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Abstract. Any conformal or projective structure on a manifold Jί defines a natural
boundary dJί. For Minkowski space these coincide with null infinity as defined by Penrose
and projective infinity as defined by Eardley and Sachs, respectively.

§ 1. Introduction

The b-boundary construction [1, 2] is a device to attach to any space-
time f̂ 4 a boundary dbi

/"4', which is intrinsically defined by the Lorentz
metric of i^4. In this paper it will be shown that a similar construction
is possible for a conformal or projective structure on a manifold. Thus one
gets for any space time two boundaries δ c ^ 4 , dpi^

4 which are determined
by the conformal and projective structures of i^4.

It turns out that the conformal boundary of Minkowski space
determined by this method is J> as defined by Penrose [3], together with
the points 7~, 7°, 7 + . In the projective case one finds that the boundary
of Minkowski space is the same as projective infinity defined recently
by Eardly and Sachs [4, 5]. Therefore we get as well a new definition
of J> and future projective infinity, as at the same time a genuine
generalisation, because the boundaries are defined for any space.

Therefore it is within this framework a well defined question for
example whether the null generators of J>+ of an asymptotically simple
space-time f 4 have a past end point in dc^

4 or not.

Hopefully this method will lead to some new insight into the structure
of asymptotically simple spaces near 7° and 7 + .

The mathematical background - which will not be used in this paper -
is the theory of prolongations of G-structures. If one considers all metrics
compatible with a given conformal structure, then their connections
define a reduction of the frame bundle of the frame bundle. It turns out
that on this bundle there exists a parallelisation, determined intrinsically
by the conformal structure. Hence one gets a positive definite metric,
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forms the Cauchy completion to obtain a boundary of the bundle, and
projects this boundary down to get the boundary of the base space.
The interpretation of boundary points in terms of the space-time is more
complicated than in the case of the b-boundary. Roughly speaking it is
the following: A curve x(λ), 0^λ< 1 which is inextensible in Ϋ^4' ter-
minates at a point of dci^

A if a metric g exists in the conformal class such
that 1) the Ricci tensor of g vanishes on x(λ) for λo^λ< 1, 2) the
generalised affine length [2] of x(λ), λo^λ<ί9 calculated with the
connection of g is finite.

The plan of the paper is the following: In Section 2 the definition of
the conformal boundary is developed. Section 3 contains the proof that
for Minkowski space 3cf^

4 = t / u / ~ u / ° u / + . The interpretation of
boundary points is given in Section 4. Finally there are some remarks
on the projective case in Section 5. Appendix 3 contains a geometrical
proof that the conformal group of motions of the Einstein Universe is
a covering group of 0(4,2).

§ 2. Definition of the Conformal Boundary of a Space-Time

In this section it will be shown that a conformal structure on a
manifold Jί defines in a natural way two principal bundles over Jί
and a parallelisation on one of these, which then will be used to define
a boundary of Jί in perfect analogy to the b-boundary [1]. The general
mathematical background is the theory of prolongations of G-structures
as developed in [6, 7]. The essential geometrical ideas, however, were
already known to Cartan like nearly anything in local Differential
Geometry.

In the treatment given here, the general theory of prolongations will
not be used in the hope that a more direct treatment will be better
understandable to Relativists.

Let JtA be a manifold. A conformal structure # on M* is defined
as an equivalence class of Lorentz metrics defined by the relation g ~ g
iϊg=e2σg, where σ is any real-valued function on M. Let us write g e <£
for a metric in the conformal class. A Lorentz metric defines a reduction
of the frame bundle S£{JΓ) to the bundle of orthonormal frames. In the
same way, a conformal structure # gives a reduction of J2? (Jί) defined by
all frames which are orthonormal for some metric g e (€. This bundle is
denoted by &(Ji)1 and its structure group is

), η(aξ9aξ) = c2η(ξ, ξ)} (2.1)

One can define ^ as a reduction oi£?(Jί) with structure group <$Θ.
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when η is a metric of Lorentz signature on the vector space J?4. Clearly
ΉΘ is the direct product of the Lorentz group and ̂ + , the group of
positive real numbers under multiplication.

Hence U G ^ ( J ) is a frame (ea) at a point xeJί which is ortho-
normal relative to some g e (€. Any other frame at x which is in SP(Jl)
is then given by eh=eaa

a
b with ab

ae^Θ.
In the following 0>(Jί) will always be considered as a subset of 5£{Jί).
Choose g e <S. Then g determines uniquely a torsion free connection Γ

on ££{Jl\ Denote by {Hu} the collection of horizontal subspaces de-
fining Γ, and by Bt the standard horizontal fields, [8,1], which are
defined by

(BdueHu9 π^Bdu^e, if « = (**). (2.2)

A metric g determines uniquely a horizontal subspace at any point of
S£(Jl). In contrast to this we get from a conformal structure a whole
collection of horizontal subspaces at any point.

