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Abstract. An analysis of a family of equilibrium states is performed which, combined
with our previous work, allows to describe all translation invariant equilibrium states of
spin \ classical ferromagnetic systems with finite range interactions at low temperatures.
A model is described with continuously many equilibrium states for low temperatures.

The ferromagnetic systems have several special features when com-
pared with general lattice systems. In this note we exploit various
inequalities of Griffiths, Kelly, and Sherman (GKS) to analyse the way in
which the translation invariance of spin \ classical ferromagnetic systems
can be broken. We also give an example of a system with continuously
many ergodic equilibrium states.

Among the equilibrium states of the systems under consideration
special role is played by the state ρ+ obtained as the limit of finite volume
states with " + " boundary conditions. The rather straightforward analy-
sis of Section 3 and the information obtained in [7] show that for
a large family of ferromagnetic systems the translation symmetry can
be broken only in the manner described by formula (8): the extremal non
invariant states that enter into the decomposition are obtained from ρ +

by flipping spins at some lattice sites, and only flippings leaving invariant
the energy are allowed. At the same time the description of all translation
invariant equilibrium states is reduced to a description of all translation
invariant measures on a symmetry group of the system.

This analysis suggests that for some systems the family of all ergodic
equilibrium states (for a given temperature) can be large. This was
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presumably realized before for models with disconnected interactions.
In Section 4 we describe a (connected) model with continuously many
ergodic equilibrium* states for low enough temperatures. We finish with
some conjectures.

1. Notation. Equilibrium States

A configuration of spin j classical system on the v-dimensional
lattice is a function from Zv to {1, -1}. The set

of all configurations is made into a compact separable space by the
product topology. The function on X which to each configuration
assignes its value at the lattice site ί is denoted by σh and

ieA

where 0>f(Έv) is the family of all finite subsets of TL\ SCΛ will denote the
set of configurations in A cΈv:

An interaction is defined by a subfamily & oϊ^f(Έv) and by a function
J o n J ; the elements of & are called bonds. We consider mainly trans-
lation invariant interactions, i.e. both the family Si and the function J
are invariant under translations. We assume that J(B) ̂  0 for all B e $
(ferromagnetic interactions) and that

Σ J(β)<oo.
B30

The Gibbs state in A corresponding to a configuration Y outside of A
ascribes to a configuration X in A the probability

K(B)σB(X,Y) (1)

where K{B) = βJ(B) and

= Σ exPf Σ K(B)σB(X,Y)
Xe3CΛ [

Let 91 denote the C*-algebra of complex continuous functions on 9C
and let %Λ be the subalgebra of 21 of the functions depending on the
restriction of a configuration to A only; *$lΛ is identified with ^{βC^

A probability measure on $C, or, equivalently, a state of 21 is called
an equilibrium state (corresponding to K) if when restricted to 91^,
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A finite, it is a combination of the states {ρ^}y:

(2)

where ρΛ is a measure on ΘCΈΛΛ. The set of all equilibrium states is
denoted by A the dependence of A on the interaction and the temperature
is not written explicitly. A is a compact space when equipped with the
w*-topology which in our case is defined by the family of functions

A is closed under forming convex combinations. It is a Choquet simplex,
i.e. for each ρ e A there exists a (unique) measure carried by the set
of the extremal points of A with the resultant equal to ρ *.

2. Inequalities and the ρ+ State2

Let a finite system on a volume A be given, with bonds 31C SP{A) and
interaction J. Let ρ be the corresponding Gibbs state:

ρ(X) = Z 1 exp £ K(B) σβ(X), K(B) = β J(B).
Be®

We list the inequalities that will be needed later.
If J is ferromagnetic then

Q(σAσB) ^ ρ(σA)ρ(σB), A,BcA. (G.I)

If ρ' is the Gibbs state corresponding to an interaction J', not necessarily
ferromagnetic but with the same set & of bonds as J, and if \J'(B)\ ̂  J(B)
all B, then

\ ) { ) (G.2)

with Jf{A) = 0 if A Φ B and J'(B) = J(B) we obtain by direct computation:
ρf(σB) = thK{B). Therefore, by inequality (G.2),

ρ(σB)^thK(B), all Be@. (3)

We now place ourself in the situation of Section 1 and we draw some
consequences of the inequalities.

