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Abstract. We define the vacuum expectation value of the time-ordered product of
four exponentials of free massless scalar fields as a continuous linear functional over a
suitable test function space using minimal singularity as a criterion.

I. Introduction

The structure of the second and third order terms in a perturbation
theoretic expansion of the Green's functions in powers of the exponential
interaction Lagrangian G Lint(x) = G: exp(fφ(x)) — 1:, φ(x) being a
free massless scalar field, has been analyzed by several authors [1-4].

The position taken in Ref. [1] and [2] can be described as follows:
The problem of defining the time-ordered products T(xί9...9xn)
= ίn+ίTLint(x1)...Lint(xn) is equivalent to the problem of defining the
connected parts of the vacuum expectation values τ(xl9...9xn) of the
time-ordered products. In fact, owing to the formula

T:exp(fφ(xί)):,..:exp(fφ(xn)):

= j Π

where λ stands for / 2 / 4 π 2 , the combinatorics is particularly simple. In a
successive construction of the time-ordered vacuum expectation values
along Bogoliubov's lines [5], τ(x l 5 ...,xκ) is determined by τ(xί9 ...,xr)
with r < n via locality and unitarity only up to an arbitrary real, Lorentz
invariant, localizable [6], symmetric distribution with support in the
points where all n arguments xl9 ...,xn coincide. The removal of this
arbitrariness is our main concern.

Assuming that all τ(xί9 ...,xr) with r<n have already been con-
structed, we confine our attention to the real part Steτ{xl9 ...,xn) since
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this is the only undetermined part. Moreover, since time-ordering
involves multiplication of well-defined objects such as the vacuum
expectation values of the products of n interaction Lagrangians in various
orders by step functions that depend on the time (-difference) variables
only, we average Me τ(xί9 ..., xn) over the spatial variables with sufficiently
smooth real test functions / and study the resulting distributions Meτf in
the time variables near the points where all n arguments x?,...,x°
coincide.

In [1] it has been shown that for any admissable choice of τ(x l5 x2) the
contribution to Meτ${x\,xQ

2) from the points x° = x2 can be separated
from the rest. By requiring the absence of a singular contribution from
these coinciding times we arrive at a uniquely determined, least singular
definition for &£τf(x®,x2) and, moreover, these individual definitions
(for every real, sufficiently smooth spatial test function /) can be derived
from one particular Lorentz invariant definition of ^ τ ( x l J x 2 ) . Thus
we are led to a least singular choice for Meτ(xl9x2) and thereby to a least
singular definition of τ(x1?x2), the superpropagator EF(xί— x2).

In [2] we took this definition of τ(x1?x2) and showed that for any
admissable choice of τ(x l 5x2 >x3), as before, the contribution to
Meτf{x\9 x2, x3) from the points x? = x2 = x3 can be separated from the
rest. Again, by requiring the absence of a singular contribution from these
coinciding times we arrive at a uniquely determined least singular defini-
tion of 0teτf(x\9x*29x§. We note that these individual definitions for
every real, sufficiently smooth spatial test function / are just the
corresponding spatial averages of one particular Lorentz invariant
choice for Meτ(xl9 x2, x3). This least singular definition oΐMeτ{xl9 x2, x3)
is uniquely determined. We were able to give the least singular time-
ordered vacuum expectation value τ(x l5 x2, x3) in an explicit form.

In the present paper we go one step beyond the results of Ref. [2] by
considering the definition problem for τ(xί9 ...,x4), the time-ordered
vacuum expectation value of four interaction Lagrangians or rather its
connected part, taking the least singular definitions of τ(x l 5x2) and
τ(x1,x2,x3). Here, for the first time in our approach we encounter a
situation that corresponds to the occurence of overlapping divergencies
in the perturbation theoretic treatment of renormalizable Lagrangian
field theories. It is therefore interesting to find out whether the criterion
of minimal singularity is still meaningful and whether it can be used to
eliminate completely the arbitrariness in defining this time-ordered
vacuum expectation value.

To this end, we shall analyze the structure of τ(xl9..., x4) or rather of
Meτf{x\9...9x^) outside, but close to points whose time components
totally coincide.
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If S 4 denotes the permutation group of four objects and if its elements
σ are represented by ,* y ~ ^

we may formally decompose τ(xl9..., x4) as follows

τ(x 1,..., x4) = —

° <τe64

+ y Σ P-

+ 4" Σ lί

δ σe<54

+ 4" Σ P

i ~ xjf]
<τe<S4

xj - xj] LiEF(xh - xj] p£ F (x,

Xi - xj] UEF(xk - x,)] pfi^x;

Graphically, this corresponds to a sum of the subsequent diagrams

(1) (2) (3) (4) (5) (6)

We shall show that the criterion of minimal singularity remains indeed
applicable since the contribution from the points where xj = x^ = x% = x%
to ffleτf(x®,...,xj) can still be separated from the rest. This separability
can be established although we do not know whether

decreases in some direction in momentum space. (It does certainly
not decrease if only a subset of the invariant momenta (pt 4- p)2 grows
beyond all bounds such that all partial sums of the momenta are time-
like. However, a decrease when blowing up an arbitrary totally time-like
configuration of the momenta has not been ruled out.) By requiring the
absence of singular contributions from the points where xj = x°2 = x° = x 4

to 0leXf(xo

u ...jX^) we obtain a particular least singular definition of
SteXf. The individual definitions for every real sufficiently smooth spatial
test function can be shown to derive from one common, uniquely
determined Lorentz invariant definition of 0lex{xu ...,x4) as the
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corresponding spatial averages. By adding to it the imaginary part
Jmτ(xu ...,x4) uniquely determined by unitarity we are led to a least
singular definition of τ(x l 5 . . . , x4). There is no arbitrariness left.