What is the relation between Hu9 H'UΊ If Hu is defined by g e #, /^ by
e2σg, then the relation between the Christoffel symbols in a local co-
ordinate system is [9]

Πί^Γk + δlσ^ + δlσ^-g^g1^. (2.3)

From this and the expression for Bt in coordinates [2,10] one finds
immediately

M (2.4)

Here E\ denote the standard vertical vector fields in ££(Jl) and σik, gki

are functions defined on 5£(M) in the following way: ifg(X, Y) is a tensor
field on Jί, then gik(u) is defined by gik(u) = g(XhXk) if u={Xj). Hence
σμ(w), Sik(u) are just the components of dσ and ̂  in the frame u. (This
convention will be used for any tensor field on Ji) In particular gikg

ls

is constant on 0>(Jί\ i.e. for conformal frames; more precisely gikg
ls

= ηikη
ls where ηik is diagonal (— 1, 1, 1, 1) as well as ?ffc. Therefore we

find that at u^eSPiJί) the preferred class of horizontal subspaces is
spanned by

fXo = (B^ - (δ\bk + δibf - W ΐ

The vertical fields Eα, α = 1,..., 7 in ̂ (,y#) are given by (k < I)

MΪ = EΪ-ηltη
k*t89 #£? = ££, (2.6)

since the Lie algebra of W is spanned by the Lie algebra E^-η^^l
of the Lorentz group and δι

k (E\ is the matrix with 1 in the fc-th row and
/-th column and 0 at all other entries).
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Now we realise that a conformal structure defines a collection of
frames oi &{Jt). At uoe0>(J() these frames are given by (2.5), (2.6)
with bkeά4.

With the abbreviation

Slkiby^δlh + δίbi-ηnηH, (2.7)

any two of the preferred frames at u0 are related by a linear transformation

These transformations form an abelian vector group isomorphic to i r .
We now come to our 2 n d bundle. Considering the frame bundle of

2P(Jί) we realise that a conformal structure defines, via the preferred sub-
spaces on &{M\ a reduction of J2? (^MO) which we denote by &ι(&).
The structure group of SP1^) is J 4 . [The fact that the frames (2.5), (2.6)
really form a reduction of JS?(^) follows easily because a connection Γ
of a metric g e%> defines a cross section λ :&\j()-*S?(^MO).] Denote
by π 1 the projection π 1 \0>1(0>)-*0>{Jί\

Let us recapitulate the interpretation of a point z 0 e ^ 1 . It describes
a point w0 = πx(z0) e&(Ji) and a horizontal subspace HUo which belongs
to the distribution of horizontal subspaces of a connection of a metric

Another way of saying the same thing is this: i^sSP1 determines
uniquely (and is determined by) an equivalence class of metrics in #
which satisfy g' — e2σg and σ(x0) = 0, (dσ) (x0) = 0, where x0 = (π ° π1) (z0).

Or still another version: zoe^1 determines a frame κo = π1(zo) at
xo = π(uo) and a connection at x 0 .

The essential point is that there exists a parallelisation on 3Pι{3P)
which is uniquely determined by the conformal structure on Jt.

We just repeat in a certain sense what we did before. 0>1(^>) is a
principle bundle over & and we ask whether we can find preferred com-
plements to the fibres.

Pick an arbitrary point z 0 e2Pι and consider all g e%> such that the
cross sections ^ - • ^ > 1 defined by their connections pass through z 0.
These cross sections are given by the fields

(Bfχ = (Bi)u-(δι

iσlk + δι

kσli-ηikη
lsσ{s)E]ί, (2.9)

hence are determined by w-»<7|fc(w) and the fields Ea. The condition that
all sections pass through the same point z0 is given by <?|fc(w0) = ft/c if
uo = πί(zo). We can without loss of generality assume that bk = 0. Two
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such sections determine the same complement Hzo to the fibres in &1

if and only if

(B^ff,* = (Bd^σiu, Eaσlk = Eaσ{k (2.10)

holds. Now #|fc(w0) = 0 implies (Eaσ^k) (u0) = 0, and by the very definition
of the covariant derivative it follows that

where the co variant derivative is performed with the connection
determined by (B/)tt0.

Therefore we find that there is a 1 - 1 relation between JηTpfao) and
a certain class of horizontal subspaces Hzo.

Take now one of the sections u-+&\k(u) and the corresponding
fields B[. Then

ίB'hB'k]=-Rs

tikE
t

s (2.12)

where Rs

tik are the components of the Riemann tensor in the frame u
of the metric defining the connection given by B\.

Clearly \B'hB'k\o depends only on Hzo, the tangent space of the
section d\k(u). Can we find a unique Hzo by imposing conditions on Rs

tikΊ
The Riemann tensor Rs

tik of a Lorentz metric decomposes uniquely
into the conformal tensor Cs

tik and terms determined by the Ricci tensor
Rik [11]. More precisely

Rtih= Qΐ/c + Stik (2.13)

where Ss

tik is uniquely determined by the Ricci tensor and Cs

tik is, the same
for all metrics e2σg.