The state ργ

Λ fits into the framework above with {BnA}Bem as the
set of bonds and

JY(B')= Σ

1 See [1], [4], [6], for the notion and properties of equilibrium state.
2 For the material of this section see [8], [9], and references there; the inequality (G.2)

is given in exercise 3 of [3]. However, some proofs, in particular the use of the maximality
of ρ+, seem to be new.
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as the interaction. It follows that the state ρA defined by: 1^=1 all
i e ΈV\Λ, corresponds to a ferromagnetic interaction, and that

all B\ all Y.

Therefore by (G.2)

QM^Q>A)> all Y,ACΛ (4)

and hence

QAM^QM, a 1 1 ρeA,AcΛ. (5a)

By (G.I) and (3)

QΛ K <%) ^ QΛ K ) QΛ (σB) A,BcA, (5 b)

QΛ{σB)^thK(B) BeΛ, BeΛ. (5c)

If A' D A then ρĵ  restricted to A is of the form (2). Therefore by (4)

for all Ac A.

It follows that ρA (σA) converge when A -+ oo, and it is not hard to see that
the limit defines an equilibrium state in the sense of (2). This state is
denoted by ρ + . By (5) ρ+ has the following properties:

ρ + ( σ A ) ^ ρ ( σ A ) A e ^ ( Z v ) , ρ e A , (6a)

+ (σAσB) ^ρ + (σA) ρ+(σB) A, Be 0>f(W), (6b)

Be@. (6 c)

ρ + is an extremal equilibrium state and it is invariant under any affine
transformation of Z v leaving invariant the interaction.

For a proof, suppose that ρ+ = λρ1 + (ί — λ)ρ2, 0 < / l < l ± , ρl9 ρ2eA.
If there exists Ae0>f{Έv) such that ρi(σA) + ρ + (σA) then by (6a) ρ^σj
<ρ+(σA). Since, again by (6a), ρ2(^A)SQ+(^A) w e arrived at a contra-
diction proving the extremality of ρ + .

A proof of the second part of the statement comes from the ob-
servation that for any affine transformation of Έv the transform of ρ +

again satisfies (6 a) and a state ρ + satisfying (6 a) is obviously unique.

3. States that Agree with ρ+ on the Group Generated by Bonds

It is convenient, and important for what follows, to introduce in 9C
a group structure by regarding {1, — 1} as an abelian group and defining
the group operation in 9C pointwise (elements of 3C are mappings from
Έv to {1, — 1}). In this way SC acquires the structure of a compact abelian
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group. The σA' s, Ae£Pf(P\ are characters of X and the mapping
A\-*σA identifies έPf(Zv) (with the symmetric difference as the group
operation and the discrete topology) with the group^ dual to X. The
subgroup of ^ ( Z v ) generated by 0$ is denoted by SS.

The (internal) symmetry group3

& = {XeX\σB(X)=\9 all Be®}

is a closed subgroup of X and therefore compact.
For the Ising model 0$ consists of all the even subsets of Έv and ίf

has only two elements: E with all components equal to 1, and F with all
components equal to — 1.