This paper is organized as follows:
In Section III we study the behavior of quadratic forms with parameter

dependent coefficients raised to some complex power like

in θί9θ2 and μ where the quadratic form may degenerate for certain
values of θx and θ2, a prerequisite to the subsequent discussion. In Sec-
tion III we introduce auxiliary amplitudes 3r(*i>..., X4.; y) and
3(*i9 '-9X4) and show how they are related to the two and three point
Green's functions. None of these auxiliary amplitudes provides an
admissable definition for the connected part of the time-ordered vacuum
expectation value of four exponentials. However, the deficiences of 3
have a relatively simple form. They can be made good by adding the
deficiency amplitudes %(xl9..., x4) introduced and studied in Section IV.
Whereas the dependence of 3(Pi» >P*) = <^Xι ...X4{3(*i> ^4)} iPv -,Pd
on the momenta Pi , . . . ,p 4 is very complicated, the dependence of
lipi9 - >P4) — <^Γ

Xί...xΛdixι> -"9X4)} iPi9 - >PA) o n Λ e momenta is of the

same simple nature as that of the superpropagator. On the other hand,
whereas it is relatively easy to control the asymptotic behavior of
Me3iPi9 - >Pd in the sector where all momenta and their partial sums
are time-like this is not at all easy for Sle%ipl9 ...9p4).

In Section V the most general definition of τ(xί,..., x4) is given and the
structure oi9ίeτf{x\9 ...,x4) is examined in regard to the separability
property. Finally, among all admissable definitions we choose the least
singular one as the definition that leads to the simplest dynamics associated
with the given classical Lagrangian.

We use the notation of Ref. [2] and [7]. The spaces C1/3(IRZ) and
H'l/sQRl) denote the images of the spaces SDΐ1/3(lR

/) and W1/3(β!) respectively
under Fourier transformation (cf. [2]).

Π. Powers of Parameter Depending Quadratic Forms

In this section we shall investigate the behavior of powers [P±iθγ
of quadratic forms whose coefficients depend on parameters:

P = P({q};θuθ2)= £ ΣaJk(θi>θ2)qj qk9
j=ί fc=i

Θ 1 , θ 2 e / = [ 0 , 1 ] ,
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in particular for

b1(θuθ2), if j = k=ί

θ2b2(θί,θ2), if j = k = 2

Θ1θ2b3(θuθ2), if 7 = /c = 3

. 0 otherwise.

Here, b/(0l5 Θ2)j= 1,2,3 are negative, infinitely differentiable functions
on the square / x / .

From partial Fourier transformation with respect to the variables q>}

it is seen that the distribution-valued function (of θx and θ2) [P±ίθγ
is infinitely differentiable with respect to θ1 and θ2 as long as the quadratic
form is not degenerate i.e. away from θx = 0 or θ2 = 0.

For Sbμ > - 6 the behavior of [P ± ίθγ as θjj = 1 , 2 approach the
left end of 7 is given by

where the distribution-valued functions F*,..., H* have the following
properties: for β^eί, G* and F ^ are infinitely differentiable in ^ and
Θ1,θ2 respectively;

are continuous and bounded as θjj = 1 , 2 vary over the interval 7.
F*,...,H* depend analytically on μ in 0Uμ> — 6. (For μ = — 1

and - 2 the factors 0 | + μ and θt+μ have to be replaced by θ2

2

+μln^2 and
θ ί + μ ln0!, for μ = - 3 and - 4 the factor θ ί + / i by θi+μlnθ1)

Moreover, the limit of [P + iε\μ as ε tends to + 0 exists for θj e 7,
j= 1,2 and is equal to [P ± iθγ provided that Msμ is larger than - 6:

Next, we turn to the asymptotic behavior in μ of the distribution [P + iθγ
and of the function [ P ± i ε ] μ for <ffl#μ> — 6. To this end, we use the
formula

for /(x) = [ft 1(β 1,θ 2)ί? + β 2 6 2 ( β i , β 2 ) « | + xθ2ί>3(βi.β2)«i + iΌ]'1 with
3 + Meμg:N<4 + 0l.eμ in ^μ> — 4. After having set x equal to θt we
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estimate the resulting expansion term by term. In this way we obtain the
following result:

There is a positive constant M such that the set of distributions
Γ 3 3 1 Γ

φ + Σ ΣkjJ2 i +
L j=ί v=o JL

is bounded in the topology of ^ ' (R 1 2 ) .
Now, we apply these pieces of information to the powers of quadratic

forms that actually occur in the momentum space expression for the
connected part of the time-ordered vacuum expectation value of four
exponentials. We restrict ourselves to the discussion of the powers of
quadratic forms corresponding to the diagrams (4), (5), and (6), while the
reader is referred to Ref. [2] for a discussion of those powers that
correspond to the remaining diagrams (1), (2), and (3).