Hence the brackets [B'h B'k~\UQ will all define the same conformal tensor,
but different Ricci tensors depending on σ^~fk(u0).

A direct calculation (or consultation of [9, 11]) gives the following
relation between the Ricci tensors of g = e2σg and g (n = 4)

^ik = ^ik + 2σ | ί | | k -2σ μ σ | k + ^ k / s ( σ k | | s + 2 σ k σ , s ) ? (2.14)

or, if we consider the corresponding functions on &

§rs(S\r\\s+2σlrσ^ . (2.15)

Hence there exists always <X|,.||s(w0) such that Rik(uo) = 0.
This relation now implies that there exists a unique HZQ such that

(2-16)

Hence we find a uniquely determined distribution of horizontal sub-
1



78 B. G. Schmidt

Let us reformulate the way in which Hzo is fixed in terms of Jί and
metrics of the conformal class: Let xoeJί and g e%> be arbitrary. Then
there exist a conformal factor e2σ such that σ(xo) = 0, σ|k(xo) = 0,
Rik(x0) = 0 where Rik is the Ricci tensor of e2σg; any two such conformal
factors σ, σ' satisfy σ| i|k(x0) = σ|/ί|k(x0) (in any coordinate system).

From the distribution of horizontal subspaces one immediately
obtains a parallelisation:

Choose a basis Am e ^?4 and denote by Am the corresponding vector
fields tangent to the fibres in ^ψ>).

For any z e ^ 1 we define vector fields Zt and Zα by the condition:

{Zdz9 (ZXeHz, (2.17)
and

π^Z^iBdu if z = (Bi9EX,

πlZa=(Ea)u if z = (BhEa)u.

Clearly Am, Zh Zα define a parallelisation on &*1 which can be used to
define a positive definite metric on SP1 which is determined by the con-
formal structure ^ o n J ^ .

The Cauchy completion of SPγ gives the boundary points for ^ \ and
the problem which remains to be solved is how to project the boundary
down to Jί. This can be achieved in the following way.

&γ{$P) was defined as a bundle over 0> with projection π 1 \0>ι-+0>.
0> is a bundle over Jί with projection w.^-^Jί. We can however also
consider^1 as a bundle over Jί with projection π°πι '.0>γ-+Jί, and it
turns out that &γ is in fact a principle bundle over Jί. To show this we
have to define a group action on &γ such that the orbits are (π oπ1)~1 (x)
ioxxeJί. The conformal group acts on &(Jί) on the right. Let Ra: 0>(Jί)
-^^{Jί) be such a map for aeΉΘ. Then Ra induces a transformation
^ i _ ^ i by the differential of Ra:

{RX:Tum^TRMφ>). (2.19)

Let iϊM be a point of ^ then the horizontal subspace (Ra)^Hu defines
again a point of ^ \ because there exists a metric connection Γ on P
such that Hu is a horizontal subspace of Γ and therefore {Ra)% Hu = HUa e Γ,
which implies that it is in 0*1. Therefore we have an action of ^Θ on £Pι

which is free. In Appendix 1 it will be proved that this action of ΉΘ and
the action of J?4 make &1 into a principle bundle over Jί. It will further-
more turn out that Am, Zα are the fundamental vertical fields.

Denote by ^ the structure group of ^(Jί). Then it will be proved in
Appendix 2 that Rg: έ?1 -^έ?1 is uniformly continuous with respect to the
distance d(z9z') defined by the positive definite metric on έ?1.
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Therefore the action Rg'.^1-*^1 can be uniquely extended to the
Cauchy completion J R ^ : ^ 1 - ^ 1 [12].

We define Jί\ = Ji u dcJi as the quotient space # 7 ^ = : M with the
usual topology.

In the next section it will be shown that dcJi=\=0 for the conformal
structure defined by Minkowski space and, it turns out that dcJi = $
u / + u / - u / ° .

In [15] a construction is given which assigns to any space-time a
collection of boundary points which depends only on the causal
structure. This boundary is in general different from the one constructed
above because the boundary is not empty for the causal structure of the
Einstein universe, whereas the conformal bundle boundary of the Ein-
stein universe is empty (Lemma 3, § 3).

§ 3. The Conformal Bundle Boundary of Minkowski Space

Consider the Einstein universe <f 4, a space-time whose metric is

- d t 2 + d Σ 2 ( 3 ) , t e M (3.1)

where dΣ2(3) is the metric of a unit 3-sphere. As shown by Penrose in
several places [3, 13], there exists an open submanifold Ji4 oϊS4 which
is conformally isometric to Minkowski space. Ji4 can be described in the
following way: Choose a point 7° e$4 arbitrarily. Then the future light
cone J> + and the past light cone J>~ of 7° refocus again at points 7 + , / " .
Ji4 is the set of points in S4 which can be joined to 7° without inter-
secting / + u / " u / + u / " and starting at 7° in a spacelike direction.

