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Fluctuating Magnetic Fields
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Abstract. Some problems pertaining to the behaviour of a classical spin under the
influence of a random Gaussian magnetic field are discussed. It is shown that, in agreement
with simple expectations, the magnetic moment is effectively decreased to lowest order.
Various physical applications and connections with group theory are pointed out.

1. Introduction

The present investigation was motivated by the quest for a simple
explanation of the size and sign of lowest order radiative corrections.
It has often been proposed to understand qualitatively these effects by
assuming that test charges be submitted in addition to external fields to
random ones arising from vacuum quantum fluctuations [1]. Applied to a
charged non-relativistic particle moving in a fixed external potential
and to a fluctuating electric field, one is led to a formula for the Lamb
shift in striking qualitative agreement with the exact result. A similar
calculation performed for the anomalous magnetic moment yields a
value of the correct order of magnitude but with wrong sign. This was
generally attributed to added fluctuations arising from a relativistic
treatment including negative energy states of the Dirac electron. Koba [2]
pointed out that these added contributions were in the right direction.
The fact that fluctuating magnetic fields tend to reduce the effective
magnetic moment is suggested by the following heuristic argument.
Consider the coupling of the magnetic moment μ to the external field Bo:

we can write cosβ as cosθ cosθ-f sinθ sin 0 cos (φ — φ\ where θ and φ
are the polar angles of the mean direction of μ and θ, φ represent fluctua-
tions. Averaging <cos#> using the fact that φ is uniformly distributed
and that fluctuations are small, yields

* On leave of absence from D.Ph.T, C.E.N. Saclay, B.P. No. 2, 91190 Gif-sur-Yvette,
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20 C. Itzykson

Hence \μ\ is replaced by an effective smaller quantity \μ\ (1 — «θ2>/2)).
This argument might seem slightly oversimplified. It will be proved in
essence correct for the realistic cases. Hence the whole idea of explaining
in simple terms the lowest order radiative corrections by fluctuating
fields requires real elaboration and deserves still more work to be fully
elucidated.

Nevertheless, it was felt that the subject of the motion of a classical
non-relativistic spin under the influence of a random magnetic field is,
by itself, a non-trivial matter, the application of which is not limited to
the above-mentioned problem. Some domains of application are the
study of depolarization of a spin \ particle in a medium, the behaviour
of two-level systems under random Hamiltonians, and, by generalizing
to other groups than the ordinary three-dimensional rotation group, and
other manifolds than the unit sphere, it can be cast in a group theoretic
frame-work of generalized Brownian motion on Riemanian manifolds.

We shall refrain from doing so to keep the language simple and will
phrase the discussion in terms of the motion of the spin s, a three-vector
of fixed length, which without loss of generality can be taken equal to
unity.

Section 2 gathers the necessary tools and presents a discussion of the
general case. Sections 3 and 4 will elaborate two extreme situations for
which a complete solution can be found and which both exhibit intrinsic
geometric properties. Finally, in Section 5, we examine to lowest order
the effect of the introduction of an external fixed magnetic field.

2. Preliminaries

The motion to be studied is described by the simple equation

d s - g e B x s
dt 2mc '

The notations are: e charge, m mass, c velocity of light, Bt magnetic field,
s spin which is taken of unit length, g dimensionless gyromagnetic ratio
(2 for a point Dirac particle). It simplifies matters to choose a field
dimension in such a way that (ge/2mc)= 1, in which case Bt has the
dimension of a (Larmor) frequency. From now on we write in matrix form:

where 5 is thought of as a column vector and the three τi matrices (repre-
senting the Lie algebra of rotations and corresponding to the repre-
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sentation of spin 1) are defined as (τf)yfc = εjik and satisfy

i

τi = τf=~τf (τ - p)3 = -p2τ p Vp. (2)

£ Tj^τ^ = AT — trA for any 3 x 3 matrix A .

The random magnetic field Bt will be taken to be Gaussian, its correlation
functions being specified by a generating functional

/ +00 \

(expi J dtφ{t)'B(t))
\ — CO / X^N.

A +00 +00

= exp--—-2- J dtί J dt2φi{tί)Qij{tut2)φj(t2).
^ " — co — co

A time scale θ has been introduced in order to make Q dimensionless.
Its definition implies, of course, some specific normalization of Q.