With Speer [7] we define the determinants

i) C%({a}) and D%({oc}; {/?}) for the diagram (4), where ρ e φ 4 1 u φ 4 2

denotes a permutation from the sets

vl/\2 3 4/'\l/\3 2 4/'\l/\2
and where the correspondence of the Feynman parameters αρ ( 1 ),..., αρ ( 4 )

and the internal lines is shown in the following diagram

/P3

Pi'

ii) C§({α}) and D|({α} {p}) for the diagram (5), where ρ e φ 5 x u φ 5 2

denotes a permutation from the sets

Ί \ # ^ /Λ/ΛX //1XX (4,5)1 ί /12\ Λ / Λ ^ Λ / r, J
ρ/ρeS4,(ρ(3),ρ(4))φ ^ f ^ i U AQIQG S 3 ? ^(5) + 3^

4,5)
u ^ ι 2 ^ ^ £ © 3 , ^ ( 5 ) = :
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and where the correspondence of the Feynman parameters α ρ ( 1 ) , . . . , α ρ ( 5 )

and the internal lines is shown in the following diagram

iii) Q({α}) and DQ

6{{OL} {p}) for the diagram (6), where ρ e φ 6 x u φ 6 2

denotes a permutation from the sets

J) Q/Q e ©4. β(5) * 3J u {(J) P ί ) ^

and where the correspondence of the Feynman parameters α ρ ( 1 ) , . . . , α ρ ( 6 J

and the internal lines is shown in the following diagram

W e s e t 0Cj = ta...tj j = 1, . . . , α α = 4 , 5 , 6 w h e r e tjβl f o r 7 = 1, . . . , α - 1
and ί β e[0, +oo[.

The quotients Cf({α})/αα...α4 for ρe^βal and Q({α})/αΛ...ά4α3 for
ρ e ψ f l 2 are polynomials in tl9..., ία_1? independent of ίfl and positive for
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tjel j=ί,...,a-l. The quotients D f l

ρ({α};{p})/α f l...α 3,ρeί!α lu% 2,

I4

are quadratic forms in the moments pί,..., p 4 / ]Γ pm = 0 with coefficients
/that depend polynomially on the parameters t1,...9ta_1 and are

independent of ta. We consider the following parameter dependent
distributions

|μ

<Λ , CJ({α})/αβ...α4

and

±ιε\ for ρeψal (1)

with ε ̂  0, ίĵ  e / j = 1,..., a - 1 and Steμ > - 6 and where the Gelfand-
Shilov prescription is taken for ε = 0 [8].

For any permutation ρ from the set φ Λ i U ^ α 2 there exists a non-
singular linear transformation Tα

ρ({ί}), infinitely differentiable with
respect to tj j = i,..., a — 1,

which diagonalizes the corresponding quadratic form such that the
distributions (1) and (1') take the shape

Σ P«) [ (9ί)2 - ί2(β!)2 - ί2 tiίβS)2 ± i

£ P») [- (9Ϊ)2 - ί3 ί2(β!)2 ~ ί3 ί2 ίi(«S)2 ± ί

for ρ e Sβal and ρeψa2 respectively.
By applying the previously established results about powers of

parameter depending quadratic forms, we arrive at the following

Lemma 1. The behavior of the distributions (1) and ( Γ ) : ε ^ 0 , for
0Uμ> —6 as functions of ti9 ...,ta_ίis given by

+ l ί i β ( 1 , , β 1 ; { p } ) for ρe<P α land

for eeφa2
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respectively. Here, the distribution-valued functions F^Q,G^Q, and

Hμ,a,ρ have the following properties: for t}el j=ί, ...,a — 1, F^ρ is an

infinitely differentiable function; for tjβl j= 1, . . . , α — 1, also G^ε

UfQ and

Ht,a, ρ a r e infinitely differ entiable functions, while for tj e I j = 1,..., a — 1

G^£

a9Q remains infinitely differ entiable with respect to

L J and

infinitely differ entiable with respect to

ί 3 , . . . , ί β - i if Q £ %

ί 4 , . . . , ί β - i if Q^^

and H^ρ are continuous (hence bounded) functions
m = o , i , .

over the product of the closed unit intervals I. F*£tQ9 G*l>e, and H**tβ

depend analytically on μ in the domain 0tzμ> —6. (Similar replacements

as before have to be made for μ = — 1,..., — A.) Moreover, the limit of the

functions (1) and (f) as ε tends to + 0 exists for M#μ> — 6, tjβl j= 1,...