Applying the results of § 2, the bundle ^>ί(S>4) together with a positive
definite metric exists over S4, and the open subbundle ( π ^ π 1 ) " 1 (Ji4)
is clearly isometric to £Pl(Ji4), the bundle over Minkowski space. We
will now prove the following

Theorem. The conformal boundary of Minkowski space is

To show this we need several Lemmas.

Lemma 1. If Φ'.Ji^Ji is a conformal isometry, then Φ induces a
dίffeomorphism Φ1 \θ>γ-^0>γ leaving the parallelisation invariant. If
Φ1(z0) = z0 then Φ is the identity on Ji.

Proof. Any diffeomorphism Φ'.Ji^Ji induces a diffeomorphism
Φ: JS?\Ji)-̂ > <£'(Ji), defined in the following way: if u is the frame (ea)
at x then Φ(u) is the frame (Φ*ea) at Φ(x). If Φ is a conformal isometry,
Φ maps 0>(JI\ the bundle of conformal frames, into itself.
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Now Φ, being a diffeomorphism 0>-^^>, induces again a diffeo-
morphism Φ 1 : J^(^)->i?(^) .

Let Γ be the connection of any g e Ή and Hu its distribution of hori-
zontal subspaces. Then Φ^HU = :H${U) is the distribution of horizontal
subspaces of the connection of the metric Φ*g = e2σg, as Φ is a conformal
isometry. Hence Hfc{u} is a horizontal subspace of the preferred class in
&(Jt) and this implies that Φx map ŝ ^ ) 1 (^ ) ) onto itself.

Finally we have to show that Φ 1 leaves the parallelisation defined
on 3P1 invariant. Let z0 be any point in 3Pι and ge^ a metric with
vanishing Ricci tensor Ric at xo:= (π o π 1 )(z 0 ) . Then Γ, the connection
defined by g, defines a cross-section in ̂ (SP) which is tangent to HZo,
the preferred subspace. Let Ric be the Ricci_tensor of Φ*#; then Ric
= Φ*Ric and therefore Ric(xo) = 0 implies Ric(Φ(xo))=0. Hence the
connection of Φ* g defines a section in &1 which is tangent to the preferred
Hφi{zo). Because the section of Φ*g is the image of the section of g, this
implies that Φ 1 leaves the preferred subspace Hz invariant.

From this we get immediately that Φ^Z^Z^ Φ\ίZ0L = Z0L. Finally
Φ^Am = Am follows because Φ 1 commutes with the action of ̂ 4 on the
fibres in 0>x.

As Φ 1 leaves the parallelisation on 0>ι invariant it follows that
Φ1(z0) = z 0=>Φ 1 = id, and therefore using the definition of Φ1 we get
Φ = id.

Remark. Lemma 1 implies in particular that the dimension of the
group of conformal isometries of a space-time is at most 15 because

Next we need

Lemma 2. The conformal structure of the Einstein universe is invariant
under a \5-parameter group of conformal motions acting transitively.

This is proved in [14]. A more geometrical proof is given in Appen-
dix 3.

This lemma shows that the conformal structure of the Einstein
universe is for conformal structures what Minkowski space is for Lorentz
metrics; it is conformally flat, has maximal conformal symmetry, and is
simply connected.

Lemma 3. The conformal boundary of the Einstein universe is empty.

Proof. This is now an immediate consequence of Lemma 1, 2. The
space ^ > 1 (^ 4 ) together with the metric defined by the parallelisation is
a positive definite homogeneous space, hence complete.

Let us now prove the theorem. Lemma 3 implies that any curve of
finite length without endpoint in ^>1(Jί4')c^>1(SA') projects on a curve
in $* which has an endpoint on d^Ji*, the boundary of Jί* relative to
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<?4. Clearly two curves in M4 defining the same boundary point in dcJiA,
the conformal boundary, define also the same point in dg^Jί*. It remains
to show that there are no two different points x, x in dcJiA which are
identified in dSΛJί4. From the way Jί4 is imbedded in SA, one can
however see that this is impossible. (Remember that near J°, Jί4 is the
outside part of a light cone.)

§ 4. Interpretation of Boundary Points

In Section 2 it was shown how to attach a boundary to any con-
formal structure. How can we describe such boundaries in terms of the
space-time manifold?

On the manifold ^ 1 , considered as a bundle over ^ , a unique
distribution of horizontal subspaces Hz is defined. Using the parallelisa-
tion on &1 we can also define a unique horizontal subspace Hz if we
consider # 1 as a boundle over Jί. The subspace Hz is defined as the
subspace spanned by the fields Zh defined in § 2.