We require the above expectation value to satisfy the following
requirements:

(i) to be stationary in time, i.e., Qij(t1,t2) = Qij(t1 - t2);

(ii) to be rotationally invariant, i.e., Qij{tι — t2) = δijQ{t1 — t2);

(iii) to be such that the measure, which serves to define the expecta-

tion values, be really a probability measure, i.e.,

+ 00

(expi J dtφ(t),B{t)
\ -oo /

or
+00 +00

f dt, J dt2φ(t1)φ(t2)Q(tι-t2)^O.
— oo — oo

According to a known theorem of Bochner, this means that Q(t) is the
Fourier transform of a measure. Furthermore, without loss of generality,
Q(t1 - t2) = Q(t2 - tx). With this at hand, we readily find:

CBi(ii) Bj(t2)} = — Y δijQ^γ —12). (4)

The expectation value of an odd number of B fields vanishes while, for an
even number, we have a Wick theorem

<B i l(ίi)...ΰ ί 2 π(t 2 B)>=4iΓ Σ (BiJtJBiJtJ)...
σ all possible V J)

pairings



22 C. Itzykson

The number of terms occurring on the right-hand side is (2nl/2nn\)
= (2n- 1)!!. This right-hand side is sometimes called the haffnian of
order n of the matrix operator g, 7(ί — ί')

Let the spin start at position sx at time ί1# Its evolution in time is
dictated by Eq. (1), the solution of which we denote by s(t; sί,tί). The
function

G(s29 t2\sί9 ί j - (δ(s(t2 Sl, ίj,52)> t2> t, (6)

is the fundamental object we want to study. It is the probability of finding
the spin at s2 at time t2 knowing that it was at 5x at time tγ.

From translational invariance in time and rotational invariance,
we have

G ( s 2 , ί 2 | s l J ί 1 ) = G ( s 1 s 2 , ί 2 - ί 1 )

lim G(s2 s 1 , ί 2 - ί 1 ) = δ s p ( s 2 , s 1 ) (7)

\

where δsp(s2, sx) is the ̂  function on the sphere. Furthermore

G(s2 -sί9t)^O jrfί22G(52 sx,ί) = 1.

Finally the definition (6) implies that

G(s2-sut2-tί)=— Σ(2l+i)<Pι(s(t2;sl9t1)'S2)}

1 (8)

Indeed the formal solution of Eq. (1) is, with T standing for the time
ordering symbol,

s(ί;s1,ί2)=τίexpjΛ/B(ί/) τJs1.

The operator standing in front of 5 x is an orthogonal real matrix depend-
ing functionally on B. We shall abbreviate it by

s(ί;s 1 , ί 1 )=l/(ί, ί 1 )s 1 .
Hence

; sl9 tx)' s2)} = <P,(52 U(t291, )

Now in the space of functions defined on the sphere, we introduce the
ordinary angular momentum basis states \lm) [we note the Dirac bras
and kets |) and (| not to be confused with the expectation values < >,
over our random magnetic field]. Then

-±-(21 + 1)P,(s 2 si)=Σ(s2\lm)(Im\sx).
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Consequently

Since U is a rotation it commutes with L2, the square of the angular
momentum operator. Now

<(lm\U(t29t1)\lm')y = gι(t2-t1)δmm..

Indeed, the translational invariance in time is clear from the property of
expectation values. Furthermore, the expectation values of a rotated
Bt^>B't = RBt are identical with those of Bt if the rotation R is time
independent. But this is clearly equivalent to replacing U by R'1 UR.
Hence

where dR is the normalized measure on the rotation group. The right-
hand side is, by the orthogonality property of matrix elements of irreducible
representations:

Then we have indeed

<Pt(s2 U(t2, ί j sO) = Pt(s2 Si) g,(t2

1= -— mim\mt2,tl)\lm)\

The quantities (lm\U(t2, t1)\lm') are nothing but the matrix elements in
the /th representation of the operator

ί t2

' exp.ί
I ί l

dtL-B(t)

understood for an abstract L satisfying only

lLuL^=-εijkLk L+=-L

with the states \lm) such that

L2\lm)= -l(l+ί)\lm) L3\lm)=im\lm)9
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the functions of L being envisaged in the enveloping algebra of the Lie
algebra, of commutation relations. We use a real notation, in con-
tradistinction to physicist's habits not to be bothered by unnecessary
f s. We note in passing that we could as well discuss the evolution of a
spin j , ψ, under the influence of a random Hamiltonian \Bt σ (σ: Pauli
matrices). Then, if its density matrix at time zero is ^(1 + P σ), its
polarization at time t would be, according to the above discussion,
P{t) = g^t) P and gγ would describe its depolarization in time (in a non-
isotropic medium it could happen that Qtj is non-diagonal and a more
general discussion is necessary; see Section 5).