For Y e ΘC the translation mapping X\->X + Y is a homeomorphism
oiX\ the state

f^Q(fγ)

where fγ(X) = f{X+Y) will be denoted by ργ. Clearly

(7)

It follows directly from (2) that for an equilibrium state ρ and Ye^
ργ is again an equilibrium state, and since the mapping ρ ^ ρ y preserves
convex combinations ρy is an extremal equilibrium state if ρ is. For each
ρeΔ the mapping Yt-*ργ from if to Δ is obviously continuous. For a
measure μ on Sf we define

μ ί ί (8)
By (7)

ΦA) = ^A)Q"^A)- (9)

Let ^ + be the isotropy subgroup of ρ + :

Since J* is Zv-invariant the same is true about £f. Similarly ^ + is Έv-
invariant, since ρ+ is Zv-invariant. This will alow us later to consider the
action of Έv on the factor group <Sf/Sf+.

The function: Γh->ρy is constant on ί^+-cosets. Therefore the
integral in (8) can be transformed into an integral over Sf/6f+, or,
equivalently, onto an integral over if with respect to a ^+-invariant
measure. We write [Γ]h-»ρJ] for the function on ίfjίf* corresponding
to Γκ>ρy, and we remark that, by the definition of y + ϊ ]

3 For finite systems the groups 3& and £f are introduced in [5]. The reader will find
there a discussion of several examples.
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is an injective mapping. We write

for the integral over 9*1^* that corresponds to (8).
Let

By (6 b) St^_ is a subgroup of ^f(Έvl and by (6 c) @+ 3 St. Therefore J*+

contains S&.
Let A + be the family of the equilibrium states that agree with ρ +

on Jh

A+= {ρsA:ρ(σA) = ρ+(σA) for all $

If ρ e A + then ρ y e A + for each 7 e Sf, and (8) defines an element of A +

for any μ.

Theorem. All elements of A+ are of the form (8). The mapping μ κ ρ μ

from normalized measures on 9/9+ to equilibrium states is one-to-one,
and (8') gives the decomposition of ρμ into extremal elements of A. μ is
TLy-invariant if and only if ρμ is TLy-invariant, and μ is qrgodic if and only
if ρμ is.

Proof. Let ρ e A + and let

ρ= ί ρξμ(dξ)

be the decomposition of ρ into extremal elements of A. By (6a) ρξ(σA)
^ρ+(σA) for all Ae0>f(Έv). If Ae M then ρ(σA) = ρ+(σA) and therefore
the set of ξ e £{A) for which ρξ(σA) φ ρ+{σA) is of μ-measure zero. Since
the family 0>f(Έv) is denumerable, ρξ e A + μ-almost everywhere. Therefore
to prove the first part of the theorem it is enough to show that if
ρ G A + nδ(Δ) then there exists Ye Sf such that ρ = ρ?.

Let ρeA + nS>(A) and let

where dY is the normalized Haar measure on £f. ρeA+ and ρ(σA) = 0
if A φ $ since

ρ(σA) = ρ(σA)$σA(Y)dY

and σA is a character. Similarly ρ+(σA) = 0 if A $ $ and therefore ρ = ρ + .
This implies, by the uniqueness of the decomposition into extremal
elements oίΔ, that the intersection of {ργ}Yey and {ρy }Ye9> is not empty;
i.e. there exist Y\ Y" e Sf such that ρτ = ρ^f. Hence ρ = ρ j , Y = Y - Y".
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Since ρfX] φ ρfY] if [X] φ [ Y] the representation (8') gives the unique
decomposition of ρμ into extremal equilibrium states and therefore the
mapping μκ>ρμ is one-to-one.

It follows from (9) that a translate of μ corresponds to a translate of
ρμ. Therefore invariant measures are in one-to-one correspondence with
invariant elements of A + . Since the mapping μι->ρμ is linear and bijective
this implies that ergodic measures are in one-to-one correspondence
with ergodic elements of A+. The theorem is proved.

It was shown in [7] that for a large family of ferromagnetic systems
all the translation invariant equilibrium states at low temperatures
belong to A+. Therefore the above theorem yields a description of all
the translation invariant equilibrium states at low temperatures for
those systems. For instance, in the case of a connected two-body inter-
action $ contains all the even subsets of Έ ([7], Section 4.9) and therefore
£f has only two elements: £, F. Hence, by (8), only two ergodic equilibrium
states are possible. For disconnected systems £f,5f+, 5^/y + are products
of the groups corresponding to the connected components.