With the help of Hz we can define lifts of vector fields and curves
from Jί to SPι(Jί). There is however an essential difference between the
distribution Hz and a connection in the principle bundle 3P^{Jί\ The
distribution Hz is not invariant under the structure group, as it is shown
in Appendix 2.

Therefore Hz defines no connection and - as we will see later - not
any curve x(λ), 0 ̂  λ ^ 1 has a horizontal lift z(λ\ 0 ̂  λ ̂  1. It may happen
that a lift is only defined for 0 ^ λ< λo< 1.

The following theorem shows that the points of dcJί are determined
by horizontal curves in 0

Theorem. Let z(λ) be an inextensίble curve of finite length in 0
0^λ< 1. Then there exists a horizontal curve w(λ), 0^λ< 1 of finite
length contained in the fibres through z(λ).

Proof. The proof is the complete analog of the corresponding
statement for the b-boundary [1]. Therefore it will only be outlined:

Let p : = π l o π be the projection ^ 1(^#)->^#. The parallelisations
on ^{M) and the bundle over the Einstein universe ^>1(S>4) can be
used to imbed p~1(p(z(λ))\ i.e. the submanifold of all fibres through z(λ),
isometrically into &γ\δ*). Because ^{S4-) is complete, the image of
z(λ) has an end point in ^ι(SA) and a horizontal curve in ^(δ*) of
finite length contained in the image of p~1(p(z(λ))) exists. Going back
to p~i(p(z(λ))) one gets the horizontal curve of finite length because by
the construction of the imbedding horizontal vectors are mapped onto
horizontal ones.
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The theorem above shows that we have to understand the meaning
of a horizontal curve in Θ*γ(Jί) to get an interpretation for the points of
dcJί. Locally this is given by the following

Lemma. Let z(λ) be a horizontal curve 0 ^ / 1 ^ 1. Then there exists
for any λ0 e [0,1] an ε and a metric g in the conformal class whose Rίcci
tensor vanishes on p(z(λ)\ — ε + λ0 < λ < λ0 + ε, such that z(λ) is given by
HU(λ) where H is the distribution of horizontal subspaces of the canonical
connection ofg, and u(λ) = π 1 (z(λ)). The length ofz(λ), — ε + λo<λ<λo + ε
is the generalised affine length [2] of x(λ) calculated in the frame given
by u(λ).

Proof. Let ε be determined by the condition that x(λ) = p(z(λ)) is a
properly imbedded curve [6] for the ε-interval around λ0. (This implies
that there exists a coordinate system in which this part of x(λ) is a co-
ordinate line.)

If g' is an arbitrary metric in the conformal class then the condition
that g—e2σg' has vanishing Ricci tensor is that

2σ,ip= -R^ + lσ^-gΛσ^-^RΊ (4.1)

holds along x(λ). (Covariant derivatives and moving of indices with g')
Along x(λ) this implies

^ ^ j (4.2)

This is an ordinary 1. order differential equation for bk(λ):= σ\k(x(λ))
along the curve x(λ). Let bk(λ) be the solution with bk(λ0) determined
by the condition that Bt - S{fc(ftfc(λ0))£f fixes z(λ0). A solution to these
initial values exists in a certain interval around λ0. Having determined
bk(λ) we try to find a function σ such that

σlk(x(λ))=bk(λ), σlklι(x(λ)) = Akι(λ) (4.3)

where Akl is determined by (4.1) with σ\k = bk. Because bk satisfies (4.2)
and x(λ) is properly imbedded one checks easily that σ satisfying (4.3)
exists (in fact one gets many solutions). Then by the very construction
of σ the metric e2σg' has vanishing Ricci tensor along the piece of x(λ)
we are considering.

Let f'.&^SP1 be the section corresponding to the connection
determined by g = e2σg'. Then this section is tangent to Hz for any
zep~1(x(λ)) which is contained in the section. Let u(λ\ u(λo) = π1(z(λo))
be the horizontal lift of x(λ) into 0>{Jt) defined by the connection of g.
Then the curve z(λ) defined by Hu{λ), Hu being the horizontal subspace in
3P(Ji) of the connection of g, is clearly contained in the section / ; hence



Conformal and Projective Infinity 83

2{λ)eHz{λ). Now πl{i{λ)) = ύ{λ) and ύ(λ)eHu{λ) implies 2(λ)eHz{λ),
hence z(λ) is horizontal. By the construction of z(λ), z(λ0) = z(λ0). Hence
the uniqueness of horizontal lifts implies z(λ) = z(λ). To verify the state-
ment about the length of z(λ) suppose

(4.4)

then by the definition of the metric on 0>1

Now

where Bt are the standard horizontal fields of the connection of g and
this implies that L is the length of x(λ) calculated in a frame which is
parallel in the metric g. This completes the proof.

If z(λ) is a horizontal curve such that p{z(λ)) is properly imbedded
then the theorem above implies that we can find a conformal factor e2σ

such that the Ricci tensor vanishes at all points of x(λ). In general however
this may not be possible. Take as an example a case in which x(λ) is a
closed null geodesic.