In order to motivate the following sections, let us qualitatively
sketch our expectations for the behaviour of G for an arbitrary correla-
tion function Q(t). To be specific, assume Q(t) to be the Fourier transform
of a smooth positive function decreasing fast at infinity [we can have in
mind an example like (ί/a) e~bt2~\. For short times, if Q(t) is sufficiently
smooth, the behaviour should be very similar to the one for the case
where Q is simply constant, which we call, for lack of a better word,
"black noise" (since its spectrum is characterized by the zero frequency
only) and represents the strong correlation case. On the other hand, for
any reasonable system, Q(t) will have a correlation time tc and for
ί > tc we expect the behaviour to be very much the same as if Q(t) were
proportional to a δ function - which we call "white noise" since its
spectrum is flat. These two extreme cases are discussed in detail in the
following sections.

We have introduced above the conditional probability

G(s 2 , ί 2 | 5 1 , ί 1 ) t2>tί.

We could unfold completely the process by studying more general multi-
time probabilities of the type

G 3 ( s 3 , h; s2, t2 \sl9 ί j = <<5(s(ί3; sl9 tγ)9 s3) δ(s{t2; sl9 ί j , s2)> t3 > t2 > tγ

etc. Clearly,
G(s3,t3\sutx) = jdΩ 2 G 3 (s 3 , ί 3 s2,t2\sut1).

If a correlation time tc exists, we expect that for t3 -12 > tc t2 - tί > tc

we have a quasi factorization

G a t a , h;s2, ί 2 l^ i , ί i ) « G{s3, ts\s2, t2) G{s2, t2\suti).

If this is not an asymptotic equality but valid at all times then the process
is Markovian and the semi-group law applies

G ( 5 3 , ί 3 \ s l 9 ί j = \ ά a 2 G ( s 3 , t 3 \ s 2 , t 2 ) G ( 5 2 , t 2 \ s l 9 ί j t 3 > t 2 > t ί .

It is suggested that this is the case when Q(t) is a δ function. This will be
proved in Section 3.
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On the other hand, when no correlation time exists, Q(t) is decreasing
very slowly or tending to a constant at infinity [it cannot grow since
positivity implies in particular \Q(t)\ ^ β(0)]. We have then on the sphere
a strongly correlated process and we do not even expect the motion to
be ergodic at large times, i.e., for ί2-»oo, G(s2,t2;si,tί) does not tend
to a uniform distribution l/4π but, on the contrary, to some stable con-
figuration Go0(s2,s1).

We can give a very heuristic argument leading to a formula for
G0 0(s2, Si). In Section 4, a calculation of G(s2, t2 \sl9 ίx) will be given for
Q(t) = constant. If Q(t)-> constant then, even for large times, the magnetic
field is strongly correlated. It is "as i f we were discussing the motion
under the influence of a constant magnetic field of unknown direction
(isotropy of β 0 ) . Consequently, we can guess that the average value < >
can be interpreted for large times as meaning average over time and
direction

< >-> lim ί ' f ^lim f d ί f ^ .
-d^oo t2-t1 ; •' 4π

Now under the action of a constant field, the evolution simplifies to
U(t2, t1) = eB'n'2~'l) with no time ordering required, and we expect Gx

to be given by

GJs2 s1)=-^fι{2l+i)Pι(s2 s1)

Only the terms corresponding to m = 0 survive the time averaging and we
find

1 °° 1 1 1 1

4π o 4π ]/2(l -si-s2) 4π |sx — s2 |

where \sί — s2\ is the Euclidean distance in the ambient Euclidean space.
As it should, jd 2 5 2 G 0 0 (5 2 ? 5 1 )= 1, and G^ is a good candidate for a
probability distribution on the sphere. This is indeed what will emerge
from the more exact calculation. Note that gfi(oo) = ^.