4. A Non-Denumerable Family of Ergodic Equilibrium States

The system is three-dimensional. The bonds are the translates of the
following ones:

B2 = {0,eue3,e1+e3}i B3 = {0,e1,e2,e1 +

where e1 = (1,0,0), e2 = (0,1,0), e3 = (0,0,1); B2 is pictured below

We put J(B)= 1, all Be0$. Let for neΈ, Fn denotes the configuration
that is - 1 at the lattice sites belonging to the plane: x1 = n, and +1 at
all other sites. Since intersections of the bonds with such planes are even
Fn e 9*, all neΈ. The subgroup !F of % generated by {Fn} is isomorphic
to the group of configurations of a one-dimensional lattice system with
the action of Ί? on !F reduced to the action of Z on the later.

For low enough temperatures the group <Sf+ has at most two elements:
E,F (Et= +1, Fi=-\for all ieΈ3).

For a proof it is enough to show that ^ + contains all the Ising type
bonds for low enough temperatures. Since &+ is invariant under
rotations and translations, as ρ+ is, it is enough to show that {0, e3}
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This, in turn, will be deduced from the existence of the spontaneous
magnetization in the Ising model.

Let 38 be the set of bonds of 0& that are not contained in
{xeZ 3 :x 3 ^l}u{xeZ 3 :x^0} ,andlet J W | J . Ifρ+ is the" + " state
corresponding to the interaction J then by the GKS inequalities

ρ+(σA)^ρ + (σA) for all Ae0>f{W).

Let Λn = {x eΈ3 .O^x^n, ί = 1,2, 3}. A configuration X in Λn can be
identified with (Xθ9 Xl9 ..., Xn) where X{ is a configuration in
Λ® = {x e Έ2 : 0 ^ xt ^ n, i = 1,2}. If 4̂ is a sum of a subset, say Aθ9 of
the plane x0 = 0 and of the translate of ^40 by e3 then

•cxp\β Σ ffj»(-Xo.^)l/ Σ ™P\β Σ

L BnylMΦ0 J/ L BnΛn*β

Furthermore

and therefore performing the change of variables

Σ σBo(Xo)lΣ^pβ Σ
B l / ^

we obtain

The right hand side here is equal to the expectation value of σAo in the
" + " state of the two-dimensional Ising model in Λ%. Putting A = {0, e3}
and passing to the limit as n-> oo we see that ρ+(σ{0 β3}) is bounded from
below by the spontaneous magnetization of the two-dimensional Ising
model, and therefore is not zero at low enough temperatures.

For the model under consideration the family of ergodic equilibrium
states at low enough temperatures is non-denumerable.

According to the theorem of the preceeding section it is enough to
show that the family of ergodic (under the action of Ί?) measures on
ίfjίf+ is non-denumerable. Since if D & and ^ + C {£, F} it is enough
to find a non-denumerable family of Έ and F-invariant measures on J*\
Such family of measures is provided by the one-dimensional Ising model
if the temperature is varied. Another (denumerable) family of examples
is obtained from invariant measures concentrated on the Z-orbits of the
periodic elements of J5". In these examples μ has finite support.
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Whereas it is not hard to vary and to multiply examples like the
one above, even for the models discussed in [7] we do not have a de-
scription of £f+, or Jf+, at low temperatures. By the GKS inequalities
0S+ increases with the_jnverse temperature. For high temperatures
j>+ =@ since the state ρ+ of Section 3 vanishes on σA, Aφ&, and the
equilibrium state is for high temperatures unique. We conjecture that
Sf+ stabilizes at low temperatures, and that the limits as T-+O of trans-
lation invariant equilibrium states are given by invariant measures on
&f/S?+ where Sf+ is the (temperature independent) group corresponding
to low temperatures.
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