From the theorem, however, we learn that the conformal factor is
only important on the curve, more precisely its gradient. Therefore, in
general, one has to proceed in the following way to calculate a horizontal
lift and its length:

Let x(λ) be an arbitrary curve 0 ^ λ^ 1. Choose any metric g in the
conformal class and solve

/ i \

(4.5)

for certain initial values bk(0). Then we get a 1-form bk(λ) defined on
x(λ) for 0^λ<λo(^ 1). The non-linearity of (4.5) is the reason that bk(λ)
is not necessarily defined for OrgA^l. Once b(λ) is determined, we

propagate a frame X\ — Γ along x(λ) by the equation
ox

dXί ,_,

dλ v κt

where Γl, determines the connection of a. Then the frames X\ -r--
ox1

and bk determine a horizontal lift. To get the length of the lift one has to
calculate the length of x(λ) in frame Xs.

Finally an example: Let us calculate some horizontal lifts of a time
like geodesic in Minkowski space. Let t(λ) = λ, 1 ̂  λ< oo, xv = 0 be the
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geodesic. If we now parallel propagate a frame with the flat connection
we get a horizontal lift of infinite length.

We can however find a conformal factor e2σ with σ(t) such that e2ση
has vanishing Ricci tensor along the geodesic. Equation (4.4) implies
for σ(t)

2σ = 2(σ)2-(σ)2 (4.5')

which has the general solution, for σ(O)φO,

^ τ ^ - . (4.6)
1 + c

For c> — 1 σ(t) is defined for 1 ̂ λ < oo and given by σ = ln(/l+ c) 2.
For the metric β 2 σ ^ the curve t(λ) = λ, xv = 0 is still a geodesic whose
length is

OO 00 A

Γ2dλ=——<π. (4.7)

Hence we have constructed lifts of finite length. We also realise that for
c-> — 1 the length of the lifts tends to infinity. One also derives easily
from (4.6) that for c < - 1 the conformal fact σ is only defined for 1 ̂  λ < λ0

and that the corresponding lifts have infinite length.

§ 5. Projective Boundary

Two torsionfree linear connections Γ, Γ are called projectively
equivalent if any geodesic of Γ can be parametrised such that it becomes
a geodesic of Γ'. An equivalence class & of projectively equivalent
connection is a projective structure. If Γ, Γ e 3P, then in local coordinates
it holds [9]

where bkdxk is a 1-form. The relation (5.1) implies

Bί = Bί-(δ!fck + 5ifei)Bί. (5.2)

Comparing this with (2.4) in the conformal case, we realize that way in
which the horizontal subspaces (in Jδf (Ji)) are related is quite similar.
One proceeds by defining &1 as in the conformal case and gets again a
horizontal subspace by the condition that the Ricci tensor vanishes.
Hence there is again a parallelisation on 0>ι and we get a projective
boundary of Jt*.

The sphere ^ 4 , with its natural projective structure, is the unique
space admitting the maximal group of projective motions. The projective
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imbedding of Minkowski space into ^ 4 shows that the projective
boundary of Minkowski space is ^ 3 , hence the same as projective
infinity defined by Eardley and Sachs [4,5].

Appendix 1

Let g/>ιψ>) be the bundle with fibre J K A point z e ^ 1 ^ ) is a frame
at u = πί(z) given by

{B[-SUb)El

k)u, beά4. (A 1.1)

The group Φ4 acts on 2Pι on the right: u->Rcu, where Rcu is the frame

(eel4)

Eι

k)u - (SUc)Eι

k)u = {B\ - S\k(b + c)E*)u. (A 1.2)

We defined an action of ΉΘ on 2Pγ in the following way. Any
defines a map Ra: &>(J()-><P(J(). (Ra)^ induces a map on the horizontal
subspaces which maps 0* * {3P) into itself. Denote this map by Ra: SP* -> ̂ 1 .

It will now be proved that

RcoRa,oRcoRa = Rc,,oRal, (A 1.3)

holds. This implies that ^ 4 and the action of ΉΦ via Ra generate a
Lie-transformation group <& on ^ > 1 .

Clearly this action of the group is free, and the orbits are (π ° π 1 ) " x (x),
X G ^ . The local triviality of g?1^) and ^ ( ^ ) implies that 0>γ is a
principle bundle over Jί with group ^ . If we consider ^ 1 a s a bundle
over ^ we denote it by $Pγ{Jί).