The fact that this equilibrium distribution appears as a Coulomb
potential created by a unit charge at point si is at first sight rather
intriguing.

Finally the reader will have no difficulty to prove the following
positivity property of the function G2(s1 s2,ί) Write G2(s1 52, — t)
= G2(sι

 ms2,t) and let φ(s,ή be a real function decreasing fast enough
for |ί| —> oo, then

φ(s2, t2) G(s2 -sl9t2- ί x ) φ(s111)>0.
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If φ is expanded in spherical harmonics, we find in particular

Jdί! J dt2 ψ(t2) gt(t2 -1±) ψ(tx) > 0.

Hence gt(t) extended as an even function of ί is the Fourier transform of a
measure, with total measure one since gt(0) = 1. In particular, \gι(t)\ < 1.
This can be verified on the examples worked out later on.

3. White Noise

This case corresponds to Q(t1 —t2) = θδ(t1 —12). We have to take the
mean value

Quite generally, this quantity equals one for ί = 0 and its derivative is

= 4τ']dt1Q(t-t1)Σ (i* T ίexp ί dt\ B(t\) • L) Lk

Now the integral will be trivial if Q(t — ίx) is concentrated at t = tί. We
a

cannot set Q = θδ at once since j δ(t) dt is meaningless. However, δ can be
Ό

approximated as close as we wish by Gaussians for instance, which
satisfy all the constraints imposed on a correlation function. In particular,
they are symmetric in time. In the limit, this introduces a factor \ and we
see that:

— / T jexp dt'B(f) - L\\ = ̂ ~l T ίexp dt'B(t') L\\ .
dt \ [ Ό ) / 2Θ\ [ o )/

Taking into account the boundary condition at t = 0 one can solve and
obtain:

7 \ exp J dt'B(t') - L\) = exp — - 1 2 .
And . l o j /

\ oo * q + i ) ( t 2 - t i )

ί ? ( s 2 , ί 2 | s i , ί i ) = - ^ Σ ( 2 / + I ) p i ( s 2 ' s i ) ^ 2Θ (12)

As an operator on functions defined on the sphere, L2 is identical with the
Laplace operator Asph, and we see that G satisfies the diffusion equation
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of Brownian motion

(s29t2\s1,t1) = 0 t B m G ( s 2 , t 2 \ s u t 1 ) = δsp(s2,s1). (13)

Clearly, the Markovian character of the motion follows from the fact that
Q is a δ function:

while the generator of the semi-group of evolution is Δsph/2Θ. The series
solution (12) exhibits simply the large time behaviour of G which tends
to 1/4 π for t^> θ the only time scale of the problem. This is characteristic
of a Brownian motion on a compact space. The function G is quite
remarkable and we shall briefly list below some of its properties. In a
sense, it is a generalization of the well-known Jacobi Θ functions,
introduced in the theory of elliptic functions. Indeed for the correspond-
ing problem of diffusion on a circle instead of a sphere, we would find,
wr i t ing s1>2 = eiφu2

t\n2

e 2θ)

in the conventional notation [3] *.
In fact there is a connection, by means of Abel's transforms, between

our G and Θ functions. This can be exploited as we shall see to give the
short-time behaviour of G which we expect to be essentially given by a
Gaussian of width proportional to ]/t around s1 = s2, i.e., |sx — s2\
proportional to j/7. Finally, there exists a reproducing property up to a
factor when wandering on the complex sphere reminiscent of the cor-
responding property of Θ functions:

φ + it/θ r ί θ \ J θ - i φ α

1 Θiiυ, q) = 2q* £ ( - \)nqn(n+ l)ήn{2n +ί)πυ,
o

Θ2(v, q) = 2q* £ qn(n+ί)cos(2n + 1) πv ,

Θ3(v,q)= 1



28 C. Itzykson

We should, of course, have remarked that G ^ s2, ή is an entire analytic
function of order zero in s1 s2. Recalling the Mehler-Dirichlet integral
representation of Legendre polynomials [3]

Pj(cosφ)=—— f

Ό
f /π Ό ycosυ— cosφ

and writing s

G(— cosφ, ί)

- s2

 = cos<p

4π 2 o |/cosf— cosφ

-1(1+1)

|/cosι;—cosφ

20

4π 2 o |/cosί; —
— <9 2(—,.