. . . ,α— 1 and coincides with the Gelfand-Shilov prescription:

-±iθγ. (3)

Thus the distributions

/4 \ 1 1

l / 0 0
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with (7eS 4 and 0 ^ ε ^ 1, unambiguously defined in

>-2(a-n)

and

, . . . , s )l$,<eSi < 0, i

a a )

/ csi"β Sγyt - ^ jLyCl ilj Yl —— T , . . . , d 1 , 7 t / * o.», ^f ZΛJX J*J ζ

n+1 1 J

respectively, can be analytically continued in s l 5 . . . , s α to a function

meromorphic in Ωa

(6)

If we use the same symbol for the continued function we obtain the
following assertion:

> 1 ?...,sα) for ρeSβaί (7)

and

for ρe<$a2 are analytic in Ωa, the limits as ε tends to + 0 exist there
and are equal to

(Σ^ϊloM1J (8)
and

(8')
respectively.

Finally, we apply the results on the asymptotic behavior in μ of the
powers [P±iε] μ established at the beginning of this section to the
distributions (1) and (!'). Thereby we derive
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Lemma 2. There exists a positive constant M such that the sets of
distributions Bai and Ba2 are bounded (in the topology of ^(β16)) where

\M i+ Σ Σl
m = l v = 0

Γ 2 - π

L n = l

4

l + l

1

v VII "*
?s") I I '

l/2\ -

and

III. Auxiliary Amplitudes

A. Unίtarίty and Locality Relations

We define auxiliary amplitudes 3λPi > ? P 4 y) r = ± 1, ± 3, ± 5, ± 7
for sufficiently large real values of 7, i.e. y > 2r 4- 3 by

3 r ( p l 5 . . . , p 4 ; 7 ) = 2, 3e,r(Pi>--->P4; (9)
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32,r(Pl"' >P4>y)

\ 1 / σeS4

16 / _ \2 S + ioo

v A ί π ) f . . . f

s _ ί 0 O

J L U 2 π ί

 e
Γ(3 +

A

7 Ό ρ ί ± ) ( p * , p ί . - p ί - p * ; s 1 , . . . , s 3 ) .

Σ ί - ί
σe®4 S — ioo

π rfSM / A

ρ e φ α l U φ α 2

for a = 4, 5,6. <S is a real number between — 2 and — 1. With the help of
Lemma 2 and Stirling's formula it can be shown that for y real and larger
than seventeen the above integrals exist and define distributions con-
tained in the class 9W1/3(IR16):

By swinging the sw-contours around the real axis from — 1 to + oo in the
same way as it has done in Ref. [2] one proves the existence of a constant

δ > 0 such that 3riPi -> > PA. I y)r = ± U ? ± 7 are analytic functions of y
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in the chisel shaped region

U \y
2\ i - 1)

with values in SR'1/3(IR16) and that the limits

exist in 9Wi/3(R16).
Next, we want to show that for y real and larger than seventeen the

Fourier transform of 3r(Pi> •••J/U;?) is related to the product

l_i (X) ιr,F(F)tr{Xi Xj, y)j

by the following equations

nAV)Ux %4) (12)
Π [
i<j^4 /conn.

DA'V)UX XΛ) (12')

The ultra distributions EFiFhr(x; y) occurring on the right hand sides of
the above equations as well as the corresponding ultra distributions
E^ix y) were defined in Ref. [2]. From the results established there,
we infer that

a) EF{F)r(x; y) and Ei

r

±)(x; y) are analytic functions of y in WδA with
values in e;

1/3(IR4),
b) the limits

lim EF(p)r(x;y) and lim E^Hx γ)
y-+l,γeWδ,4

 r y r ) ' r y+l,yeWδ,4

exist in (Γ1/3(IR4) and are equal to
2 1 f r(-ί-s)Γ(-s)

Γ(3 + s)

and

p2)-2πi~Θ(±p0) Θ(p2)g(~p2\\(x)
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respectively where

c) iEFr(x;γ) and -iEpr(x;γ) are time ordered "functions" in the
following sense

y) for x ° > 0

X;y) for x ° < 0

*;y) for x ° > 0

y ) for χ 0 < 0 ;

d) for y real and larger than seventeen EF{p)r{x; y) and E{

r

±\x\ y) are
locally L4-integrable functions of x such that products of the form

are unambiguously defined. Here, E*(xj — xk;y) stands for either

EF,r(Xj-xk;y) or -EFr(Xj-xk;y) or E(

r

+)(Xj-xk;y) or - f ^ x ^ - x ^ y ) .

In order to prove Eqs. (12) and (12') we start from the infinitely
differentiable functions EF{F) r ε(x; y) which regularize the L|oc-regulariza-
tions EFifhr(x;y) even further: EF{F-)r(x;y) are the limits oϊEF(p)rE(x;y)
as ε tends to + 0 for y > 17 in the topology of L^oc. It follows from this
fact that

Π U{±)iEF(F),r(χj-χk;y)Ί\ (13)

are the limits of

Π U(±)iEF(phrίE(xj-xk;y)']\ = & ΐ'3rtε{x1,...,X4;y) (14)
j<k^ί4- /conn.

as ε tends to + 0 for y > 17 in the topology of L\oc.