Let us now prove (A 1.3).
Take any zoe&1 and choose a connection Γ such that HUo for

wo = π1(zo) defines z0. Then //Mo is spanned by (5f)M , where 5 f are the
standard horizontal fields of Γ. By the definition of $ a , we get that

Ra(zo) = (Ra)*Hzo = Huoa. (A 1.4)

The subspace HUoa is spanned by (B f)M o β. F r o m the definition of Rc acting
on Θ*γ one finds

(Rc o Ra) (z0) = ( B ^ ^ - S\k(cr) {E\)uoa. (A 1.5)

To find the subspace defining (Ra< ° Rc° Ra) (z0) we apply (Ra>)% and use
the transformation properties

1"- (Aί.6)

Hence we obtain

(R, o Kco β j (Zo) = α r 1 ^ ) ^ ^ - S\k{cr)a'u
ktA-lv. (A 1.7)
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Finally we apply Rc,. To do this we have to take into account that the
z-th vector in (A 1.7) does not project onto the z-th vector of the frame
uoaa'. This is however true for the vectors

10. (A 1.8)

Applying Rc, we now get

(Rc,oRa,oRcoRa)iZo) = {Bt)uoaa,-a't
ia'u

kSι

ik(c)aΓlυE»v

* (A 1.9)
-Sl(c')E"v.

Using Sι

ik(c) = δ\ck + δι

kci-ηikη
lscs and the fact that α J ε W , one finds

by a short calculation that (A 1.9) can be written as

(Rc, o Ra, o Rc o RJ (Zo) = {βt)uoaa, -SUa'jcj + c'r)tv. (A 1.10)

Comparing this expression with (A 1.5) we get

(Rc, o R, o Rc o Ra) (z0) = (Rc,, o Ra.) (z0) (A 1.11)

where
a" = aa\ d'r=^c^dγ. (A 1.12)

As α", c" are independent of z0, (A 1.11) holds for any z0, and (A 1.11)
implies (A 1.3). We realise furthermore that 0 is a semi-direct product
of %IΘ and ^ 4 , where ^6? acts as a group of automorphisms on M4.

Appendix 2

In Section 2 a parallelisation Z f , Z α , Am was defined on ^> 1. In this
appendix it will be shown how these fields transform under the action
of the group ^ defined in Appendix 1.

Lemma 1. Let Ma be the basis of ^'θ defined in § 2, (2.9). Let Ma be
the corresponding vector field on P1, defined by the action of ^Θ on 0>ι.
Then it holds ZΛ = Ma.

Proof. Let z 0 be any point in 0>1(^>). Then there exists geΉ such
that: 1) the Ricci tensor vanishes at (π°π 1)(z 0) = :x 0, and 2) the cross-
section / ^ - ^ 1 defined by the connection of g passes through z 0.
This implies that the section / is tangent to the horizontal subspace Hz

for all points projecting ontox 0 under π° π 1 .
The element Mae^'& generates a 1-parameter subgroup a(ή oϊ%>Θ.

By the very definition of ύa, Ea it follows that Ea(u0), wo = π1(zo) is
tangent of the curve Ra{t)u0 at t = 0 and Ma(z0) is tangent to Ra{t)z0 at
ί = 0. Ra(t)z0 is contained in the Section f, is horizontal and projects
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onto Rait)u0. This implies Za = Ma, using the definition of Z α . Knowing
that Am, Z α = Mα are the fundamental vector field tangent to the fibres
in 3Pl{Jl) one has the following transformation property [8]:

If g is any element of ̂ , and Rg the corresponding transformation on
γ \ then

(R)J™ = (ad(g-1)Aη*,

')M)\

where ad is the adjoint representation of ̂ .
The transformation properties of Zt are given by

Lemma 2. For a = (4) e # 0 , c = (cr) e ^£4 we

Proof. Choose a point z0 e^1 and construct a section / as in the
beginning of the proof of Lemma 1. Then (Ra)^Zi\Zo e Tzof l(P1) is again
contained in the horizontal subspace Hzoa.

Suppose
(A2.3)

Projecting onto & we find

! (A2.4)

and this implies a\ = (α " 1 ) * , j8f = 0.
The vector (RJ^ (Z f)z o is not horizontal because it is contained in the

section Rc°f mSP1, which is not defined by a metric connection. Suppose

* 0 y ί m i w . (A 2.5)

Projecting onto ^ we get

Hence
? (A2.6)

Clearly /?? depends only on cr and not on z0.
It remains to show that yim in (A 2.5) also depends only on cr.
Let us first calculate a cross-section h which passes through iϊ2oC.

Such a section is given by the connection of a metric e2σg such that the
Ricci tensor of e2σg vanishes at x0 and σ\k(u0) = cr holds.

Then (Zi + ffiZJ^ is tangent to h and (RJ^ ( z j z o is tangent to Λc°/.
The two sections Rc°f,h define a map φ : ̂  -• ̂ 4 by

= Rφiu)oh(u). (A2.7)
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If u(t) is a curve in ^ , (Rc°f) {u{t)\ h(u(ή) the image curve in the sections,
then the tangent vectors are related by

((Rc o f) (u(o))) = h(u(o)) + φJμ(o))'Am . (A2.8)

In the case we are considering φ(u) is given by ιt-> — d\r{u) + cr.