Hence

(2π)3 j / c o s φ - c o s i ; 2 \ 2π

t) —-
(14)

where prime denotes derivatives with respect to the first argument. This
Eq. (14) is the required connection between G and Θ function.

Instead of working out the complete series for the behaviour of G
close to t = 0 we will content ourselves with the leading term. Now using
the Poisson summation formula

Σ/(«)^=Σ

Hence the leading term of G for t small is

θ
— f) e

±

]/2 \2πt) ^ ]/cos<p — cost;

The factor e ί / 8 θ goes to one as ί->0. Although this gives, in principle,
an answer valid for all angles, it is hard to extract from it the required
information. Returning to the very definition (12) of G we note that the
factor e-

ι(! + 1)(t/2θ) i s very slowly varying for t <ζ θ. Hence large terms will
predominantly contribute to the sum which will be concentrated at very
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small φ. Thus we can approximate Pj(cosφ) by Jo((2/+ l)sinφ/2) and
replace the summation by an integral, the well-known impact parameter
approximation. This yields

I ΐf> ( s 2 - s i ) - ~ β — |si — s2|2 27

G(cosφ, t)= 2 Id2be = ——e £->0, φ small

a mildly surprising result and obtainable by approximating the sphere
close to sx by a plane. This is, of course, not exact for φ close to π where
the above integral formula can be used and yields

^ t->0.

The last comment we would like to make has to do with analytic con-
tinuation on the complex sphere or complex cosφ plane. This is best
expressed in the language of group theory. The translations in the complex
φ plane of magnitude ίt/θ discussed for the automorphic. <9, functions
should in the present case be replaced by complex rotations as follows.

Let R be a rotation. Choose sx along the z axis, s2 in the (x, z) plane
and decompose as usual R in the product RyRβRa of three rotations of
angle α around the z axis, β around the y = (s1 x s2)/(\sί x s2|) axis and
γ around thez axis again. Then s2 Rs1 = cosβcosφ+ sinβ sinφ cosy and

2π 2%

0 0 (271)

Now one has the following Abel transformation

J J
which can easily be proved using the generating function of Legendre
polynomials [3].

This means that if we take β complex

- V 7 < M dy]ήίβdβ(2l+i)Pι(s2RyΛ^sι)
8π2 o o o l/2(chα-chβ)

Now

( 0/1 \

- - 1
α /

We cannot, without precautions, take the derivative d/da of the kernel
#(ch a — ch jS)/|/(ch α — ch /?). This can be shown in fact to exist when
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applied to smooth functions and is then defined by analytic continuation of

θ(cha-chβ)

Γ(ί-ot)(cha-chβ)« '

Thus we are led to consider the integral

2π 2π a

da ίί
8π2 [da )i o o Uβ'' h" }/2(cha-chβ) a=t/θ

2β

Finally, making use of the known recursion relations for Legendre
polynomials, it is seen that the series sums up to et/2θ(sι s2) G(sx 52, ί)
If we remark that 2(d/da) - 1 can be written 2ea/2(d/da) e~a/2 we see that
we have established that

U I —s,n C »"" / Γ i / ^ T Λ u ^ v v j y v i i p I • UXXA ^ UXA/^ w u / , ,y .

da I o 2π o ]/2(cha- cĥ S)

= cosφ G(cosφ, ί).

We close this section by the last remark that the values of G at φ = 0, π
are related to the thermodynamics of rotation levels, by a suitable inter-
pretation of t/θ as inversely proportional to the temperature.