We evaluate the Fourier transform^είPi,...,PA\1) of 5r,ε(xiv ,^4;7)
using standard techniques, i.e. we straighten out the contour Ly entering
the definition oϊ EF{F) r ε(x;y) (Eq. 53 of Ref. [2]), introduce Feynman
parameters, work out the Gaussian integrals over the loop momenta,
subdivide the integration region (® [0, +00 [)b of the Feynman parameters
into sectors according to the respective ordering, set the / h smallest
parameter equal to OLJ , = tj... tb_ 1 tb with ίw e /m = 1,..., ί) — 1 and
O:g£j,<+oo, absorb part of the orderings by permutations of the
external momenta and finally perform the integration over tb. Thus we
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establish that for y > il 3r,Jφu ---iV^i) is equal to the r.h.s. of Eq. (9)
with the only difference that for ρetyal

C«({α})/αβ...α4

i s t 0 t a r e p l a c e d b y

f α3

foτρe%2 - ^ iO by

by

* by [-(

(-f) iβ( ί 22

ΣSm

and

Here, the symbol Σ ; stands for the respective partial sums.

^ We observe that the sn-integrations in the expression for
3r,ε(Pi9 - 9 Pn \ l) J u s t established are uniformly convergent (in ε), that the
powers which occur for any tn are larger than — 1 and that

n = l , ...,<z. The lower bounds coincide with the restrictions on the
applicability of the limit relations (7)/(8), (7/)/(8/). The upper bounds
guarantee that the integrands are (with respect to ε) uniformly bounded
distribution-valued functions of tn. In virtue of the theorem on bounded
convergence, for γ> 17 the following relation holds

3 (15)

or after Fourier transformation

(15')
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If we combine this result with the limit relation between the expression
(13) and (14) we conclude for y > 17

i3)r(χi, ..,χ4',y) = i±)ΐ( Π lU±)ίEF(F)Λxj-χki

q.e.d.
Formal manipulations which are correct for L^oc-integrable functions

yield for y> 17
a) the unitary relation

{ 3 ( ) 3 ^ ) }

Π [i + iEΪ+\xk - χι γ)Ί[ ί Π Γ1 - iEF,λχm - *„ y)l
keX (\ m<n
leY J {m,neY

where the sum runs over all partitions of the set {1,2,3,4} into two
disjoint non-empty subsets X and 7 : I u 7 = { l , 2 , 3 , 4 } , XnY=φ.

b) The locality relations

π
n<t
ι,ne

--urn u-tEtfc-

keX f) m<n
leY ) [m,neY

eX J ( 1 7 )

Πtl + i^ ' ίx r^ ϊfllίΠ [l-i£F>r(xm-xB;)
keX f\ m<n
leY J [m,neY

if x? > x° for all ieX, meY. Here again, (X, Y) denotes a partition of
the set {1,2,3,4} into two disjoint non-empty subsets.

As we already know, the left hand sides of these relations are ultra
distribution-valued analytic functions of y in WδA and their limits exist
in (Γ1/3(IR16) as γ tends to + 1 from WδA. Also, the products on the right
hand sides of these relations are ultra distribution-valued analytic
functions of y in W&A and their limits exist in (£'1/30R16) as y tends to H-1
from WδA.

In order to prove this, view the right hand sides of the unitary and
locality relations as convolutions in momentum space, remember that
the integrands, are analytic functions of y in WδA, that their limits exist
in 9W'1/3(1R16) as γ tends to + 1 from WδA and note that the integrations
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over the loop momenta are uniformly convergent when the right hand
sides are tested with test functions from (£1/3(IR16).

By the uniqueness of analytic continuation in simply connected
regions we infer the appropriate unitary and locality relations for

(—) (—)
Q (x x ) = lim ^ (x x ' V)

For the linear combination

i Σ -37 Σ +9 Σ - Σ
(•=±1 r = ± 3 r = ± 5 r = ± 7

• l i m 3 r ( χ i > . > χ 4 ; y )

y->l,γeWδ,4

(18)

(19)

we obtain the following relations in which τ(x1,...,x4) stands for an
arbitrary admissible definition of i I f| [1 + ίEF(Xj — xf

a) unitarity:

(20)

i,jeX

leY

b) locality
ifx?>x£forall/eX,me Y

α)

iλ2π3g[-ΎΠ )δ(xm-xn)\m<n
^ I m,ney/conn.

for |X|=1,3

(21)

•\iλ2π3g[-^Π)δ(xm-xn)\m<n
}m,neY/ conn.

for |X| = 2
β) a corresponding locality relation for 3 ( * i , •••, X4)
c) reality: 3 ( x l 5 ...,x4) = [3(x!, . . . ,x 4 )]*
d) symmetry: β fed j^ •••»x<r(4))==3(xi> ...,x4) for any ι
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B. Asymptotίcs of the Real Part of 3(Pi, , PA)

In this subsection we shall establish the asymptotic behavior of
^ 3 ( P i ? '->Pd i n the region where the Minkowski squares of all
momenta together will all their partial sums are bounded below by some
negative constant — K2 and where at least one momentum or one partial
sum of the momenta tends time-like to infinity. The methods developed
in Ref. [2], Section III to study the analogous question for Steτ{pl9 p2, p3)
are good enough to control the asymptotics of

Σ -37 Σ +9 Σ - Σ
= ± 1 r=±3 r=±5 r = ± 7 .

lim 0teQa r (p i , . . . , p 4 ; y )
γ-+l,γeWό,4

for a= 1,2,4, 5,6 in the above-mentioned region. For α = 3, however,
those methods do not suffice and a new technique has to be set up to
clarify the asymptotic behavior of *fm^{pl9p29p3) in the region
{(Pϊ>P2>P3)/(Pm)2> —K2> m = 1,2,3} the appearance oί 3Γ{pl9p2,p3)
in the term 33 being obvious.