Hence the tangent of the curve in (k* is

(alr(u(t)))\t = oAr. (A2.9)
Using a t

-j^{-σlr{u(t)))t = o = Φ)σ\r (A2.10)

where δ\r is considered as function on ^ , one finds easily, taking u(t)
to be tangent to Bt

7im=(--fii*|r)«o = (-ff|r||i)«o- (A2.ll)

The conformal factor σ was determined by the condition &\r(u0) = cr and
the vanishing of the Ricci tensor of e2σg. From this we find

(%Λ\ϊ)u0 =
 crCi -Ί^lriCsc

s. (A2.12)

Therefore we get finally

Ύin= -CίCm + ^ηimcsc
s (A 2.13)

which completes the proof of the lemma.
We found that, applying Rc, Ra to the parallelisation, the new fields

are linear combinations of the old with coefficient constant on ^ \ where
the coefficients depend on c, a. This implies as it was shown in [1] that
the map Rg is uniformly continuous with respect to the distance defined
by the metric in which the parallelisation is orthonormal. This is the
property we used in Section 2.

Appendix 3

In [14], Kuiper shows that the Einstein universe admits a 15-
parameter group of global conformal motions. A more geometrical
derivation of this result is given here.

Consider 0tn as a vector space with a non degenerate scalar product

0= Σ M 2 - Σ (tA)2 (A3.1)
α = l A=l

Let Θ(p, q) be the orthogonal group which keeps g invariant. Let Jί be
the submanifold of 0tn defined by

Jί: = {(xα, tA) I Σ(x«)2 - Σ(tΛ)2 = 0, (xα, tA) Φ 0} . (A 3.2)

The manifold Jί is the analog of the light cone of a Lorentz metric.
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Define an equivalence relation on 9tn by x ^ x * if xι = λx\ λ>0.
Then &nl~, i.e. the space of directions, is diffeomorphic to 9?n~γ. {βnj~
is a double covering of the projective space 0>n~ι)

Let Ά be the image of Jί in 9tnj~ under the projection π:0tn^>9tnl~.
Since Θ(p, q) maps isotropic lines in Jί into isotropic lines we get an
action of Θ(p9 q) on Ά by

A\=πoAoπ-\ AeΘ{p,q). (A3.3)

Clearly 4̂ ->A is an isomorphism 2.
The metric g on ^ " induces a degenerate metric on Jί. Let Jf7 be the

group of linear transformation x'-^/lx1, Λ>0. Then J f consists of
conformal transformations of g, whose restrictions to Jί are diffeo-
morphisms with π°h = π.

It will now be shown that the degenerate metric induced by g on Jί
defines a conformal structure on 1 of signature (p— ί, q— ί).

Let X be a tangent vector at a point αe2L and XM, Ŷ  two tangent
vectors of Jί at u, u e π ^ f α ) projecting onto X. What is the relation
between g(Xu,Xu), g(Ϋv,Ϋv)Ί

As XM, Yy project on the same vector under π, there is heJήf such that

htXu=Ϋv+L (A3.4)

where L is tangent to the null generator of Jί through v. Recalling that h
is a conformal transformation for g we find

λ2g(Xu,Xu) = g{ΫvX). (A3.5)

Hence a unique conformal structure is induced on J , and this conformal
structure is invariant under the action of Θ(p, q) given by A9 because A
is an isometry of g.

Let us describe a metric in the conformal structure on 2, explicitely:
If we define r 2 = Σ(xα)2, ρ 2 : = Σ(tA)2, the metric g can be written on a
part of Stn as

^ ° (A3.6)

where dΣ2(m) denotes the metric of an unit m-sphere tf™. Jί is the sub-
manifold Q2 = r2 > 0 and the degenerate metric induced on Jί is

r2(dΣ2(p-ί)-dΣ2(q-ί)). (A3.7)

(ρ, r are always positive on Jί). The points r = const define a section
through J^, hence the conformal structure on Ά, which has the topology

Provided p ̂  1, q ̂  1 and p -f- g ̂  3.
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cfP-ίχcf4-\ c a n be represented by the metric dΣ2(p - 1) - dΣ2(q - 1).
It is therefore conformally flat.

Finally let us consider the case p = 4,q = 2. Then i = ^ 3 x ^ and
the conformal structure is given by the Lorentz metric

dΣ\3)-dΣ2{\) (A3.8)

which admits Θ(4,2) as a global group of conformal transformations.
If we pass to the universal covering space of Sf3 x ̂ pl together with the
induced metric and the induced transformations we get the Einstein
universe on which a covering group of Θ(4,2) acts.

Remark. If one uses 0>n~ι instead of 3ίnl~ one also gets a conformal
structure invariant under Θ(p,q). In the case p = 4, q = 2, this is com-
pactified Minkowski space which also has the topology <Ŝ 3 x Sf1, and
the space Ά considered above is a double covering of compactified
Minkowski space.
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