4. Black Noise

In this section we find the probability distribution G in the case of
strong correlations of the magnetic field, i.e., the function Q is a constant
which, by a proper choice of θ, is taken equal to one. Our goal is still to
compute gt defined by (9). This we do directly by using Eqs. (4) and (5)
giving expectation values of polynomials in B (t). Calculations are greatly
simplified by the fact that Q is a constant. Thus

1 ί ' 1
T lεxp \ df B(t') τ\

= 1+Σ T dt1...dt2n<B(t1) L...B(t2n)-L)

with

<B(ί1) L...B(ί2Λ) i > = i " Σ
all distinct

pairings
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In this expression the indices ocί... a2n are a permutation of the indices
ι'i... i2« Next we notice the following integral over the unit three vector p

f dΩβ 2nnl

The coefficient is found simply by taking, say, i1= ...ί2n=3. Then the
right-hand side reduces to ί/2n + 1 while the left-hand side is

V dcosθ , m 2 1

l i * 2"
This means in the present case that

Furthermore

Putting everything together:

\dt'B{t') l
b

Since the integral

vanishes, we can add the odd terms and we find

T\QXΌ f dίBit') LY) = . \due~uΦ \ ^-exp
I o )/ VW2) o 4π

Finally, we set α = (t/θ) ]/ϊΰ

The integral over p yields, as already shown, an even function of α. This
is why we have extended the α integral from — oo to + oo. If ocp is inter-
preted as an effective magnetic field multiplied by time, we see indeed
that we have to average over its direction. This is in agreement with the
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heuristic arguments of Section 2. The time average that we were using for
ί-> oo is here replaced by the more exact α integration.

The coefficient gt(t) is now obtained by taking 1/2/+1 times the
trace of the above expression in the Ith representation. Interchanging
traces and integration, we see that

I

m - /

irrespectively of the direction of p. Hence

\3 +00 -•&

i +1 i 1 +00 -JL °llί

 (

gι(t)=—— YΦ(mt)= 7 — f dae 2 α2 (17)
yιy) 2 / + l f ί V ^ ( 2 / + 1 ) ]/2π Λ s i n ^ V }

S m 2Θ
with

And

G(s2 si, *) = ̂ - Σ p ι ( s 2 • s i ) Σ

2 a 2

4π l/2π ^ o . αί
F sin—^

The series inside this integral sign can be summed and we find the two
alternative expressions

m

2

t

2 \ _ ^

]e 2Θ

(α-2n+

θ d +0° 1 2 π ~ φ £ 2 f 2 1
Λ —τ=- I rfα y =

4π dί n=_oo 2]/π φ . a |/cosφ-cosα
sin
sin _

(s2 Si = cose/?). (18b)

If αmod2π is thought as the angle of a rotation that brings sx over s2

then clearly it can only run between φ and 2π — φ. In fact this form could
have been obtained more directly by a geometrical argument on the
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integral (16) evaluated between s2 and s1. The series (18 a) clearly exhibits
the long time behaviour t > θ towards the equilibrium distribution

G(S2'SUQO)=-—

4π ]/2(l — s 2 ' 5 i ) 4π\s2 — sί\

as expected. The expansion (18 b), on the other hand, is more suitable for
short times. The dominant terms for t <ζ θ are those with n = 0, n = 1
and they give equal results (changing α in 2π —α). Hence the leading
behaviour is

A \ \ 2π-φ ΪW A

ί da , ί-»0.
4π l/π ' . α l/cosφ—cosα

κ φ s in— κ

For φ close to zero, we find

f n\2 _|S2_S1|2_^L

e 2 ί 2 ί->0
which could have been obtained by assimilating the sphere to its tangent
plane and which shows that \sγ — s2\ is proportional to t/θ as if a velo-
city was defined; while for sί = — s2, we have

As was pointed out this "black noise" does not yield a Markovian process
on the sphere. There is no semi-group law, no generator, hence no simple
partial differential equation. In compact form we have

The calculation of higher probabilities, of the type G3(53, ί3; s2, ί2 |s l 51
although possible in principle, is not simple.

5. Behaviour in an External Field

In this last section, we examine the behaviour of the spin in the
presence of a fixed external field Bo added to the fluctuating one B. The
motion is given by the equation:
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It is both customary and practical to use a frame rotating around Bo at
the frequency |B0 | . By writing s(ί) = £β°' f ίs(ί) (at time zero the frames
coincide)

where

is again a Gaussian random field but with a correlation matrix

If we deal initially with white noise Q = Q. Returning to the variable s
this means that in the presence of Bo