By the methods of Ref. [2], Section III and II respectively, one can
show that one commits only an error of type 0((Max{pi,p2>P3)~5/2)

if one replaces Jm3Γ(pu ..., p3) by die — {^Ί(pί9 p2, P3I y= 1)
2

— ^-ι(Pι,p2,P3iy=i)} and that this latter expression satisfies the
following locality relation:

^ — {^r1(xux2,x3;y=ί)-^r_1(xί,x2,x3;γ=ί)}

(22)

for x? larger than x? and x% and a similar locality relation for xf less than
x? and Xfc. Hence, outside the coincidence points xί = x2 = x3 the
following relation is true

= - π 3 A2 X ^ i - [i£F(x, - - -4 •

(23)

Next, we construct an extension of the r.h.s. (not necessarily agreeing
with the l.h.s.). As usual we do this via its Fourier transform. To this end,

we represent the differential operator g[ — - Q as an integral over
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translation operators [9]:

1

2π2λ
2λ2 J

2

,(24)

employ standard techniques [8] to manipulate the Fourier transform of
the r.h.s. and obtain for it the hitherto formal expression

2πi

•exp

£ \2π5'2 Σ - Σ [(Pj-P»)2] ϊ i + ϊ l[P?]V 2[Pι (Pi-Pik)]2vi

-2V3

(25)
1 + Vi + V2 +V3

λ

y

Here we have set

j ) - ζ c o s 2 ©

J ?

(27)

The symbol Jμ denotes the Bessel function of first kind and order μ, while
the symbol Cj, stands for the Gegenbauer polynomial. The integration
runs along some path 0 to + oo.

We may deform the ^-contour into the circle

{ζ/ζ= -§(1 W), -π^ψ^+π} (28)

without changing the value of the f-integral. On this circle 3tef is always
non-negative. Inspite of the fact the 3tef assumes the value 0 there (for
0 = 0, ζ = —4/3), \aψf\ < π/2 is valid over the entire range of integra-
tion since the critical point is a saddle point and / itself is equal to zero
there.

With this information at hand, we may give a precise definition of the
formal expression (25): the path of the y-integration is fixed to run from
0 to + oo along the positive axis.

From the integral representation (25) we can read off the asymptotic

behavior of M& — —2Γ_^ in the region of interest which in turn

settles the question of the asymptotic behavior of J^^(p 1 ,p 2 ? P3X of
3 ) fi ^iJ •••9P4) and finally of ^s^(p1, ...,p4). We content ourselves

with the statement of the asymptotic structure of 9te% in the region
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{(Pi>P2>P3>P4)/(Pi)2> ~K2,(Pj + Pk)2> -K2 ίJ,k=U2,3,4},K2 some
positive constant

(29)

+ Σ Σ Σ amιm2m3(p)r{pir{{pj+pk)
2A

mi = O wi2 = 0 m 3 = 0 J

+-5 ( Σ P») Σ ( Σ Σ Σ (pfr fo • P*)"1 (p« fo+P;))"2

' ( P Γ ^ + P,))"3 Wii)

1...Λ3(P?'(Pi + P / ' P * ) + α similar term with

the variables (pi9 pl9 pt + p p pk) replaced by {pi9 p( + pj9 pl9 pk) + a

similar term with the variables (pi9 pl9 Pi + pp pk) replaced

^ y (Pfc' Ph Pi"> Pi '

where the "functions" Wmn(y) and W^nι ..Π3CVi,y2,y3) r = 1,2,3 are of
type O(j;""M"c) and O0>Γ^)>Γ2~n3~c,)>:Γd) w i t h ^^23/10, J ^ O and
where αm i,..m 3 are real constants.

IV. The Deficiency Amplitudes: Construction and Asymptotics

The occurrence of the terms

leY

for \X\ = 2
\m,neY

in the unitarity and locality relations (20) and (21) indicates that the
amplitudes 3(*i> -..^4) and 3(xι> >X4) do not provide admissible
definitions for the vacuum expectation value of the chronological and
antichronological product of four exponentials of the free scalar field
respectively.

In this section we shall construct amplitudes 3(x 1 ?...,x4) and
3(x1? ...,x4), called deficiency amplitudes, that account just for these
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extra terms, i.e. amplitudes with the following properties

o) (3}(Xi,..., x4) e (Γ(1R16), Lorentz invariant,

i α v Λ i 5 •••? Λ 4 / J

341

l) ΓT

2* \γ\~

keX
leY

-iλ2π3g - m<n
m,neY/ conn.

ii) if xf > x°m for &WieX,meY:

fO for |.Y|=ί, |X| = 3

α) 3 ( ^ i > . . > ^ 4 ) = <

— 1

keX
leY

\iλ2π3gl--Π)δ(xm-xJ

a corresponding relation for 1(xί,..., x4),

m,nel7 conn.

for \X\ = 2.

iii) 3(^i> .^4) = [3(^iJ-..Jx4)]*»

iv) 3(^σ(i)?...?xσ(4)) = 3(^i9 . ^4) for any σ e S 4 .

