemma 2.3. Let H C G be 2-connected. Let U(H) be the set of vertices
of H, and take U e JΓ0 with U D U(H). From (2.1) we have

(2 4)

for certain integers βHίW. Then
(a) βH,w = Q unless W C U(H)
(b) For We U(H)9 βH w is independent of U;
(c) IfjT(H) = {W βHtw*0},thenP*w.um

Remark 2.4. This lemma demonstrates that the ρ variables are natural
for our problem. For (a) and (b) imply that the form of the singularity
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(2.2) of yυ depends only on //, not on U; this is not true in terms of the ω
variables. Moreover, the singularity involves only variables associated
with H (or U(H)); this enables the corresponding singular part for the
amplitude 3Γ to be identified as arising from a vertex part of U(H).

Proof of Lemma 23. For We Jf [17], let Wn U(H) have pieces H?,
ί= 1, ..., k(W); for X C U(H), define ώx= Σωw, the sum running over
all WE JίT [[/] such that X e {H?}. Then

Qx= Σ ώx' (2 5)

and, solving (2.5),
&x= Σ *x,x'Qx' (2 6)

where %XίX, is independent of (7. From (2.6),

= Σ f Σ N(XnH)*x,x \Qx (2.7)

βHW is the expression in square brackets in (2.7), and (a) and (b) are
immediate.

To prove (c), suppose that P^(H),v(H} — {^ι> •••? Wr}, with r^2. For
each i, 1 ̂  i g r, set ωWi = l,ωw = 0, (WΦ Wί) in (2.4) to find N(Hn P^ )
= Σ βπ,w'> similarly, set ω l / ( H )=l, ω^ = 0, (Wφt7(JΪ)) to find

N(H)= Σ )8HϊWr. But then
ίrcc/(ίr)

N(H)=
ΐ = l

which is impossible for H 2-connected.
Definition 2.5. Following [5], we may use the analytic evaluator ̂

of (1.9) 'to define a singular part operator «5^(Jf ) for each Jf C Jf0> with

Then for each 17 C 170, and p E (Mn)
|ϋ| ,

the sum taken over all JΓCJΓ[ί7] such that

Lemma 2.6. &Ufn is a vertex part for 17, i.e.,

vviί/ί D an invariant polynomial of degree at most μ(G(U)) = 4N(G(U))
— 2|jSf(G(L7"))|, ίfte superficial divergence in dimension 4.
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Proof. Using the formula
00

(X-iQ)~v= Km /Xv)"""1 exp(jvπi)f atίv-1 expίt(X-ίε),

we may modify (1.7) to write Fv(λ0, ρ, su) as a sum [over s-families $ of
G(l/)] of terms

oo 1 1

\ atom I "Ί Π dtH Π f)/*" * 4Λ sV) - (2-9)
ε->0 + o o o

If we expand the meromorphic factors tvf * around ρ°,

where 2kH = μH, and apply ̂  (JΓ), all terms are annihilated except those
containing the (5-function factors for a set of graphs Hί9..., Hp satisfying

(J Jf (fli) = Jf [Remark 3.19 (a) of [5]].
i

Now note H0= \J HI connects all vertices of U. For by the condition
i

P3r,u = {U}9 this is true for H0 = (J G(W\ and given Vh V^U and a

path joining them in H0, it may be replaced by a path in H0, using
Lemma 2.3 (c). If Hί,..., Hr are the maximal elements among H1,..., Hp,

r r

then also H0= (J Hh moreover ^kH.^kv, since the H{ are elements
r = l 1

of a single s-family. It follows as in Lemma 4.2 of [5] that the contribu-
t-

ion to (2.9) from any term involving f| δ(kH*}(tH) is a vertex part for

G(E7), q.e.d.
For v e C, let ρ(v) e C1^0' be given by ρw = v, We JίT0. Then if

^u,n(λ°9 v

? P) is the usual complex dimensionally regularized amplitude
in dimension n [6, 7]. Recall also [7] that if Q = {Ul9 . . ., UM} is a partition
of [7OJ and ^(C//) is a vertex part for L7t- [see (2.8)], we can define the
regularized amplitude

given for v = n and Re/l^, £ φ ^(G(U^)\ sufficiently large as a product on
(MnT by M

conn 1

and then extended to all v and λ as for yn earlier.
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Theorem 2.7. Let 3fUtn(v9 p) = %,n(ρ(v\ p). Then

(1TPU (λ°, ρ(v), p) = Σ ̂ (v),4μ°, v, p) (2.10)
Q

for alive <E, pe(MJ".