We interpret this fact in this particular case by saying that no renormaliza-
tion effect arises. Apart from the blurring of the whole picture due to the
random field, the spin precesses around Bo with the same angular
velocity it had in the absence of perturbing fluctuations. This is not
in complete disagreement with the heuristic arguments of the introduc-
tion, since in this case the root mean square displacements envisioned do
not exist. Nevertheless it shows that some care must be exercized in order
to extract the correct answer. It is clear that, as soon as Q φ δ function,
Q φ Q and we have to do a real calculation. Since such a calculation to
all orders is fairly difficult, we shall satisfy ourselves with a perturbative
argument. We shall assume for that matter that we are in a position of
having a correlation time tc (i.e., a cut-off in frequencies ~ ί/t0) and that
the magnitude of fluctuations is so small, or ί/θ so small, that tc<ζ θ. We
shall then look for what happens in the region tc<ξt<ζθ. We have seen
that if tc = 0 no renormalization occurs. Then it is natural to investigate
them in power series in ί/θ with a first term in ί/θ2, in which case we
approximate G by

G(s2,t2 Jut1)

\ (2) 3

f ~2 \ dtdt'Q{t-t') X (e-B°-LtLke
B°-Lit-tr)-Lke

B°-Lt'
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We assume further ΘB0 <̂  1 since we are interested in static properties
(i.e., the limit Bo -> 0). In this case, the above simplifies further to

G{s2,t2\s1,t1)
i (2)

H-55- j dtdfQ(t-f){L2

exp-y- j dtdt'Q{t-t')

i (2)

o L-^ J dtdt'{t-t')Q{t-t')

~ s

~ 5

The interpretation of this formula is clear for (remembering that
[Lfc,Z,2] = 0) it leads to

G(s2,t2\sutUBQ

ί ( 2 ) L2

φ t >tL>t dtdt'Q^-tr)-ψ
I 1 1 (2) M

- ί l ) B 0 . L h + - — — . — f dtdt'Q{t-m-t')\\

-= P2

and this is essentially the probability function in a frame rotating with
frequency \B0\ (1 + <Sμ/μ) where

= lim — J dtdt'- •(ί-0= limfdί-^-

can be interpreted as a first order relative correction to the magnetic
moment. At first sight this does not look like a negative quantity. An
obvious counter-example is (Q/Θ2)(t- t/) = {ί/θ2)e~lt~t'ι/tc which is
indeed a positive kernel [with Fourier transform proportional to
1/(1 + ω2t2)'] and where δμ/μ is obviously positive. Nevertheless, for
the cases of physical interest, the Fourier transform of Q has the property
that it is vanishing rather strongly for ω->0 (like ω 3 , say, for the standing
modes in a large volume). It grows up to a cut-off frequency then decreases
sharply. In this case we shall see that δμ/μ is indeed negative. To compute
the integral we write

= f rfv(ω) cosω(ί — t')

and find
δμ

= hm -
dv(ω)

ω2 ωT J
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If dv(ω)/ω2 is again a measure (this is clearly not the case with our
previous counter-example) then indeed

δμ ? dv(ω) < 0

μ ~ ί ω2 " v

If we notice that [with dv(ω) even]

δμ Λ. 1 V° Ί , , d ί l - s inωT/ωTl
= lim — dviω)——< >

μ τ->oo 2 : w dω [ ω J

we see that in the case of white noise, dv(ω) = dω/θ2, δμ/μ vanishes indeed.
This discussion - a not very rigorous one admittedly - is, however,

indicative that heuristic arguments can sometimes be fairly misleading.
Since in the case of the electron anomalous magnetic moment, the
correlation one would take is more or less of the type just discussed,
simple non-relativistic arguments would lead to a negative correction
which is totally wrong.

However, the whole theory of random motion on curved manifolds
might find some other type of applications in theoretical physics. Some
have been briefly indicated.

To conclude, it is tempting to make a conjecture that I was unable to
prove rigorously but which is supported by the previous heuristic

+ 00

argument as well as the explicit examples. If J dtQ(t) <oo then
— oo

+ 00

H m G ( s 2 -sl9t)= l / 4 π , i f f dtQ(t)= oo, t h e n l i m G(s2

 ms2,t)= G ^ f o sj

= l / ( 4 π | 5 2 - S l | ) .

I take this opportunity to thank R. Glauber and R. Stora for several discussions on
the topics of fluctuations.
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