By these requirements^*!,. . . , x4) is only determined up to an arbitrary
real, Lorentz invariant, symmetric ultra distribution with support in the
points xt = x2 = x 3 = x 4 and contained in the class (£'1/3(1R16). We shall
show that among the ultra distributions with properties o),..., iv) there
exists a least singular one: (3o(x1? ...,x4). Moreover, the definition of

if0(x1,...,x4)is unique.
The locality relation ii) requires 3(x1, ...,x4) and 3(x1? ...,x4) to be

equal to

Π
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away from xί = x2 = x3 = x4. There, outside the coincidence points, the
so defined quantities 3(x1?...,x4) and 3(Xi,...,x4) match all the re-
quirements o),..., iv).

Next, we have to extend the definitions of ̂ (xί,..., x4) and ̂ (xί,..., x4)
to Lorentz invariant ultra distributions over the entire 1R16 preserving
the relations iii) and iv) and ensuring that the extensions are contained
in the class (Γ1/3(1R16). For any such extension, the unitarity relation is
satisfied if and only if its Fourier transform is real whenever the external
momenta are totally space-like.

We give the particular extensions 30 and 30 in terms of their Fourier
transforms. For that, as before, we represent the differential operator

λ
g\ —-j- D as an integral over translation operators [9]:

< 2 4 >

apply the Gelfand Shilov procedure [8] and arrive after standard
manipulations at the following expression for

where the integral should be taken along some path running from 0 to
(-(pi + pj)2) oo and where zσ(y;pl9 ...,p4) stands for

with

dθ1 sin2 θ, ΐ dθ2 sin2 Θ2

λ

2 2

Σ Σ
κ = l λ=l

1

T

, d ^ dζ2 ζ2

 +{ dξ

(31)

(32)
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and

00 00

V t = 0 (33)

The symbol Jn(x) stands for the Bessel function of first kind and nth order.
The definition of cVlf...fV8 and Ku_V8(y; ζl9 ζ2, Θu Θ2, ξ; pl9 ...,p4) can
be found in Ref. [10]: Eqs. (34)-(36). ft'i,..., v8 is a polynomial in the variable
y and in the scalar products of the momenta.

Furthermore, cV and are such that a definition of f^,..., p4)
contained in the class 9M'1/3(1R16) is possible.

Now, the extension problem poses itself in the following form:
Give a precise definition of the integral on the r.h.s. of Eq. (30).

In order to do so we need some information about the behavior of
zσ(y>Pι> ..0P4) in the neighborhood of y = 0. We observe that for y real
and negative the Cn-contours of integration in expression (31) may be
deformed into contours Cn

ΘuΘl given by

Cn

ΘuΘ2 = {ζJζn==--ρ2

n^ + eiψnl-πSψn^+π,ρ2

n=ρ2

n(Θι,Θ2)>0} (37)

n=ί,2 without changing the value of zσ(y;pί, ...,p4). In particular,

setting (£i)2 = | , (ί?2)2 = f i n the vicinity of Θ 1 = 6>2 = 0,

1 +
s i n ( Θ 1 - Θ 2 )

| / 4 - c o s 2 ( Θ 1 - Θ 2 )

s i n ( Θ 1 - 0 2 )
(38)

otherwise, @t&f(ζu £2, <91? <92, £) is non-negative for the entire range of
integration and \aψf(ζl9 ζ2> Θl9 Θ2, ξ)\ < f. [There is a one-dimensional
continuum of saddle points with / = 0 : ξ = + l , tg© 1 t g 0 2 = 3,

2, — 2(ρ2)
2). Apart from these angles Θγ and Θ2, 0lef( i 2 ) ( (

assumes the value 0
ζ2 = I lim (1 + eiψ) and

again only for
d = - 1 lim (1 + eiψ\

»- ± π

Θγ = 0 = Θ2 : ζx = —
i ζ2 = - 4 leaving

ty\ <f, however.] Hence, zσ(y\p1, --^
the point j ; = 0 along the negative axis.

stays finite as we approach
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Now, we are able to give the precise interpretation of the integral on
ther.h.s. of Eq. (30):

(
sgn(-(pi+pj)2) co\

j + j )dyzσ(y;pl9...9p4).
g iπ .Q e~ί7t 0 I

Obviously, this particular extension^(p^ ...,p4) satisfies the require-

ments o), ii), iii), and iv). Moreover, in view of the reality of (3o(Pi> ...,p4)

for totally space-like momenta, the unitarity relation i) also holds true,

i.e. go and | 0 just introduced are admissible definitions. §0 and f0 are

distinguished from all other possible definitions by the fact that @t£%
has the special structure

Σ - Σ VV...A
2 = 0 «3 = 0

• ίiPi + Ps) 2 ] m 2 [(p3 + P i ) 2 Γ 3 [(Pi + Pi)' (Pi + P 3 ) P ( 3 9 )

• [(p2 + Pa) * (Pa + Pi)]"2 [(Pa + Pi) * (Pi

+ cyclic permutations of {1,2, 3}

where the sum runs over those indices only for which nί + n2 and n2 + n3

(and n3 + n^ are even and where for all such indices wm2...n3(<?2) are real-
valued "functions" of type 0((q2ym2-~n3~Ί) for large time-like q, with
the property wm2m3ΠlΠ2Π3 = wm3m2Π3ll2lI1.