Remark 2.8. (2.10) expresses the desired subtractive structure of the
renormalized amplitude. The unexpected element is that this structure
appears to exist only after the specialization ρ = ρ(v); we can find no
adequate formulation when ρ is arbitrary. This is in contrast to the
situation in analytic renormalization, where the specialization
λ = (λ, λ, . . . , λ) is not needed until the implementation of the subtractions
via counter terms.

We will prove (2.10) using Carlson's theorem [8, 9]; for the estimates
involved it will be simplest to work with Euclidean momenta. But note
that if we can prove (2.10) with all momenta Euclidean, it will extend to
Minkowskian momenta via analytic continuation in the variables stj.
For the rest of this section, then, we will assume that D^(
5^,5)^0 [see (1.5), (1.7)].

Lemma 2.9. Let m0 be the smallest mass in G and for U e JΓ0 let

Then for some constant K,

whenever . A . , /-» ^\
ω^^O, v H ^ l , (2.12)

for every WeJ^^U^and 2-connected H C G(U).

Proof. Under the stated conditions \guFu^\ < I for each s-family δ
of G(C7) [see (1.7)], from which (2.H) follows.'

Lemma 2.10. Let Q = {C7l5 ..., UM} be a partition of U09 let ωw,
We Jfo, satisfy

'n, if 17=E/ 0 ,
M

ωw=\ 0, if t/ΦI/o, 171 (jjr[U3 (2.13)

an arbitrary positive integer, otherwise,

and let ρw be defined by (1.2). Then for x e (!R")m,

M

(a) £Γ (λ o x] — T~T £Γ (λ o x] TT A (x x ) (2 14)
i =1 conn

M

(b) (2Λ4) also holds for ρw, We (J tf[Ui], arbitrary complex numbers.
i
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Proof (a). For each We Jf [£/;], choose a vertex Vj{W} e W9 multiply
(1.1) by

M

Π Π (2π)-^^-1>«5(xJV))Π^f),
i=l Wetf[Ui] jφW

M

and integrate over all xjje C/0, We (J Jf [C/f]. This gives (2.14), as may
i

be seen by going into momentum space. Note that from (2.13), A'£ = Δ^n

for { a line in Πconn.
(b) Observe that both sides of (2.14) are defined (independently)

M
for complex ρW9 We (J Jf [I/,-]; we will use Carlson's theorem to prove

i
that the equality which holds for certain integer values of ρw extends to
complex values. Multiply both sides of (2.14) by gUo(λ9ρ)9 take the 1R"
Fourier transform, and drop the resulting factor δ(ΣUopi). In the region
(2.12), the left hand side is bounded by a constant (Lemma 2.9), and using

(Lemma 2.9), the convolutions on the right hand side may be worked
out to show that the right hand side is bounded by

M

gvo(λ, Q) Π Kl9υi(λ, ρΓ1 Fΰ(λ, e(n\ ή , (2.15)

where G is the graph obtained from G by contracting all
We now claim that (2.14) holds for all complex ωw (equivalently, all

complex QW\ W e (J Jf [[/J. For choosing WeJf|>J, we fix n,
ωv (U ̂  W\ and certain numbers ^>0, / e JSf. Now set λ^ = η^ωw; for
all Reω^>ε>0, (2.12) will be satisfied, and (2.15) will be polynomially
bounded in ωw (use Stirling's formula). Hence by Carlson's Theorem,
equality holds for all values of ωw, and since the η^ can vary over a real
neighborhood, equality holds for all λf. Repeating the argument for all

proves the Lemma.

Lemma 2.11. Let Q = {C7l5 ..., Um} as above, and let λe=l9
M

^(G(Ui)\ For ve<C, let ρv = v if Uφ \J

(a) If v = n9 a positive integer,

r, u0=Q]

(b) For any v e C,

, Q, x) = ̂ Q,y(β}Λ(λ, v, x) . (2.17)
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M

Proof, (a) If P^ tUo = Q9 Jf must decompose as jf = |J j f j , with

JfiCJίTt/J, JV i f ϋ l = it/*}- We set λ,= l(/e U (̂0(17,))) in (2.14) and
apply ίf(tf); this makes sense because «5^(jf) operates only on variables
ρjjr, We (J Jf [I/;], and these may be taken complex by Lemma 2.10 (b).
By the factorization property of ̂ (Jf) (Remark 3.19 (b) of [5]), this gives

^PO W <?,*) = Π n^)^,π(λ°,ί,*) Π ^.πOW
i = l conn

Summing over Jf satisfying P^sl/0 = Q gives (2.16).

(b) This is proved by another application of Carlson's theorem. We
omit details, as the argument is similar to the proof of Lemma 2.10 (b).

Proof of Theorem 2.7. Set λ = λ° and ρ = ρ(v) in (2.17), and sum over
all partitions Q.
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