Any other possible definition of {f(pu ..., p4) differs from^oίpi,..., p4)
by a real entire function

Σ - Σ ^ m i . . . Π 3 [ ( P i + p 2 ) 2 r i [ ( ί ' 2 + P 3 ) 2 ] m 2 C ( P 3 + P i ) 2 r
mi=0 «3 = 0

• [(Pi + Pi) (Pi + Ps)]"1 ί(Pi + Pal' (P3 + Pi)]"2 [(Ps + Pi) ' (Pi + Pi)]"3

where the summation is restricted by the same conditions as before and
where for all summation indices satisfying these conditions

A = A = A
rαmim2W3«i«2«3 -rim2fn3min2»3«i ^xmim3m2«3«2«i *

V. Definition of the Time-Ordered Vacuum Expectation Value
of Four Exponentials

By construction, the sum of the auxiliary amplitude 3 and an arbitrary

deficiency amplitude(3}yields an admissible definition of the connected

part of the vacuum expectation value of the chronological, respectively
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the antichronological product of four exponentials, i.e. 3(xu ...,x4)

+(5)(x1,..., x4) satisfies

O) (^(x1,...,x4)+ (3 )(x1,...,x4)e6: /

1 /3(IR1 6), Lorentz invariant
I) unitarity

II) locality _
III) reality: [3(x 1,...,x 4) + 3(x1,...,x4)]* = 3(x1,...,X4) + 3(x1,...,x4)
IV) symmetry with respect to permutations of the arguments.
Conversely, every admissible definition can be obtained in this way.
Now, let us average the real part of an arbitrary given admissible

definition with a real analytic test function /eZ(lR 1 2 ) in the spatial
difference variables. From the asymptotic behavior of ^ 3 ( p i > « >p4)
[Eq. (29)] and of Ste%{pu ...,p4) [Eqs. (39) and (40)] in the region

{(Pi — P 4 ) / ( P i ) 2 > - « 2 , (Pj + Pk)
2>-K\ i,j,fc=l 4} where K2

is some positive constant, we conclude (the various series appearing in
those equations converge sufficiently uniformly) that the resulting
distribution in the time-difference variables has the following structure:
It consists of

a background, once continuously differentiable throughout IR3

+ (5-derivative type singularities concentrated on planes x? = xj (two
coinciding times) each one multiplied by a three times continuously
differentiable function of the coordinates of the respective plane
+ ^-derivative type singularities concentrated on the lines xf = x? = x°
(three coinciding times) or xf = x°, x% = xf (two pairs of coinciding times)
each one multiplied by a three times continuously differentiable function
of the coordinate describing the movement along the line
+ ^-derivative type singularities attached to the point x? = x^ = x® = x4.

To visualize the position of the singularities in the three dimensional
space of the time differences, the variables

y X\ H~ X2 X3 + -X4 „ X\ + X3 X2 "f" X4.

ξ 3 ~ ^ 2
are suited best for a symmetric plot.

The structure mentioned above expresses just the fact that all
singularities of the spatially averaged real part can be separated from
each other and from the background. Moreover, this separability con-
dition does not only hold for real analytic spatial test functions / e Z(1R12),
but also holds for every real spatial test function fe (£1/3(1R12).

Now, among all possible choices for the connected part of the time-
ordered vacuum expectation value of four exponentials there is a partic-
ular one: 3 + 3o which is distinguished from the rest by the fact that when
its real part is averaged in the spatial difference variables with an
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arbitrary real test function /e(£ 1 / 3 (IR 1 2 ) this average never contains
^-derivative type singularities solely attached to the times x°1 = x\
= X3 = x°. Thus the definition

τ(x 1 ? . . . ,x 4 ) = 3(x 1 ? . . . ,x 4 ) + 3o(Xi,...,X4) (43)
is singled out in a unique way by the criterion of minimal singularity.
On the basis of arguments given in Ref. [1] we expect this definition to
lead to the simplest dynamics associated with the classical exponential
Lagrangian.

We would like to conclude with two remarks: First, as a corollary
of the discussion of Section ΠIB we obtain the assertion that also the
space averaged imaginary part of τ(xux2,x?) enjoys the separability
property (as well as the space averaged imaginary part of τ(xux2))
However, we are not free to use this separability for a minimal definition
of Jmτ. Second, since the s-integrations in the equations defining
3a, r 0 = 4,5,6 when bent around the real axis from - 1 to +00 are
uniformly convergent as the momenta vary inside compact sets, the
analyticity structure of the (crossed and uncrossed) box graph amplitudes
in the invariant momenta on all sheets of the Riemann surface is just
the same as renormalizable models.
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